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1. Introduction 

One of the most pronounced effects of Thyroid Hormone (TH, Triiodothyronine (T3), 

Tetraiodothyronine (T4)) is modulation of metabolic efficiency, energy expenditure and 

calorigenesis. Thus, hypothyroidism results in decreased energy expenditure and basal 

metabolic rate  accompanied by weight gain and cold intolerance, while hyperthyroidism 

results in hypermetabolism,    weight loss despite increased energy intake, intolerance to 

heat, loss of lean mass,  bone resorption and tachycardia. TH role in modulating metabolic 

efficiency has been realized for over a century but its cellular mode-of-action remained to be 

resolved.  

2. Mode-of-action of TH in modulating metabolic efficiency 

The first description of TH-induced calorigenesis dates to 1895 (1). That initial report has 

been followed by exhaustive data focusing on the phenomenology of TH action as reflected 

by hyper- and hypothyroidsm. Thus, high levels of TH in mammals increase oxygen 

consumption and heat production, resulting in pronounced body weight loss, while low 

levels of TH are associated with a decrease in  metabolic rate and the oxidation of energy 

substrates (glucose, fatty acids and amino acids), resulting in pronounced increase in body 

weight  (2-6). Although it was widely accepted that TH stimulates calorigenesis by affecting 

respiration, its cellular mode-of-action remained to be resolved. Hence, exhaustive attempts 

were made by the scientific community throughout the twentieth century to verify the 

mechanism(s) involved in modulating metabolic efficiency by TH. Studies by Lardy and 

Feldott (7) and Hess and Martius (8) have pointed out during the 1950s, that the respiratory 

control ratio of  isolated mitochondria was robustly decreased in the presence of added T4. 

TH was thus claimed to have direct action at the mitochondrial level by inducing 

‘mitochondrial uncoupling’, namely, dissociating mitochondrial phosphorylation from its 

substrate oxidation driver.  However, the high T4 doses used in those studies implied 

possible non-physiological activity rather than authentic TH-induced calorigenesis.  Later 
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evidence in support of ‘mitochondrial uncoupling’ has however  indicated  increase in 

oxygen consumption and mitochondrial proton permeability of isolated liver mitochondria 

derived from hyperthyroid rats,  with concomitant  decrease in   mitochondrial phosphate 

potential and inner mitochondrial membrane (IMM) potential (9, 10).  These observations 

were further corroborated by increase in liver oxidizing capacity of hyperthyroid rats  

accompanied by decrease in  phosphate and  cytosolic redox potential (11), while opposite 

effects were reported in livers of hypothyroid rats (12).  Similarly, hepatocytes isolated from 

T3-treated rats show higher oxygen consumption and lower IMM potential as compared 

with non-treated control (13-16).  Also, a decrease in IMM potential has been reported in 

TH-treated human lymphocytes or those derived from hyperthyroid patients (17).   Overall, 

these findings suggested that TH indeed induces mitochondrial uncoupling, and that 

mitochondrial uncoupling may account for the cellular mode-of-action of TH in modulating 

metabolic efficiency in vivo. 

Concomitantly with the proposed mitochondrial paradigm of TH, others have proposed 

non-mitochondrial activity of TH in modulating metabolic efficiency. Thus, TH was claimed 

to induce “futile substrate cycles”, namely, opposing energy-requiring metabolic pathways 

that proceed simultaneously without generating net products, e.g. glycolysis accompanied 

by gluconeogenesis, lipolysis with lipogenesis (18, 19),  Na+/K+ ATPase with concomitant 

Na+/K+ leakage (13),  or  glycerol-3- phosphate/NADH mitochondrial shuttling (20).  

However, these proposed mechanisms could account for only a small fraction (about 15%) 

of the total increase in oxygen consumption induced by TH (13, 21), resulting in a 

mitochondrial paradigm consensus for TH-induced calorigenesis. Yet, the concerned 

mitochondrial targets still remained enigmatic. 

3. Nuclear / mitochondrial targets of TH 

TH effects in the mitochondrial context may consist of long-term effects that are dependent 

upon gene expression, and short-term effects that are refractory to inhibitors of protein 

synthesis.  An important finding reported by Tata et al (2), indicated that the calorigenic 

activity of TH was abrogated by actinomycin D, implying that TH-induced mitochondrial 

uncoupling is mediated by modulating nuclear gene expression of respective mitochondrial 

and/or extra-mitochondrial proteins. These results were followed by extensive studies ((22, 

23) and others) that resulted in discovering the nuclear TH receptors (THR) of the 

superfamily of nuclear receptors, acting as target for TH in modulating nuclear gene 

expression. THR are encoded by two distinct tissue-dependent genes coding for splice 

variants of the THRbrain, bone, heart) and THRliver, brain, heart) isoforms. THR 

homodimers or heterodimers with other members of the superfamily of nuclear receptors 

(e.g., retinoic X receptor (RXR)) may interact with TH-response elements (TRE) in the 

promoters of TH-responsive genes, resulting in transcriptional activation or suppression as 

function of transcriptional co-activators or co-suppressors recruited by TH/THR to the 

transcriptional complex of respective promoters.  Indeed, TH binding to nuclear THR results 

in direct transcriptional activation of the expression of genes coding for components of 

mitochondrial oxidative phosphorylation (i.e. βF1-adenosine triphosphatase, adenine 
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nucleotide translocase (ANT), cytochrome c1) (24, 25), or genes coding for intermediate 

factors that are indirectly involved in promoting the nuclear expression of mitochondrial 

components (i.e. nuclear respiratory factors 1 and -2, peroxisome proliferator-activated 

receptor-γ coactivator-1) (26), or in stimulating mitochondrial DNA replication (27). Hence, 

TH-induced mitochondrial uncoupling was believed to be accounted for by TH-induced 

gene expression of respective protein targets that modulate mitochondrial oxidative 

phosphorylation. In pursuing putative proteins involved in TH-induced mitochondrial 

uncoupling, a number of candidates have been suggested. These included the adenine 

nucleotide translocase, proteins that are involved in phosphatidylglycerol and cardiolipin 

synthesis (28), and in particular the mitochondrial uncoupling proteins (UCPs). 

4. Mitochondrial uncoupling proteins (UCPs) 

With the discovery of UCPs, extensive efforts were invested in verifying their putative role in 

mediating the calorigenic effect of TH. In fact, the UCP-coding genes have TREs in their 

promoters and their expression level is increased by TH treatment, implying their putative role 

in mediating TH-induced calorigenesis (40). UCP1 (29) mediates proton leak in brown adipose 

tissue IMM (30), resulting in uncoupling fuel oxidation  from ATP synthesis  and in dissipating 

IMM potential as heat. The adaptive thermogenic response of UCP1 is driven by the 

sympathetic nervous system in response to cold temperature or high-energy cafeteria diet, and 

could apparently serve as target for TH in modulating total body energy expenditure. Indeed, 

recent findings by Lopez et al (31) have indicated that TH treatment results in suppressing 

hypothalamic AMP-activated protein kinase (AMPK) activity, resulting in SNS-induced 

thermogenic response of brown adipose fat. However, UCP1 is specifically expressed in 

brown adipose tissue, which is sparse in adult humans. While recent findings point to some 

brown adipose islets in adult humans (32-37), their putative impact on total body energy 

expenditure still remains to be resolved.  Hence, other proteins that share sequence homology 

with UCP1(38), including the ubiquitously expressed UCP2,  and in particular the UCP3 that is 

expressed in skeletal muscle, were pursued for their role in mediating TH-induced 

calorigenesis (39). However, the following observations may indicate that  UCP2 and UCP3 

may not account for TH-induced mitochondrial uncoupling (41).  Thus, findings suggest that 

UCP2/3  do not contribute to adaptive thermogenesis (42), but may have a role in ROS 

signaling (43) and/or in exporting fatty acid anions from the mitochondrial matrix (44). Also, 

the expression of liver UCP2/3 proteins is restricted to Kupffer cells, implying that the 

uncoupling effect of TH in liver parenchymal cells is not due to UCPs. Most importantly, 

UCP3 knock-out mice are lean and show normal response to TH (45), leaving unresolved the 

specific proteins that may mediate TH metabolic effects in the mitochondrial context.  

5. Mitochondrial permeability transition pore (PTP)  

In analogy to UCPs, mitochondria consist of Permeability Transition Pores (PTP) (46-50) 

located at the contact sites of the inner (IMM) and outer (OMM) mitochondrial membranes. 

The molecular composition and structure of mitochondrial PTP still remains to be resolved. 

The current model of PTP consists of the integral proteins ANT (in the IMM), the voltage-
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dependent anion channel (VDAC, in the OMM), cyclophylin D (CypD, in the mitochondrial 

matrix) and the Bcl2 family of proteins (in the OMM). PTP gating may present itself in 

definitive or transient modes, differing in reversibility and synchronization (51, 52). 

Definitive synchronized PTP gating is induced by intramitochondrial Ca+2 load (53),  and is 

enhanced by oxidative stress, depletion of adenine nucleotides, increased inorganic 

phosphate, increased matrix pH, and depolarization of the IMM (54-56). This 

opening/gating mode results in high-conductance PTP (HC-PTP), extensive depolarization 

of the IMM (~70% decrease in IMM potential), rapid passage of ions and solutes of less than 

1500 Da across the IMM, and mitochondrial swelling. These may lead to rupture of the 

OMM, release of mitochondrial proapoptotic proteins (such as cytochrome c, apoptotic 

intrinsic factor), followed by programmed cell death/apoptosis (57).  Alternatively, 

spontaneous, non-synchronized, transient/flickering  PTP gating due to cyclic opening and 

closure of individual PTP channels may result in reversible and limited depolarization of the 

IMM (~30% decrease in IMM potential), moderate decrease in proton motive force, and 

passage of solutes of less than 300 Da, accompanied by mitochondrial contraction rather 

than swelling (58-63). Most importantly, in contrast to the irreversible proapoptotic 

depolarization inflicted by definitive PTP gating, transient low conductance PTP (LC-PTP) 

gating is innocuous and reversible, leading to mild mitochondrial uncoupling. These 

findings may indicate that LC-PTP may serve as mitochondrial target of TH in inducing 

physiological mitochondrial uncoupling and calorigenesis.   

6. Mitochondrial PTP gating by TH 

In testing the role played by PTP gating in TH action, a straightforward approach would be to 

examine whether TH-induced uncoupling is inhibited by the PTP specific inhibitor, 

cyclosporin A (CSA).  CSA acts as a potent inhibitor of PTP gating due to its binding to CypD, 

resulting in interfering with CypD interaction with PTP-ANT (64, 65). Indeed, TH-induced 

lowering of mitochondrial membrane potential and proton gradient followed by 

mitochondrial swelling are all eliminated by added CSA, pointing to PTP involvement in TH 

mitochondrial activity (66, 67). In addition, liver mitochondria of hypothyroid rats show  

decrease  in mitochondrial Ca+2  efflux, swelling and protein release, being restored by TH 

treatment (68-70). Furthermore, TH treatment of Jurkat cells induces induce LC-PTP gating 

(71), implying that mitochondrial PTP may serve as target for TH in inducing mitochondrial 

uncoupling. However, as described below, TH activity in gating PTP is not accounted for by 

modulating gene expression of structural components of mitochondrial PTP.  

Adenine Nucleotide Translocase (ANT): ANT is a central player in oxidative 

phosphorylation due to its primary function in translocating adenine-nucleotides via the IMM. 

ANT function in the PTP context  has been verified by its direct association with CypD and 

VDAC (72), as well as by PTP gating being activated and inhibited by the ANT ligands 

Atractylate and Bongrekic acid, respectively (73). Moreover, ANT/CypD/VDAC- reconstituted 

liposomes show PTP characteristics in terms of sensitivity to Ca+2,  CSA and ANT ligands ((74, 

75) but see also (76)).  Also, over-expression of ANT isoforms (ANT1, ANT3) promotes 

apoptosis, being inhibited by CSA (77, 78). Moreover, ANT expression levels affect 
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mitochondrial IMM potential, with high ANT levels resulting in IMM depolarization and 

mitochondrial proton leak (71, 77, 79). Hence, in light of ANT structural and  regulatory 

functions in the PTP context, and  since  the expression level of ANT2, the only ANT isoform 

expressed in liver, is increased in hyperthyroidism  and decreased  by hypothyroidism (80), 

TH-induced ANT expression could apparently account for liver TH-induced LC-PTP gating. 

However, over-expression of ANT2 in HeLa cell line or in rat primary hepatocytes resulted in 

extensive mitochondrial depolarization that was not inhibited by CSA (71), implying  the 

formation of PTP-nonrelated ANT channels (81), or of CSA-insensitive PTP (82).  Lack of an 

obligatory linkage between PTP and ANT conforms to other findings pointing to PTP gating 

by proapoptotic ligands in liver cells or isolated mitochondria that lack ANT (76).  

Cyclophilin D (CypD): CypD is a member of the family of peptidyl-prolyl cis-trans 

isomerases (PPIase) (83). The CypD protein contains a mitochondrial-targeting sequence 

that directs it specifically to the mitochondrial matrix. The link between CypD and PTP has 

been verified by CypD direct association with ANT (72) as well as by CSA inhibition of PTP 

gating due to its interaction and inhibition of  CypD activity (64, 65, 84). Moreover, PTP 

opening by Ca+2  and oxidative stress was enhanced in isolated mitochondria of neurons 

over-expressing CypD (85), while CSA-sensitive PTP opening was abrogated in isolated 

mitochondria of CypD knock-out mice (86). These CypD characteristics may indicate that 

CypD could apparently serve as protein target of TH in inducing PTP opening and 

mitochondrial uncoupling. Indeed, liver mitochondria of hyperthyroid rats show increased 

expression of CypD as well as its PPIase enzymatic activity (71), while opposite effects 

prevailed in liver mitochondria isolated from hypothyroid rats.  However, over-expression 

of CypD in HeLa cell line, or in rat primary hepatocytes, resulted in mitochondrial 

hyperpolarization rather than PTP opening (71, 87). Moreover, over-expressed CypD was 

found to desensitize cells to apoptotic stimuli or to protect cells from mitochondrial 

depolarization and apoptosis induced by over-expression of ANT1 (77, 78). Hence, TH-

induced CypD expression may not account for TH-induced PTP gating and calorigenesis.  

CypD  induction by TH may reflect TH activity in inducing peptidyl-prolyl cis-trans 

isomerase activity and protein folding rather than PTP opening (88). 

Voltage Dependent Anion Channel (VDAC): VDAC is a highly abundant protein of the 

OMM. Its primary function consists of  exchanging anions between the cytosol and the inter-

membrane mitochondrial space (89). Previous findings have indicated its putative role in 

gating mitochondrial PTP (90-94). However, its expression level  is  not changed by in vivo 

TH treatment (71), excluding VDAC from being a molecular target of TH in inducing 

mitochondrial uncoupling. 

7. Modulation of Bcl2-family proteins by TH 

The family of Bcl2 proteins consists of more than 20 proteins that were extensively studied 

in terms of their role in cell death (95). The Bcl2 family is grouped into two main 

subfamilies: proapoptotic proteins (e.g. Bax, Bak, and others) and anti-apoptotic proteins 

(e.g. Bcl2), which promote or inhibit PTP gating, respectively (95-97). Bcl2-family proteins 
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may directly interact with PTP components such as ANT (98-100) or VDAC (101), and when 

over-expressed or added to isolated mitochondria  may specifically induce (e.g. Bax and 

Bak) (102-104) or antagonize (e.g. Bcl2) (105) PTP gating. Similarly, depletion of 

proapoptotic Bax or Bak results in failure of PTP gating (98, 105, 106), whereas Bcl2 

inactivation results in definitive PTP gating triggered by oxidative stress (107). Thus, 

mitochondrial Bcl2-family proteins and their respective heterodimers (e.g., Bax/Bcl2, 

Bad/Bcl2) may apparently serve as candidate targets of TH in inducing mitochondrial 

uncoupling (108-110). Indeed, TH-induced PTP gating is accompanied by increase in 

mitochondrial Bax and Bak, together with decrease in mitochondrial Bcl2 content, whereas 

hypothyroidism results in opposite effects that are reversed by TH (71). Modulation of the 

mitochondrial content of Bcl2 proteins by TH is due to their specific translocation in/out of 

mitochondria, rather than reflecting modulation of their expression and total cellular 

content.  Amplifying the ratio of mitochondrial pro- vs. anti-apoptotic proteins, results in 

robust decrease in mitochondrial Bax/Bcl2 heterodimer with concomitant increase in free 

Bax, leading to PTP gating by free mitochondrial Bax (111). Indeed, over-expression of Bcl2 

protects against TH-induced mitochondrial PTP gating (71), implying that depletion of 

mitochondrial Bcl2 by TH may account for TH-induced mitochondrial uncoupling.  

8. Extra-mitochondrial upstream signals that induce TH-induced  

PTP gating mediated by Bcl2-family proteins 

Since Bcl2-Bax hetrodimerization may depend on Bcl2(S70) phosphorylation state (112), 

mitochondrial Bcl2 depletion by T3 was further verified in terms of Bcl2(S70) 

phosphorylation profile. Indeed, concomitantly with decrease in mitochondrial Bcl2, T3 

treatment results in decreased phosphorylation of monomeric mitochondrial Bcl2(S70) as 

well as of Bcl2(S70)-Bax heterodimer (113), indicating that mitochondrial Bcl2 depletion may 

reflect Bcl2(S70) dephosphorylation by TH. In pursuing kinases (e.g. PKA, PKC) or 

phosphatases (e.g. PP2A, PP2B/Calcineurin) reported to be involved in Bcl2(S70) 

phosphorylation (112, 114), neither PKA, PKC nor PP2A were found to mediate 

phosphorylation/dephosphorylation of Bcl2(S70) by TH (113). In contrast, 

dephosphorylation of Bcl2(S70) and the depletion of mitochondrial Bcl2 protein by T3 are 

both reversed by the FK506 inhibitor of PP2B, indicating that the TH effect may  be 

mediated by activation of PP2B (113). Furthermore, added FK506 blocksT3-induced opening 

of PTP, indicating that dephosphorylation of Bcl2(S70) and its mitochondrial depletion by 

T3-activated PP2B may account for mitochondrial PTP opening by TH.  Since TH-induced 

PP2B activation was not accompanied by increase in PP2B expression, PP2B activation  was 

further pursued by searching for TH-induced increase in cytosolic Ca+2 (113).  Indeed, Ca+2 -

activated PP2B has previously been reported to bind and dephosphorylate Bcl2(S70)  (115, 

116). Most importantly, T3 treatment resulted in pronounced increase in Ca+2, while Ca+2  

chelation by BAPTA resulted in abrogating LC-PTP gating by TH, indicating that TH-

induced PP2B activity  involved mobilization of intracellular Ca+2 (113). Indeed, T3-induced 

mobilization of intracellular Ca+2  has recently been reported to mediate a variety of non-

genomic effects of TH (117, 118).      
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The dynamic equilibrium between cytosolic Ca+2 ([Ca+2]c) and endoplasmic reticulum (ER) 

Ca+2 ([Ca+2]ER) is maintained by an interplay between the inositol 1,4,5-trisphosphate 

receptor (IP3R1) and the sarcoplasmic Ca+2 ATPase (SERCA) that catalyzes  ER Ca+2 efflux 

and influx, respectively (119).  IP3R1 is activated by binding of the IP3 ligand and may 

further be modulated by its phosphorylation by PKA, PKC or CaMKII, its 

dephosphorylation by PP2B, or by its association with one or more of about 50 proteins, 

including FKBP12 or Bcl2 (120, 121). The putative role played by IP3R1 in TH-induced PTP 

gating was evaluated by verifying the effect of TH in cells lacking IP3R1 (113). Thus, PTP 

opening, dephosphorylation of mitochondrial Bcl2(S70) and depletion of mitochondrial Bcl2 

are all abrogated in cells lacking IP3R1, indicating that IP3R1 is indeed required for TH-

induced mitochondrial uncoupling.  Similarly, T3 is ineffective in increasing [Ca+2]c upon 

inhibition of IP3R1 by 2APB, indicating a specific requirement for IP3R1 activity in 

modulating [Ca+2]c by TH. Furthermore, T3-induced gating of IP3R1 is accounted for by 

both, increase in IP3R1 expression and protein levels, complemented by IP3R1 truncation 

into channel-only isoforms.  Truncated IP3R1 isoforms have been reported to serve as  

channel-only peptides capable of carrying out [Ca+2]ER efflux in the absence of  added IP3 

(122-126). IP3R1 truncation by TH may reflect TH activation of IP3R1 proteases that remain 

to be further verified. The  IP3R1 / PP2B crosstalk in mediating TH-induced PTP gating is 

supported by  constitutive PP2B-induced PTP gating  under conditions of suppressing 

IP3R1 expression by siRNA (127). Hence, PP2B is acting downstream to TH-induced IP3R1, 

and is obligatory as well as sufficient in mediating PTP by [Ca+2]c.   

Over all,  TH-induced expression of the IP3R1 channel accompanied by its truncation is 

proposed to result in [Ca+2]ER efflux, increase in [Ca+2]c and  [Ca+2]c-activated PP2B, 

followed by dephosphorylation of mitochondrial Bcl2(S70) with concomitant decrease in 

mitochondrial Bcl2 protein levels and increase in mitochondrial free Bax (Scheme 1). The 

decrease in mitochondrial Bcl2 and/or the respective increase in mitochondrial free Bax 

may initiate and promote variable PTP gating, resulting in physiological LC-PTP–

induced calorigenesis. LC-PTP gating may drift to HC-PTP–induced apoptosis as 

function of additional prevailing conditions that may affect mitochondrial permeability 

transition.    

9. Thyromimetic agents and energy expenditure     

Increase in energy expenditure by TH has long been considered for treating obesity.  Indeed, 

treating obesity by thyroid extracts was quite popular throughout the 20th century and well 

into the 1970s, being later abandoned due to severe side effects consisting of cardiac 

dysrhythmias, bone resorption / osteoporosis, electrolyte disturbances, and loss of lean body 

mass (128). Thus, a final ruling warning against the use of thyroid preparations for the 

treatment of obesity of euthyroid subjects has been issued by the FDA on 1978.  Similarly to 

TH, treating obesity by uncoupling of mitochondrial oxidative phosphorylation by 2,4-

dinitrophenol (DNP) has been introduced on 1933, but  abandoned on 1938 due to fatal 

hyperthermia (129). 
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Scheme 1. PTP-induced calorigenesis by Thyroid Hormone and MEDICA Analogs 

These early attempts were followed by rational drug design of  synthetic structural analogs 

of TH that may  avoid  the  lethal chronotropic cardiac effects of TH, while maintaining the 

beneficial effects of TH in the context of diseases of the Metabolic Syndrome (130, 131). Most 

efforts in that direction were invested in designing thyromimetics that selectively target the 

liver TH-receptor isoforms (THR) while avoiding the heart isoforms (THR). Tissue 

selectivity has been further pursued by designing thyromimetics that undergo selective 

hepatic uptake. These efforts have mainly resulted in thyromimetics effective in treating 

dyslipidemia, due to increased expression of hepatic LDL-receptors together with CYP7A1 / 

7-alpha-cholesterol hydroxylase, resulting in enhancing hepatic uptake of LDL-cholesterol 

and its conversion into bile. Liver-specific thyromimetics were further found to induce the 

expression of the hepatic scavenger receptor SR-B1 that mediates reverse cholesterol 

transport.  However, in contrast to the advances made in designing hypolipidemic 

thyromimetics, the efficacy of thyromimetics in treating obesity and obesity-induced 

diabetes type 2 still remains to be verified. Moreover,  the use of thyromimetics for treating 

diseases of the Metabolic Syndrome involves potential harmful risks due to:   a. The partial 

selectivity of  thyromimetics for hepatic THR, resulting in positive chronotropic effects as 

well as enhanced bone and muscle catabolism induced by high-dose. Hence, the safety of 

hypolipidemic thyromimetics still remains to be verified in subjects suffering from 

congestive heart failure or coronary heart disease. b. Since THR regulates the feedback loop 

Increased mitochondrial Bax

PTP opening

Mitochondrial uncoupling

Whole body energy expenditure, weight loss
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of hypothalamic TSH, thyromimetics may suppress the production of endogenous TH, 

resulting in combined hypo- and hyperthyroidsm. These limitations, combined with our 

present view of the mode-of-action of TH in the mitochondrial context, may however point 

to an alternative strategy, namely synthesizing thyromimetics that may directly target 

mitochondrial PTP while avoiding the TH/THR transduction pathway altogether.  

Long chain fatty acids (LCFA) have long been shown to induce mitochondrial uncoupling 

due to   their protonophoric activity (81, 132) and/or PTP gating ((51, 133), and ref therein), 

implying a potential mitochondrial thyromimetic activity. However, the uncoupling activity 

of LCFA is confounded by their dual role as putative uncouplers of oxidative 

phosphorylation and as substrates for oxidation or esterification. MEDICA analogs consist 

of long chain dioic acids (HOOC-C(α′)-C(β′)-(CH2)n-C(β)-C(α)-COOH (n=10-14)) that are 

substituted in the αα′ or ββ′ carbons (134). MEDICA analogs may be thioesterified 

endogenously into their respective mono acyl-CoA thioesters (135), however, they are not 

esterified into lipids nor β-oxidized, thus dissociating between the substrate role and the 

putative uncoupling activity of natural LCFA. 

Similarly to TH, MEDICA analogs induce calorigenesis in animal models in vivo. Thus, 

treatment of   rats with MEDICA analogs results in an increase in oxygen consumption 

accompanied by a decrease in liver mitochondrial phosphate potential and cytosolic redox 

potential, reflecting mitochondrial uncoupling in vivo (136). Furthermore, treatment of obese 

leptin receptor-deficient rats (e.g. Zucker, cp/cp) with MEDICA analogs results in increased 

oxygen consumption and food consumption together with weight loss, implying increased 

total body energy expenditure (137, 138). Also, the non-protonophoric mitochondrial 

activity of MEDICA analogs is similar to that of TH (71), in terms of promoting CSA-

sensitive decrease in phosphate and redox potentials with concomitant increase in oxygen 

consumption in cultured cells as well as in vivo (11, 16, 67, 139, 140), indicating that both 

MEDICA analogs and TH do converge onto LC/HC-PTP gating  (11, 71).  Indeed, similarly 

to TH, PTP gating by MEDICA analogs is mediated by modulating the profile of 

mitochondrial Bcl2-family proteins, resulting in decrease in mitochondrial Bcl2-Bax 

heterodimer with concomitant  increase in mitochondrial free Bax (71, 113). However, 

different transduction pathways are involved in modulating the mitochondrial content of 

free Bax by TH or MEDICA analogs.  Thus, dissociation of the Bcl2-Bax heterodimer by TH 

is driven by dephosphorylation of Bcl2(Ser-70) by T3-activated PP2B (113), whereas 

dissociation of the Bcl2/Bax heterodimer by MEDICA analogs is driven by 

dephosphorylation of Bad(Ser-112, Ser-155) (141). The decrease in phosphorylated Bad(Ser-

112, Ser-155) results in its decreased binding to14-3-3 followed by its increased binding to 

mitochondrial Bcl2, resulting in Bax displacement and PTP gating (142, 143). Decrease in 

phosphorylated Bad by MEDICA analogs is due  to  suppression of the Raf1/MAPK/RSK1 

and the adenylate cyclase/PKA transduction pathways, and their respective downstream 

targets Bad(Ser-112) and Bad(Ser-155) (141). Hence, the TH and MEDICA transduction 

pathways converge at their downstream Bax target but diverge upstream of the Bcl2/Bax 

heterodimer (Scheme 1).  LC-PTP gating by MEDICA analogs may account for their 

thyromimetic calorigenic activity in vivo. 
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10. Conclusion 

Energy expenditure by TH has long been realized to be accounted for by uncoupling of 

mitochondrial oxidative phosphorylation. However, the mode-of-action of TH in promoting 

mitochondrial uncoupling remained elusive. Mitochondrial uncoupling by TH is transduced 

by TH-induced gating of mitochondrial PTP due to modulating its Bcl2-family proteins.  

This mode-of-action underscores the physiological aspects of mitochondrial PTP in 

modulating metabolic rate, in contrast to most previous studies that analyzed mitochondrial 

PTP in its apoptotic context. TH-induced gating of mitochondrial PTP may offer a whole 

new dimension of developing novel anti-obesity drugs that promote weight loss by 

targeting mitochondrial PTP. 
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