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1. Introduction 

Asthma outcomes from an allergen-driven Th2 (T helper 2) response in which airway 

hyperresponsiveness (AHR) is associated with chronic airway inflammation and airway 

remodeling have crucial clinical importance (1-3). 

Recent investigations have emphasized the importance of lung tissue alterations in the 

pathophysiology of this syndrome. Additionally, current investigations have shown that 

patients who died of asthma presented important alterations in the lung parenchyma (4-7) 

that could also be observed in animal models of chronic allergic inflammation (8-11). In this 

regard, the importance of the mechanical properties of the lung parenchyma has been 

characterized as one of the major determinants of physiological function (8, 12-15).  

Asthma physiopathology is highly complex and involves a diverse immune response and 

the release of different types of mediators. The bronchial and tissue inflammation is caused 

by eosinophils, mast cells and T lymphocytes (16), and the persistence of inflammation 

induces changes in the structural components of the airway and alveolar walls (5, 8, 17).  

The airway smooth muscle (ASM) has been considered the main effector of the AHR in 

asthma (17-19) and is also believed to contribute to airway remodeling and inflammation 

due to its increased sensitivity to different bronchoconstrictor stimuli.  

The continuous bronchial inflammation process associated with the release of various 

mediators is thought to be responsible for asthma symptoms directly and indirectly by 

inducing the constriction of the ASM, enhancing airway responsiveness to different stimuli, 
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and inducing changes in the structural components of the airway wall, leading to airway 

remodeling. 

Inhaled corticosteroids, which are the gold-standard treatment for asthmatic patients, are more 

involved in counteracting the airway inflammation than in acting in the ASM. Although some 

studies have shown the potential of corticosteroids in causing bronchodilation, their role in 

airway smooth muscle relaxation is controversial. In its formulation (hydrofluoroalkane-HFA), 

this inhaled corticosteroid is delivered to the distal airways more effectively (68.3%) than 

chlorofluorocarbon formulations (19.7%) (20, 21). Although eosinophilic infiltration could be 

adequately controlled in the distal airways, whether both distal lung parenchyma eosinophilic 

infiltration and extracellular matrix remodeling may be sufficiently modulated by this new 

treatment is not clear (8, 20).  

We discuss in this chapter the role of different mediators and modulators in the 

contractile responses of the airways and lung distal parenchyma. These studies contribute 

to the understanding of the mechanisms involved in asthma physiopathology and in 

smooth muscle contraction and also open opportunities to develop new therapeutic tools 

to treat asthma. In this regard, we will address the importance of the modulation of iNOS, 

arginase and Rho kinase pathways, the impact of inducing oral tolerance and the effects of 

exercise. In addition, aspects of neuroimmunomodulation, including stress effects, will be 

discussed. 

2. Airway and lung parenchyma hyperresponsiveness and smooth 

muscle alterations in asthma 

AHR is the hallmark of asthma, and it is characterized by an increase in the airway response 

to bronchoconstrictor stimuli. There are two components of AHR. AHR has a variable com-

ponent that mainly reflects the current airway inflammation (22, 23) and an irreversible 

component that probably reflects pulmonary remodeling (24). 

As described above, the ASM is the major effector of the AHR in asthma (17-19). There are 

two phenotypes of ASM cells in asthmatics: the contractile, which is responsive to contrac-

tile agonists and has an increased expression of contractile proteins, and the synthetic-

proliferative, which lacks the responsiveness to contractile stimuli and has a reduced ex-

pression of contractile proteins (17). Both phenotypes can coexist or not in the airways of the 

same person (25-29). Depending on the triggers, it can also induce the proliferation of the 

synthetic-proliferative cells or induce the maturation of these cells into contractile cells (17, 

19). 

In patients with asthma, the ASM was thought to generate more force and consequently a 

greater extent of contraction in response to different stimuli (30). Cultures of ASM cells 

isolated from lung tissue (trachea, bronchi) were used to study the contractile responses and 

the mitogenic and synthetic responses, which revealed that these cells are active players in 

inflammation (25, 31, 32).  
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In addition, ASM can contribute to lung inflammation. Many studies showed that there was 

an increased number of mast cells in the asthmatic ASM layer (33-38). Brightling et al. (32) 

evaluated patients with asthma and eosinophilic bronchitis and observed that both groups 

showed an increase in eosinophils but that the patients with eosinophilic bronchitis were not 

hyperresponsive to bronchoconstrictor stimuli. The analysis of the ASM layers in these pa-

tients showed that only the asthmatics showed a higher number of mast cells and a worsen-

ing of respiratory function, suggesting that the mast cells present in the ASM of asthmatics 

are responsible for the enhancement of airway narrowing.  

The ASM cells release chemotactic agents for mast cells, such as CCL11 (25), CXCL10 (34) 

and CX3CL1 (35). Because the mast cells are in the airways, they adhere to the ASM cells 

and produce, together with the eosinophils, contractile mediators, such as prostaglandins 

(PGF2, PGD2, and thromboxane TXA2) (39).  

Clinically, the AHR symptoms are described as cough, tightness of the chest and wheezing 

after exercise or exposure to cold air or other environmental irritants (40). Some studies 

suggest that monitoring of the AHR in asthmatic patients can serve as a guide to asthma 

therapy (24). 

In clinical and experimental studies, AHR is evaluated by the aerosol administration of bron-

choconstrictor agonists, such as histamine, methacholine or carbachol. This methodology 

considers that the ASM in asthmatics exposed to exogenous bronchoconstrictor stimuli 

showed an increased tonus and a concomitant bronchoconstriction. The hyperresponsiveness 

occurs due to an increase in both the sensitivity and/or reactivity of the airways (Figure 1). 

The increase in sensitivity is a reduction in the minimal dose that is necessary to induce bron-

choconstriction, whereas the increase in reactivity is described by an increase in the intensity 

of the bronchoconstriction. 

 

Figure 1. Airway hyperresponsiveness. 
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Considering that lung parenchyma strips have long been used to study the behavior of the 

peripheral lung, they are commonly used to evaluate the mechanics and pharmacological 

properties of the lung periphery (41). Dolhnikoff et al. (15) concluded that human lung tis-

sue strips respond to an acetylcholine (ACh) challenge with changes in their dynamic me-

chanical behavior. In addition, Lanças et al. (10) have recently shown that the lung tissue is 

involved in the late asthmatic response in guinea pigs with chronic allergic lung inflamma-

tion, which is correlated to lung tissue eosinophilic recruitment and extracellular matrix 

remodeling.  

Although the in vivo apparatus of oscillatory mechanics permits the evaluation of large and 

small airways, the oscillatory mechanics in vitro provide a tool for the specific evaluation of 

the lung periphery with minimal interference with the compartment represented by the 

small airways (10, 15). In addition, this in vitro methodology permits the specific analysis of 

the effects of several mediator/modulators in the lung periphery while avoiding other com-

pensatory mechanisms that could be activated in in vivo studies. Lung parenchyma strips 

exclusively represent the distal units of the lung tissue and offer a better assessment of pure 

tissue properties. Thus, studies using this technique have been performed to evaluate the 

mechanical and pharmacological properties of the lung periphery (10, 42, 43). 

Several authors have discussed the importance of these structures in the mechanical behav-

ior of lung tissue, including the consequences of stiffening the extracellular matrix network 

and of elastin and collagen digestion in these responses (44, 45). In the subpleural region, 

there was a small number of bronchial and blood vessels (less than 30%). Romero et al. (46) 

concluded that pneumoconstriction significantly modifies the intrinsic mechanical proper-

ties of the connective matrix via a mechanism differing from that of passive stretching. In 

fact, the contractile cells could be accepted as being able to modulate the mechanical proper-

ties of the connective matrix.  

3. Mediators involved in airways and distal lung parenchyma contractile 

responses 

A large quantity of extracellular agonists (inflammatory mediators or neurotransmitters) 

released in an inflammatory milieu can stimulate the contraction of ASM in asthma. 

Mediators that are found in high concentrations in asthma, including leukotrienes (produced 

by inflammatory cells) (47), prostaglandins such as PGF2α, PGD2, and thromboxane TXA2 

(produced by mast cells and/or eosinophils) (39) and endothelin (produced by epithelial or 

endothelial cells) (48, 49), are direct contractile agonists of ASM. Neurotransmitters, such as 

ACh or neurokinins, are highly present in asthma and are also potent contractile messengers 

of ASM (50, 51). 

To increase the release of the contractile mediators, there is also a lower release of relaxant 

mediators, such as vasoactive intestinal peptide (VIP), PGE 2, adrenaline and NO (35, 52). 

These mediators are involved in the mechanisms responsible for many of the structural and 

functional lung alterations observed in asthmatic patients and in animal models of chronic 

pulmonary allergic inflammation (53-55). 
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3.1. Excitatory non-adrenergic non-cholinergic mediators: Neurokinins and 

Substance P 

Neurokinins and substance P are involved in the excitatory NANC responses and modulate 

several histopathological alterations observed in asthmatics, such as airway smooth muscle 

contraction, peribronchial edema formation and airway mucous secretion. In this regard, 

substance P (SP) and neurokinin A (NKA) play significant roles in priming and recruiting 

eosinophils and lymphocytes in models of allergic lung inflammation (56-58). 

Asthmatic patients are hyperresponsive to the SP and NK1 expression that is augmented in 

their bronchi (59). Tibério et al. (60) showed that capsaicin infusion induced an increase in 

the respiratory system resistance that was attenuated mainly by a NK2 receptor antagonist. 

The NK receptors are also involved in eosinophil recruitment, which contributes to the hy-

perresponsiveness. Using a model of experimental asthma in guinea pigs, Tibério et al. (57) 

evaluated the airway inflammation induced by repeated exposure to ovalbumin and the 

effects of neurokinin depletion on these responses. These authors showed that neurokinin 

depletion reduced the peribronchial edema, CD4 lymphocytes and the hyperresponsiveness 

to the antigen challenge. In addition, Prado et al. (61) showed that the bronchodilation ob-

served after 14 days of capsaicin infusion could be related to the increase in NO produced 

by nNOS, which counteracts the bronchoconstriction. 

Emphasizing that SP has a preferential affinity for NK1 receptors and that neurokinin A has 

a preferential affinity for NK2 receptors is important (58). However, each neurokinin also 

exhibits activity at other NK receptors. In this regard, Regoli et al. (62) showed that NKA has 

25% of the affinity of SP for the dog carotid artery, a preparation that contains only NK1 

receptors. Tibério et al. (60) investigated the role of substance P (SP) and neurokinin A 

(NKA) and their receptor antagonists (RAs) SR140333 and SR48968 (respectively for the 

NK(1) and NK(2) receptors) in the pulmonary eosinophil influx induced by the stimulation 

of capsaicin (CAP)-sensitive nerve terminals. Both SP and NKA contribute to eosinophil 

lung recruitment in the distal airways and the alveolar wall, and these findings suggest that 

neurokinins may contribute to the development of eosinophilic inflammation in both aller-

gic asthma and hypersensitive pneumonitis. 

3.2. Cysteinyl leukotrienes 

Cysteinyl leukotrienes (cysLTs) are synthesized de novo from arachidonic acid, and most of 

their actions are mediated by the CysLT1 receptor, a G protein-coupled receptor (63). Cys-

LTs have many pulmonary actions, including human airway smooth muscle contraction, 

chemotaxis, mucous secretion, smooth muscle proliferation and increased vascular permea-

bility (64-66).  

The cysteinyl leukotrienes (LTC4, LTD4, LTE4) produced by inflammatory cells and endo-

thelin, produced by epithelial or endothelial cells, are increased in asthma. They are also 

potent contractile agonists of ASM (48, 67). 
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Leukotriene antagonists have been shown to reduce sputum and mucosal eosinophils in 

subjects with asthma (68, 69). However, recent long-duration trials have evaluated the 

impact of CysLT receptor antagonists compared with glucocorticoids and showed that 

spirometry, symptoms, 2-agonist use and the quality of life were improved to a greater 

extent with glucocorticoids (70-72). Corroborating this idea, the blockade of leukotriene 

activity does not cause an improvement in airflow as intense as that obtained with 

glucocorticoids (70, 73). 

Considering studies in animal models, Gardiner et al. (74) observed that the inhibition of 

leukotriene synthesis resulted in an attenuation of OVA-induced airway contraction in sen-

sitized animals. Liu et al. (75) demonstrated that the CysLT1 receptor antagonists pranlukast 

and zafirlukast inhibited OVA-induced mucus secretion in the trachea of a sensitized guinea 

pig. Comparing the effects of montelukast and corticosteroid treatments in a guinea pig 

model, Leick-Maldonado et al. (76) showed that although montelukast, an antagonist of 

leukotriene, reduced some aspects of inflammation, this treatment was not able to attenuate 

the changes in lung mechanics. 

3.3. Complex NOS-arginases 

Nitric oxide derived either from constitutive isoforms (nNOS and eNOS) or from other NO-

adduct molecules (nitrosothiols) modulates bronchomotor and vascular tone. In addition, 

NO derived from inducible isoenzyme (iNOS) is mainly involved in the immunomodulation 

(77-80). 

Prado et al. (81) tested the differences between chronic and acute nitric oxide inhibition by 

N-nitro-L-arginine methyl ester (L-NAME) treatment in lung mechanics, inflammation, and 

airway remodeling in an experimental asthma model in guinea pigs. Both acute and chronic 

L-NAME treatment reduced the exhaled nitric oxide in sensitized animals. Chronic L-

NAME treatment increased the baseline and maximal responses after an antigen challenge 

(ovalbumin) of the respiratory system resistance and reduced peribronchial edema and 

airway infiltration by mononuclear cells. Acute administration of L-NAME increased the 

maximal values of respiratory system elastance and reduced the mononuclear cells and 

eosinophils in the airway wall, supporting the hypothesis that, in this model, nitric oxide 

acts as a bronchodilator in the airways. 

iNOS enzyme activation has been found in many types of inflammatory cells, such as eosin-

ophils, neutrophils and macrophages, as well as in respiratory epithelial cells. In fact, NO 

produced from this isoenzyme is related to the amplification of the inflammatory and re-

modeling responses (54, 78, 79, 82). Considering these aspects, a specific inhibition of iNOS-

derived NO has been considered to be a future therapeutic strategy for several diseases, 

such as asthma, sepsis and acute lung inflammation (82-85). 

Considering the smooth muscle responses, NO mainly derived from cNOS relaxes the air-

way smooth muscle. Many studies have focused on the role of NO in the modulation of 

airway smooth muscle contraction in different models of experimental pulmonary allergic 
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inflammation (78, 81, 85-87). NO that is mainly derived from the constitutive isoforms of 

NOS has been shown to attenuate the bronchoconstriction induced by allergens in sensitized 

experimental animals (54, 85, 88). In contrast, others have observed that nNOS-derived NO 

could contribute to airway constriction (61). We previously evaluated the effects of NO in 

respiratory system resistance using a guinea pig model of asthma and compared the cNOS 

and iNOS inhibition. We showed that chronic treatment with L-NAME, a false substrate that 

nonspecifically inhibits the production of NO, increased the respiratory system resistance in 

sensitized animals, whereas the iNOS-specific inhibition by 1400W reduced this response 

(54). Our results suggested a protective effect of NO derived from cNOS. In addition, we 

showed that iNOS contributes to the airway hyperresponsiveness in this model. Interesting-

ly, in naïve animals, we observed that both L-NAME and 1400W treatments increased the 

resistance of the respiratory system. Because the role of iNOS is more pronounced in in-

flammatory situations, few studies have evaluated the effects of iNOS inhibition in physio-

logic situations. We have previously shown that there is a basal expression of iNOS in resi-

dent cells around the airways in guinea pigs not exposed to an inflammatory stimulus (54, 

78). In addition, Guo and colleagues (89) showed that iNOS is continuously produced by the 

airway epithelium in normal humans. These data suggested that NO produced by iNOS 

under physiological conditions can also contribute to the control of the airway smooth mus-

cle responses. 

Analyzing the nitrergic nerve density, there appears to be a progressive reduction through-

out the bronchial tree (90). In fact, Prado et al. (54) demonstrated that the inhibition of NO 

by chronic L-NAME treatment amplified the elastance responses. Considering that the res-

piratory system elastance responses are related to alterations in the distal airways and lung 

tissue, the authors suggested that NO could also be involved in the modulation of lung 

tissue constriction. Dupuy et al. (90) proposed that inhaled NO only affects the distal air-

ways at high doses, suggesting that, although less intensive, NO can also modulate the re-

sponses of the distal airways and/or lung tissue. 

Angeli et al. (11) evaluated the effects of chronic L-NAME treatment, a false substrate for all 

nitric oxide enzymes, on the modulation of lung tissue mechanics, eosinophilic inflamma-

tion and extracellular matrix tissue remodeling in guinea pigs with chronic lung inflamma-

tion. The authors suggested that nitric oxide plays an important role in lung tissue con-

striction and elastic fiber deposition within the alveolar septa in this animal model of chron-

ic pulmonary inflammation. The activation of the pulmonary oxidative stress pathway, 

mainly via 8-iso-PGF2, may contribute to these responses. 

Starling et al. (9) demonstrated that iNOS activation contributes to lung parenchyma in-

flammatory and remodeling alterations in guinea pigs with chronic pulmonary allergic 

inflammation. 1400W, an iNOS-specific inhibitor, diminished the lung tissue elastance and 

resistance as well as the eosinophilic infiltration, collagen and elastic fiber content and vol-

ume proportion of actin in lung tissue. To our knowledge, this study has provided the first 

evidence of the effects of iNOS inhibition on the distal lung parenchyma.  
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In addition, the authors showed that specifically blocking iNOS reduced 8-isoprostane 

expression in the alveolar septa, which had previously been increased by repeated 

ovalbumin exposures (9). These findings suggest that the effects of iNOS-derived NO in the 

lung parenchyma depend, at least partially, on the activation of the oxidative stress 

pathway. The inhibition of NO production derived from iNOS activation also reduced the 

actin content (9). These results suggest an iNOS-derived effect on the myofibroblasts, which 

were believed to be the major cells responsible for the production of the extracellular matrix 

and the contraction of the parenchyma (91).  

Another pathway to be discussed involves the arginases. These enzymes convert L-arginine 

into L-ornithine and urea and are the key enzymes of the urea cycle in the liver (arginase 1) 

but are also expressed in cells and tissues that lack a complete urea cycle, e.g., arginase 2 

expression in the lung (88). Arginases are involved in cell growth and tissue repair via the 

increased production of L-ornithine, a precursor of polyamines and proline (88). 

Que et al. (92) demonstrated the expression of arginase in the bronchial epithelium and in 

peribronchial connective tissue fibroblasts. In addition, Meurs et al. (87) showed that 

arginase appears to modulate the tone of the airway smooth muscle and potentiates 

methacholine-induced airway constriction. Arginase accomplishes these actions by forcing 

the common substrate L-arginine away from epithelial cNOS to diminish the agonist-

induced production of NO. Arginases and NOS compete for the bioavailability of the same 

substrate, L-arginine, and are involved indirectly in the regulation of NO synthesis (53, 88). 

Corroborating this idea, Morris et al. (93) showed that there is a reduction in the levels of 

plasma arginine in asthmatic patients compared with patients without asthma but with 

increased serum arginase activity. Together, these results suggest that increased arginase 

activity in asthma may be a contributing factor to the decrease in the circulating levels of L-

arginine and the consequent NO deficiency. Thus, blocking NO production could be a tool to 

study the indirect involvement of arginase in various pathophysiological processes (82, 87). 

Several powerful drugs have been used to investigate the role of arginases in the 

pathophysiology of asthma, including nor-NOHA (Nω-hydroxy-nor-L-arginine), which is 

one of the most potent inhibitors of arginase (88). Meurs et al. (87), studying in vitro tracheal 

ring-sensitized guinea pigs, demonstrated that treatment with nor-NOHA reduced the 

hyperresponsiveness to methacholine, and this effect was reversed by treatment with L-

NAME.  

We demonstrated that chronic distal lung inflammation was associated with an increase in 

arginase content and iNOS-positive cells (data not published). These results were associated 

with constriction of the distal lung parenchyma. The increased iNOS expression leads to 

activation of the oxidative stress pathway and formation of PGF2, which had a procontrac-

tile effect. In addition, we showed that the mechanism involved in the activation of arginase 

and the iNOS pathways may be related to the modulation of NF-kB expression. Finally, we 

demonstrated that the association of iNOS and arginase 2 inhibitions potentiated the reduc-

tion of PGF2 and NF-kB expression in the distal lung of guinea pigs with chronic pulmo-

nary inflammation (data not published). 
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Airway inflammation is accompanied by a marked upregulation of iNOS expression, 

particularly in the airway epithelium (94), which has been associated with the activation of 

nuclear factor-kB (NF-kB), a transcription factor that is implicated in the induction of 

multiple genes expressed during the inflammatory response (95). Ckless et al. (96) showed 

that the activation of NF-kB may induce an increase in NOS and arginases. Furthermore, 

NF-κB activity can be affected by reactive oxygen species (ROS) and by reactive nitrogen 

species (RNS) (97). 

Several mechanisms reported in the literature have tried to explain how NO could interfere 

with airway tone. The ability of NO to control airway tone could be related to both GMPc-

dependent and GMPc-independent mechanisms (98-100). 

Although the mechanisms involving the effects of NO in airway constriction have been 

extensively described, the exact mechanism involved in the effect of NOS inhibition on 

reducing lung parenchyma constriction is not completely understood. Another pathway 

discussed by some authors is related to the fact that the release of NO by NOS activation 

also contributes to oxidative stress, amplifying the deleterious and harmful effects on the 

lungs (9, 77). 

The potent oxidant peroxynitrite is formed by the interaction of NO and superoxide by a 

rapid iso-stoichiometric reaction (77). Haddad et al. (101) suggested that peroxynitrite may 

contribute to the injury of pulmonary surfactant. Bhandari et al. (102) demonstrated that 

increased peroxynitrite formation was associated with a dose-dependent increase in the 

apoptotic cell death of type II pneumocytes. However, in strip preparations perfused with 

Krebs solution, the importance of reducing pulmonary surfactant was poorly associated 

with the pulmonary mechanical responses. 

In contrast, peroxynitrite formation leads to lipid peroxidation and the generation of iso-

prostanes (8-iso-PGF2). Jourdan et al. (103) showed that L-NAME treatment greatly inhibits 

8-iso-PGF2. Therefore, isoprostanes appear to induce airway and vascular smooth muscle 

contractions by acting through tyrosine kinase, Rho and Rho kinase, leading to the de-

creased activity of myosin light chain phosphatase. The net response is associated with an 

increased level of phosphorylated myosin light chain and contraction (104). 

3.4. Rho kinase pathway 

The protein Rho, a member of the Ras superfamily of small monomeric GTPases, controls a 

variety of downstream effector proteins, including Rho kinase. Rho exhibits GDP- and GTP-

binding and GTPase activity and is able to alternate between a GDP-bound inactive state 

and a GTP-bound active state. This alternation allows Rho to function as a molecular switch 

to control downstream signal transduction, influencing the level of smooth muscle tone and 

changes in the actin cytoskeleton, which contributes to cell adhesion, motility, migration, 

and contraction (105). Effects on the airway smooth muscle responses may be one of the 

most important factors that need to be considered for the development of new therapies for 

asthmatics (106). 
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The influence of Rho kinase on airway hyperresponsiveness is considered to be at least 

partly related to agonist-mediated Ca2+ sensitization. Ca2+ sensitization, which is also 

observed in the airways, is the increase in smooth muscle tension and/or phosphorylation of 

the 20-kDa regulatory light chain of myosin (MLC20) at a constant Ca2+ concentration (107). 

In a variety of smooth muscles, this Ca2+ sensitization is mediated by a small G protein, 

RhoAp21, and its target protein, the Rho kinase (108), which is especially important during 

the sustained phase of contraction in smooth muscle (107). 

Several studies have shown that the use of Rho kinase inhibitors might be beneficial for the 

treatment of airway diseases. Y-27632((+)-(R)-trans-4-(1-aminoethyl)-N-(4-pyrydil) 

cyclohexanecarboxamide, monohydrate) is one of the drugs that arose as a possible treatment 

for asthma. Y-27632 is a highly selective inhibitor of the Rho kinase pathway, capable of 

reversing G-protein sensitization and consequently relaxing the airway smooth muscle (108). 

The effects of the acute inhibition of Rho kinase in sensitized animals have been analyzed by 

several authors. Schaafsma et al. (109) showed that the inhalation of Y-27632 at 30 min pre-

vents the development of airway hyperresponsiveness both after the early and late airway 

reaction. Y-27632 reduces also reduces the cholinergic nerve-mediated contractions in the 

tracheal preparations of guinea pigs and mice in a dose-dependent manner (110). 

Witzenrath et al. (111) verified that the use of Y-27632 attenuated the methacholine-

provoked airway response in the sensitized lungs. 

Some studies suggested that the RhoA/ROCK system plays a role in eosinophil recruitment 

and Th-1 and Th-2 cytokine secretion (105, 112). In this regard, Henry et al. (112) demon-

strated that pretreatment with Y-27632 reduced the number of eosinophils recovered from 

the bronchoalveolar lavage (BAL) fluid of OVA-sensitized mice. 

Taki et al. (105) showed that another Rho kinase inhibitor, fasudil, reduced the presence of 

eosinophils in the BAL fluid, airways and blood vessels. In the BAL fluid, this Rho kinase 

inhibitor also diminished the augmented levels of IL-5, IL-13 and eotaxin. Aihara et al. (113) 

showed that Y-27632 suppressed the release of Th-1 cytokines and partially suppressed the 

release of Th-2 cytokines in healthy persons but reduced the release of IL-2 and IL-5 and 

weakly reduced the release of IL-4 and IFN-gamma in asthmatic patients. 

Recently, we showed the chronic inhibition of Rho kinase reduced the airway and distal 

lung mechanical responses to an antigenic challenge with an associated reduction in NOEX, 

eosinophilic infiltration, IL-2-, IL-4-, IL-5- and IL-13-positive cells, extracellular matrix re-

modeling and NF-κB-positive cells in the airways and distal lung. In addition, there was a 

significant reduction in the activation of the oxidative stress pathway, which was correlated 

with the attenuation of the maximal mechanical responses after antigen challenge (data not 

published). 

These data suggest that treatment with an inhaled Rho kinase inhibitor contributes to the 

attenuation of the distal lung functional and structural changes induced by chronic allergic 

inflammation, both in the airways and distal lung. Taken together, this evidence suggests 

that Rho kinase inhibitors may be potential pharmacological tools to control distal lung 

asthmatic functional and histopathological alterations. 
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4. Modulators involved in airways and distal lung parenchyma 

contractile responses 

4.1. Modulation of the lung contractile responses by physical exercises 

The role of physical exercise in asthma is somewhat controversial. Exercise can induce bron-

choconstriction in humans (114). Recently, however, various studies have shown that physi-

cal training, particularly at a moderate intensity, can improve lung function and is related to 

a reduction in asthma symptoms and AHR. Fanelli et al. (115) associated physical training 

improvements in the physiological variables at peak and submaximal exercise, and these 

authors also showed that trained patients have a reduction in the daily doses of inhaled 

steroids.  

Studying adults, Mendes et al. (116) showed that 3 months after supervised training, pa-

tients presented a reduction in inflammation and asthma exacerbation and an increase in 

asthma symptom-free days. Although the authors did not directly measure the AHR, the 

reduction in symptoms and exacerbations indirectly reflects a reduction in the airway re-

sponsiveness. These authors clearly suggest that aerobic training might be useful as an ad-

juvant therapy in asthmatic patients under optimized medical care. In addition, physical 

training reduced the anxiety and depression levels with a significant correlation between 

improvements in the aerobic capacity and days without asthma symptoms (117). 

Considering the experimental studies, Silva et al. (118) showed that aerobic training in mice 

with allergic chronic inflammation reduced both tissue elastance and resistance. These ef-

fects of aerobic training on lung mechanics could be at least partly mediated by the epitheli-

um (119).  

Based on these data, although AHR was frequently found among competitive athletes (120, 

121), physical training may be beneficial to asthmatics, particularly when performed with 

supervision and at a moderate intensity.  

4.2. Modulation of the lung contractile responses by stress 

The stress response, which can be defined as the psychological reaction of the body to a 

variety of emotional or physical stimuli that threaten homeostasis (122), results in the activa-

tion of the hypothalamic-pituitary-adrenal (HPA) axis and the sympathetic and adrenome-

dullary systems. Although acute stress was shown to have anti-inflammatory effects, some 

studies have demonstrated that stressful situations and emotional states are triggers of 

asthmatic symptoms (123-125) and can influence the course and treatment of atopic diseases 

(126, 127). Chronic stress may induce a down-regulation of the expression and/or function of 

glucocorticoid receptors, leading to glucocorticoid resistance and contributing to the wors-

ening of lung inflammation and pulmonary hyperreactivity.  

Capelozzi et al. (128) showed that swimming-induced stress amplified mononuclear cell 

recruitment to the lungs in guinea pigs that performed 31 days of the stress protocol. These 

authors also showed that the amount of these cells was reduced when the animals were 
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treated with fluoxetine. Recently, Leick et al. (129), studying the effects of stress induced by 

forced swimming in bronchoconstriction, observed that stress amplified the airway response 

to ovalbumin in guinea pigs. In addition, Marques et al. (130) showed that the malefic effects 

of stress in asthma are related not only to the airways but to the lung distal parenchyma. In 

sensitized animals, they showed that repeated stress increased the distal lung constriction 

associated with an augmentation of actin content, which is indirect evidence of the alveolar 

smooth muscle content. The authors also showed that iNOS inhibition attenuated the effects 

of stress in the lung parenchyma response in this animal model.  

Considering humans, Ritz and Steptoe (125) observed a negative association between mood 

states and a reduction in the forced expiratory volume in the first second in asthmatic pa-

tients. Höglund et al. (131) studied 41 undergraduate students 22 with allergies, 16 asthmat-

ics and 19 controls in a low-stress period and in a period associated with a large exam. The 

values of the forced expiratory volume in the first second of the control group differed sig-

nificantly from that of the group of asthmatics only during the exam stress phase. These 

results collectively reinforced the idea that stress is an important modulator of the AHR 

present in asthma. 

Collectively, these studies showed that chronic stress is harmful to asthmatic individuals 

and is involved in the AHR. 

4.3. Oral tolerance 

Immunotherapy has been considered a possible therapeutic strategy for asthma. Oral 

tolerance has been recognized as an alternative treatment to autoimmune and allergic 

diseases (132-134). Oral tolerance has classically been defined as the specific suppression of 

the cellular and/or humoral immune response to an antigen by the prior administration of 

the antigen by the oral route (135). There are two primary effector mechanisms of oral 

tolerance: the induction of regulatory T cells that mediate the active suppression and the 

induction of clonal anergy or deletion (135-137). In atopic patients, the oral, sublingual, or 

inhaled administration of antigens leads to a reduction in symptoms and local inflammation 

as well as a reduction in dyspnea and airway hyperresponsiveness. Some meta-analyses 

found that sublingual immunotherapy is beneficial for asthma treatment, although the 

magnitude of the effect is not very large (138-140). 

Some authors (141-143) have previously evaluated the effects of oral tolerance in 

experimental models of airway disease. In an animal model, oral tolerance induced an 

attenuation of airway eosinophilic recruitment, bronchial hyperresponsiveness, and mucous 

secretion (143, 144). Russo et al. (141, 142) observed that animals submitted to an oral antigen 

administration protocol presented low levels of Th2 cytokines in the bronchoalveolar lavage 

fluid and a reduction in the production of ovalbumin-specific antibodies. The tolerance 

process is known to attenuate B-cell responses. Hasegawa et al. (145) demonstrated that B-

cells have been implicated in myofibroblast activation mainly by secreting IL-6, IL-9, and 

fibroblast growth factor. Thus, considering that myofibroblasts are one of the contractile 

elements that modulate lung parenchyma responses is important (146, 147). 
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Figure 2. Photomicrographs of distal airways from the guinea pig (×200), stained with haematoxylin-

eosin (left panels) and EPO+ eosinophils (right panels). Panels A and B: NS group. Panels C and D: 

OVA group. Panels E and F: OT1 group. Panels G and H: OT2 group. Reproduced with permission. 

Published in Ruiz Schtüz et al. (143). 
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Our group evaluated the airway responses in two different models of oral tolerance (oval-

bumin-exposed and treat with oral tolerance beginning together with the 1st inhalation 

(OT1 group) and ovalbumin-exposed and treated with oral tolerance beginning after the 4th 

inhalation (OT2 group), and showed that both models counteract the bronchoconstriction 

induced by a specific antigen (ovalbumin) and by a nonspecific challenge using methacho-

line (143) (Figure 2). These data suggested that oral tolerance is an effective treatment to 

induce the relaxation of airway smooth muscle in asthma.  

Although previous investigations showed that oral tolerance attenuated the airway re-

sponses, few studies have provided evidence of the effects of oral tolerance in lung periph-

ery responses in an experimental model of chronic lung inflammation. In this regard, 

Nakashima et al. (43) showed that inducing oral tolerance attenuates peripheral lung tissue 

responsiveness, eosinophilic inflammation and extracellular matrix remodeling in an exper-

imental model of chronic allergic pulmonary inflammation (Figure 3), suggesting that this 

approach could attenuate or prevent the distal lung functional and structural changes in-

duced by chronic allergic inflammation. 

5. Contribution of the airway and distal parenchyma structural changes 

to the pulmonary contractile responses. 

The underlying persistent component of AHR, by contrast, is likely related to the structural 

(and/or physiological) airway changes often collectively referred to as airway remodeling. 

Structural changes in the airways and in the distal lung parenchyma, which were recently 

addressed, are involved in the remodeling process and include the epithelium basal mem-

brane thickness, subepithelial fibrosis, mucous gland and goblet cell hypertrophy and hy-

perplasia, neoangiogenesis, increased ASM mass (hypertrophy of the smooth muscle cell 

and wall thickening), increased amount of actin and changes in the extracellular matrix 

(ECM), such as the deposition of fibronectin, laminin, and collagen fiber, alterations in the 

airway elastic fibers, and the increased expression of several metalloproteinases (MMP-1, 

MMP-2 and MMP-9) (45, 54). Such airway structural alterations or airway remodeling is 

associated with airway hyperresponsiveness to diverse triggers and with a decrease in the 

lung function of asthmatic patients. 

In addition, an important structural change of the airways is related to the smooth muscle. 

One of the pathological consequences of remodeling is airway hyperresponsiveness. Myo-

cyte hypertrophy and hyperplasia and myofibroblast hyperplasia are known to contribute 

to this hyperresponsiveness and the worsening of lung function in these patients (148). 

Throughout breathing, airway stiffening is a feasible contributor to airway hyperrespon-

siveness through the attenuation of the transmission of a potently bronchodilating cyclical 

stress to the ASM (37). ASM hyperplasia is characterized by a proliferation of cells, a reduc-

tion in the apoptosis of the ASM cells and migration of myofibroblasts within the ASM layer 

(19). Hence, alterations in the smooth muscle, either in the airways or in regions that are 

associated with perturbed alveolar attachments, may be factors that affect airway-

parenchyma uncoupling and alterations in the mechanical properties of the distal lung that 

lead to constriction. 
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Figure 3. Photomicrographs of lung parenchymal strips eosinophilic infiltration (A, D, G, and J – x400), 

collagen density (B, E, H, and K – x1000) and elastic fibers (C, F, I, and L – x1000) in saline-exposed (NS 

group - panels A to C), ovalbumin-exposed (OVA group – panels D to F), ovalbumin-exposed and treat 

with oral tolerance beginning together with the 1st inhalation (OT1 group – panels G to I) and ovalbu-

min-exposed and treated with oral tolerance beginning after the 4th inhalation (OT2 group – panels J to 

L). Ovalbumin-exposed animals showed a significant increase in eosinophilic infiltration as well colla-

gen and elastic density compared to saline-exposed ones. Both oral-induced tolerance protocols attenu-

ated all these responses in ovalbumin-exposed animals. Reproduced with permission. Published in 

Nakashima et al. (43). 
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5.1. Mechanisms involved in lung remodeling 

A chronic inflammatory process is almost invariably related to tissue damage and healing. 

The consequences of healing are repair and the replacement of injured cells by viable cells. 

Repair comprises regeneration (the replacement of damaged cells by cells of the same type) 

and replacement (by connective tissue). Chronic inflammatory processes have a wide varie-

ty of consequences leading from the complete or partial restoration of the affected structure 

to fibrotic processes. The mechanisms underlying remodeling move from the highly dynam-

ic process of cell migration, differentiation, and maturation to changes in the connective 

tissue deposition and to the altered restitution of the structures (149). 

The airway epithelium constitutes a continuous physical barrier, crucial to maintaining 

tissue homeostasis, which lines the airway lumen and separates the underlying tissue from 

environmental antigens (150, 151). Currently, the airway epithelium is acknowledged to also 

sense and react to antigens by regulating innate (through pattern-recognition receptors, 

including Toll-like receptors [(TLRs]) and adaptive immune mechanisms, driving both al-

lergic sensitization and airway remodeling through the release of inflammatory cytokines 

and chemokines. In addition, direct physical interactions with immune cells protect the 

internal milieu of the lung (152) and therefore contribute to airway narrowing. Furthermore, 

the increased loss of epithelial barrier integrity is known to correlate with more severe air-

way hyperresponsiveness, which may lead to the augmented exposure of the ASM to in-

haled contractile agonists (153). Therefore, epithelial cells participate in a wide range of 

repair mechanisms, including the epithelization of the nude luminal surface, the production 

of chemotactic factors, and the expression of some surface markers and a broad range of 

molecules that participate in the tissue repair, such as fibronectin, growth factors, cytokines 

and chemokines (149). 

One of the mechanisms that may account for ASM hyperplasia is the migration of myofi-

broblasts within the ASM layer, which differentiate into ASM-like cells (154). Fibroblasts 

differentiate into the highly synthetic and contractile myofibroblast phenotype when ex-

posed to substrates with an elastic modulus corresponding to pathologically stiff fibrotic 

tissue. Myofibroblasts, which are cells that display features intermediate between fibroblasts 

and smooth muscle cells, are involved in this process and are able to synthesize several 

extracellular matrix substances and contract the lung parenchyma (155).  

Although the hypertrophy in ASM has been described in studies with tissue specimens from 

intermittent, mild, severe (156) and fatal (45) asthma, which have been characterized as 

having an increase in the ASM cell size, there are conflicting findings (157) that suggest that 

the ASM cell hypertrophy could be a hallmark of severe asthma because it can be used to 

differentiate between patients with severe asthma and patients with milder disease (156). In 

asthmatics, ASM cell proliferation occurs faster than in nonasthmatics (27), and it can be 

explained by alterations in the calcium homeostasis in these cells and a subsequent increase 

in mitochondrial biogenesis (158). 

The main characteristics of myofibroblasts are the secretion of extracellular matrix 

components, the development of adhesion structures with the substrate by the incorporation 
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of de novo expressed α-smooth muscle actin (α-SMA), and the formation of contractile 

bundles composed of actin and myosin, which help the myofibroblasts to develop a high 

contractile activity. These cytoskeletal features enable the myofibroblast to not only remodel 

and contract the extracellular matrix but also adapt its activity to changes in the mechanical 

microenvironment. In addition, immunohistochemistry and electron microscopy studies 

demonstrated that airway myofibroblasts and the smooth muscle bundles lie in close 

physical proximity in asthma (159, 160). The myofibroblasts have an intermediate 

phenotype between that of a fibroblast and that of a smooth muscle cell, which raises the 

possibility that these cells contribute to the increased smooth muscle mass because of their 

plasticity. 

The arrangement and modification of the ECM involve dynamic processes of the production 

and degradation of matrix proteins, which are related to the ASM and parenchyma remod-

eling that are present and enhanced in asthma (161). The deposition of ECM proteins is 

increased by airway resident cells, such as epithelial cells, fibroblasts, myofibroblasts, and 

ASM cells. Some authors studying asthmatic bronchial samples demonstrated an increased 

deposition of ECM proteins in the bronchial wall, such as collagens I, III, and V, fibronectin, 

tenascin, hyaluronan, versican, laminin, lumican, and biglycan (162, 163), and a decreased 

deposition of collagen IV and elastin (164). Enhancing the ECM may be due to a reduced 

production of matrix metalloproteinases (MMPs), which degrade ECM proteins, and/or the 

enhanced production of tissue inhibitors of MMPs (TIMPs). Moreover, fibronectin and col-

lagens III and V have been shown to enhance ASM migration (165) in the ASM cell contact 

with membranes coated with ECM components. 

Notably, the epithelium in asthmatic children (aged 5-15 years) is stressed or injured with-

out significant submucosal eosinophilic inflammation. This observation emphasizes the 

concept that the early pathological changes in asthma are linked to changes in the local 

tissue microenvironment related to epithelial stress and injury. The lamina reticularis from 

asthmatic biopsy sections was thicker than normal, with an increased deposition of collagen 

III. This alteration in the epithelial phenotype is associated with an enhanced collagen depo-

sition in the lamina reticularis, suggesting that the epithelial mesenchymal trophic unit is 

active early in the natural history of asthma and may contribute to the pathogenesis of 

asthma (166). 

ASM cells and the lung parenchyma have a crucial importance in the pathophysiology of 

asthma, leading to pulmonary remodeling, which remains unresponsive to conventional 

treatments, such as bronchodilators and anti-inflammatory drugs (167). Therefore, the de-

velopment of new therapeutic tools targeting pulmonary remodeling is desirable. 

6. Conclusions 

ASM cells have a critical role in AHR in asthma, considering that these cells are part of the 

inflammatory process, have altered contractile, proliferative and secretory functions and 

contribute to airway remodeling.  
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Considering that many patients with AHR respond fairly well to conventional therapies, 

such as anti-inflammatory and bronchodilator drugs, and that ASM remodeling is 

insensitive to these treatments, further studies are necessary to evaluate ways to prevent or 

reverse ASM remodeling. 
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