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1. Introduction 

In recent years, outcome of therapy in patients with heart failure is going up. Many clinical 

trials have demonstrated that renin angiotensin aldosterone system inhibitors and β-

blockers have functional roles in stabilizing and /or reversing cardiac remodeling via sup-

pression of the excessive activation of renin angiotensin aldosterone and the adrenergic 

nervous system. Additively, the cardiac resynchronization therapy and ventricular assist 

device therapy also achieve remarkable success in heart failure therapy. Conversely, in 

many counties that come up against an elderly society, heart failure is a looming public 

health problem. Therefore, much further advancement of heart failure therapy and decre-

ment of patients with heart failure are one of most important assignments in the medical 

services. In this chapter, we describe the recent topics of heart failure including 1,molecular 

basis of cardiomyocyte, 2,mechanisms of progression in heart failure, 3,renin angiotensin 

aldosterone system and heart failure, 4,β-adrenergic receptor and heart failure, 5, non-drug 

treatment and heart failure, 6,heart transplantation and heart failure, 7,Cardiac regeneration 

and heart failure. 

2. Molecular basis of cardiomyocyte 

The heart is a highly organized tissue and consists of ventricular or atrial cardiomyocytes, 

pace maker cells, Purkinje cells, vasculature, and connective tissue. The ventricular 

cardiomyocytes are columnar shaped cells of 20μm in diameter and 60-140μm in length, 

while the atrial cardiomyocytes are ellipsoidal shaped cells of 5μm in diameter and 10-20μm 

in length (Table 1). The ventricular cardiomyocytes occupies approximately 50% of the heart 

weight, and 2-4 billion of them make up the human left ventricle. Approximately 50% of the 

cell volume in an individual contracting cardiomyocyte is made up of myofibrils and 25% of 

the cell volume is occupied by mitochondria. The remainder consists of nucleus, 

sarcoplasmic reticulum (SR), and the cytosol (Fig 1). Myofibril is the rodlike bundle that  
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Table 1. Characteristics of cardiac cells 

 

Figure 1. Ventricular cardiomyocyte 

forms the contractile elements within cardiomyocytes. As one of the specialized structures 

of the cardiomyocyte, there is the sarcolemma, which is a coalescence of the plasma mem-

brane proper and the basement membrane. The sarcolemma iscomposed of a lipid bilayer, 

which contains hydrophilic heads and hydrophobic tails. This structural fabric allows the 

sarcolemma to regulate the interactions with the intracellular and extracellular environment. 

The transverse tubular system (T- tubules) is specialized organo-parts of cardiomyocyte in 

the sarcolemma. The T- tubules are invagination of the sarcolemma into the cardiomyocyte, 

and they form a barrier between the intracellular and extracellular space. When electrical 

action potential reaches T-tubules, the wave of depolarization induces Ca2+ influx into the 

cardiomyocyte through the voltage-sensitive L-type Ca2+ channel of the T-tubules. This leads 

to Ca2+ discharge of the sarcoplasmic reticulum into cytosol resulting in contraction of the 

heart. Thus, the T-tubules are important structural components in the excitation-contraction 

coupling system described later. Myofibril is composed of actin thin filament, myosin thick 

filament and titin, which stabilizes myosin at the Z-line (Fig 2). The cardiomyocyte has ag-

gregation of myofibrils and the fundamental contractile unit within the cardiomyocyte is the 

sarcomere, which has a length of 1.8 μm in the systole and 2.2 μm in the diastole. Other than 

myofibril, the contractile apparatus contains tropomyosin, the troponin complex. Myosin 

has a filamentous tail and a globular head region that contains the site for actin binding. 

Actin has 2 forms G and F. F-actin is the backbone of the thin filament, while G-actin works 
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as a stabilizing protein. Using ATP, the G-actin interacts with the myosin globular head 

leading to the crossbridge formation and sarcomere shorting. Tropomyosin lies on the side 

of actin for rigidity to thin filament. The troponin complex, also present in the thin filament, 

is composed of troponin C, I and T. These proteins regulate crossbridge formation. In the 

systole, an increased Ca2+ binding to the troponin C leads to the actin-myosin interaction 

resulting in initiating crossbridge formation. The troponin I and T suppress actin-myosin 

interaction in decreased Ca2+ of the diastole. The previous report indicates that cTnT1, iso-

form of troponin T that is not expressed under normal heart, is induced expression level in 

heart failure [1]. Ca2+ is the fundamental ion for evoking the excitation-contraction coupling 

complex (Fig 3). Upon the wave of depolarization, the voltage-sensitive L-type Ca2+ channel 

of the T-tubules opens and allows Ca2+ influx. This rapid but small Ca2+ influx causes activa-

tion of large amounts of Ca2+ release from the ryanodine receptor (RyR2) on the sarcoplasmic 

reticulum. Finally, cytosolic Ca2+ level changes from 100 nmol/L to 10 μmol/L in concentra-

tion. Ten μmol/L of Ca2+ also binds to the troponin C. Active relaxation of the cardiomyocyte 

is dependent on the function of the sarcoplasmic reticulum Ca2+-ATPase (SERCA2a in the 

heart). For each 1 mol of ATP hydrolyzed, 2 mol of Ca2+ is transported back into the sarco-

plasmic reticulum. Phospholamban (PLB) regulates the function of SERCA2a. Additionally, 

the Na+/Ca2+ exchanger on the plasma membrane removes Ca2+ from cytosol. Human heart 

excretes 1 ton of blood in a day. Therefore, cardiomyocytes are required to maintain high 

level of ATP. Usually, the heart produces 6kg of ATP in a day. To produce high level of 

ATP, fatty acid and glucose are expended as substrates of ATP.  

 

Figure 2.  

 

Figure 3. Calcium fluxes in myocardium 

3. Mechanisms of progression in heart failure 

Heart failure is observed as a progressive disorder that is initiated after an index event. This 

index event contains myocardial infarction, sustained hypertension, severe arrhythmia, viral 
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infection, stressed environment, or a genetic disease. Finally, the index event damages the 

cardiomyocytes resulting in loss of function or collapses in the pumping of the heart. Heart 

failure is clearly a major clinical and a public health problem. Despite the recent innovations 

in treating heart failure and its predisposing conditions, it still remains highly prevalent and 

lethal due to increasing life spans across the cultures. It is estimated that nearly 23 million 

people have heart failure worldwide. Elderlies consist of 80% of the total heart failure popu-

lation, and the morbidity prevalence of heart failure in the elderly is over 1%. This epidemi-

ological study clearly indicates that human heart failure is an age-related disorder. Heart 

failure evokes the overexpression of biologically active molecules that are capable of exert-

ing deleterious effects on the heart and circulation [2]. Under this pathological environ-

ment, the compensatory mechanisms induce activation of the adrenergic nervous system 

and renin angiotensin system, which is termed “neurohormonal alternation” in heart failure. 

These systems are responsible for maintaining cardiac output through increased retention of 

salt and water, peripheral arterial vasoconstriction, and increased contractility and activa-

tion of inflammatory mediators, which are responsible for cardiac repair and remodeling. 

Although sustained neurohormonal alternation is interpreted to be the key to disease pro-

gression, there is an increasing clinical evidence to suggest against it. Cardiac hypertrophy 

has two basic patterns to response to hemodynamic overload (Fig 4). Pressure overload 

induces concentric hypertrophy, which shows a thick appearance, whereas volume overload 

induces eccentric hypertrophy, which displays an elongated appearance. Cardiac hypertro-

phy induces alterations in the biological phonotype of the cardiomyocyte, which in turn 

reactivates fetal genes that are normally not expressed [3]. The reactivation of these fetal 

genes is associated with a decreased expression of a number of genes that are normally 

expressed in the adult normal heart. This may contribute to the contractile dysfunction that 

develops in the failing heart. During heart failure, the progressive cardiomyocyte loss may 

also contribute to cardiac dysfunction and left ventricular remodeling through necrotic, 

apoptotic or autophagic cell death pathways.  

 

Figure 4. Process of ventricular remodeling 

3.1. Heart failure with a normal ejection fraction 

Now heart failure with a normal ejection fraction (HFnlEF) is a common term of 

cardiologists, because it is possible that the prevalence of HFnlEF has increased over time, 

leading to more widespread recognition. However, in the 20th century, existence of such 

patients with HFnlEF had not been considered. The term HFnlEF has been used in current 

management guidelines. Although consensus of HFnlEF seems to be building toward use of 

EF higher than 50% to designate HFnlEF, the approach to patients with borderline reduction 
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in EF (EF of 40 to 50%) adds to the complexity of the classification [4]. Numerous 

epidemiologic studies and national registers have defined the prevalence of HFnlEF in 

various heart failure populations and have documented a prevalence of 50% to 55% [5]. The 

prevalence of heart failure increases with age and is similar in men and women. The 

prevalence of heart failure with reduced EF increases with age but is more common in the 

men than in women at any age, whereas the prevalence of HFnlEF increases even more 

dramatically with age more than heart failure with a reduced EF and is much more common 

in women than in men at any age [6]. Most large contemporary studies have suggested that 

all-cause mortality for HFnlEF is similar to that of heart failure with reduced EF [13]. 

Meanwhile, there are minimal differences in heart failure readmission rates between 

morbidity of patients with HFnlEF and with heart failure with a reduced EF [7]. Patients 

with HFnlEF have been shown to have pathophysiologic characteristics similar to those of 

heart failure patients with a reduced EF, including severely reduced exercise capacity, 

neuroendocrine activation, and impaired quality of life [8]. Since LV structure and function 

are altered by age, gender, and cardiovascular disease in absence of heart failure, 

understanding of the pathophysiologic mechanisms in HFnlEF dictates a clear 

understanding of LV diastolic and systolic function and the manner under physiological 

and pathological conditions. So there are wide-ranging abnormalities in extracardiac, whole 

heart, extracellular matrix, cardiomyocyte and myofilaments as mechanisms of particular 

current or emerging clinical interests in HFnlEF. 

4. Renin angiotensin aldosterone system and heart failure 

The renin–angiotensin system (RAS) plays pivotal roles in the regulation of the cardiovascu-

lar system under normal and pathological conditions (Fig 5) [9]. Renin is released from the 

juxtaglomerular cells in the kidney, and cleaves the N-terminal end of circulating angioten-

sinogen, which is synthesized in the liver, to form the biologically inactive decapeptide 

angiotensin I (Ang I). Angiotensin-converting enzyme (ACE) cleaves 2 amino acids from 

Ang I to the biological active octapeptide Angiotensin II (Ang II). Ang II binds to two major 

G-protein coupled receptor (GPCR) subtypes, AT1 and AT2. Although both the AT1 and AT2 

receptors are expressed in the human myocardium, expression level of the AT2 receptor is 

less than half the level of the AT1 receptor. Cellular localization of the AT1 receptor in the 

heart is most abundant in nerves distributed in the myocardium. The AT2 receptor is local-

ized more highly in the fibroblasts and the interstitium. Activation of the AT1 receptor 

evokes vasoconstriction, cell growth, aldosterone secretion, and catecholamine release with 

strong effects on cardiac hypertrophy and congestive heart failure (Table 2). In contrast, 

accumulating evidences show that the function of the AT2 receptor is vasodilation, the inhi-

bition of cell growth, and bradykinins release (Table 2) [17]. However, the opposite func-

tions of the AT2 receptor against the AT1 receptor have not yet reached the consensus. Sen-

bonmatsu et al. reported that the AT2 receptor binds to promyelo cyticleukemia zinc finger 

protein (PLZF), which is a transcription factor, and its subsequent translocation into the 

nucleus, where it up-regulates the p85α regulatory subunit of phosphoinositide 3-kinase 

(PI3K) resulting in the development of cardiac hypertrophy similar to the AT1 receptor (Fig 
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6) [10,11]. Since PLAF selectively expresses in the heart but not in the kidney or the vascular, 

the AT2 receptor may have dual effects depending on the cell components.  

It has been thought that RAS plays as the dual manners. One way is that RAS works as the 

neuroendocrine system and thus acts on the heart in an endocrine manner, which is termed 

“the circulating RAS” (Fig 5, Right side). The other way is that Ang II is synthesized directly 

within the myocardium and thus acts in an autocrine and paracrine manner, which is 

termed “the tissue or local RAS” (Fig 5, Left side). The accumulating evidences suggested 

that the pathologic states may be mediated by mainly the local RAS [12]. However, the local 

RAS still remains an enigma because renin is secreted from only the juxtaglomerular cells in 

the kidney. What supplies renin in the local RAS? Plasma concentration of prorenin, which 

is a precursor of renin, is about 10 folds of that of renin because of expressions in various 

tissues. However, prorenin does not display protease activity in the plasma because the 

enzymatic cleft is covered by the prosegment, and is not converted to active renin in the 

plasma. Recently, the (pro)renin receptor ((P)RR) was discovered [13]. (P)RR binds both 

renin and prorenin [14]. Although the binding of renin to (P)RR may increase its catalytic 

activity, the binding affinity between (P)RR and renin is lower than that of (P)RR and 

prorenin [15]. The binding of prorenin to (P)RR evokes conformational change of prorenin 

resulting in the renin activity without removal of its prosegment (Fig 7). This nonproteolytic 

activation of prorenin may contribute to the activation of the local RAS. In addition to the 

enzymatic activity, prorenin has been shown to provide other (P)RR-mediated effects. The 

binding of prorenin to (P)RR induces the activation of intracellular signaling, including the 

p38 MAP kinase-HSP27 cascade, the PI3K pathway and the ERK 1/2 pathway; these effects 

occur independently of Ang II [16]. Coincidentally, the direct renin inhibitor, aliskiren is 

available in clinics and basic scientific experiments. 

 

Figure 5. Renin Angiotensin System 

RAS is activated in patients with heart failure. The presumptive mechanisms for RAS activa-

tion in heart failure include renal hypoperfusion; decreased filtered sodium reaching the 

macula densa in the distal tubule; and increased sympathetic stimulation of the kidney, 

leading to increased renin (Fig 8) [17]. RAS has several important actions that are critical for 

the maintenance of circulatory homeostasis. However, sustained activation of RAS is mala-

daptive and leads to fibrosis of the heart, kidney and other organs. Activated RAS also leads 

to worsening neurohormonal activation by enhancing the release of norepinephrine (NE) 

and stimulating the adrenal cortex to produce aldosterone. The sustained expression of 
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aldosterone also exerts harmful effects by provoking hypertrophy and fibrosis within the 

vasculature and the myocardium. Thus prolonged activation of RAS contributes to reduced 

vascular compliance and increased ventricular stiffness. Hence, the drugs, which counteract 

the excessive activation of RAS and the adrenergic nervous system, hold potential for a 

power to relieve the symptoms of heart failure with a depressed left ventricular function by 

stabilizing and/or reversing cardiac remodeling. From the last decade of the 20th century, 

many clinical trials have been performed for evidence of efficacy of RAS inhibitors against 

patients with heart failure.  

 

Table 2. Physiological Function and Regulation of Angiotensin Receptors 

 

Figure 6. AT2 signalling Mediated with PLZF 

 

Figure 7. Physiology of (pro)renin receptor and prorenin 
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Figure 8.  

4.1. Angiotensin converting enzyme inhibitor and heart failure 

ACEIs should be used in symptomatic and asymptomatic patients with reduced left ven-

tricular function, because there is overwhelming evidence of ACEI to heart failure. ACEIs 

suppress the production of Ang II through inhibition of ACE. ACEIs also have diverse 

effects independent of RAS inhibition in contrast to other RAS inhibitors. This is because 

ACEIs cleave carboxyl-terminal dipeptides of various oligopeptides such as angiotensin 

(Ang) I, kinins, Ang (1-7) or matrix metalloproteases (MMPs) (Fig 9). In Blood Pressure 

Lowering Treatment Traialists’ Collaboration (BPLTTC) suggested that ACEIs but not 

ARBs hold evidence of blood pressure-independent effects on the risk of major coronary 

disease events [18]. Thus it is thought that ACEIs have superior benefits to other RAS 

inhibitors due to their cardioprotective effects. The Cooperative North Scandinavian En-

alapril Survival Study (CONSENSUS), which recruits patients with New York heart asso-

ciation (NYHA) class IV heart failure shows that ACEIs treatment is tremendously advan-

tageous in severe heart failure [19]. ACEIs also exhibit efficacy for patients with mild to 

moderate heart failure [20, 21]. In the Vasodilator in heart failure II (V-HeFT-II) trial, enal-

april had significantly lower mortality than that of the combination of hydralazine plus 

isosorbide dinitrate, which does not directly suppress neurohormonal system, despite 

weaker blood pressure lowering the effects of enalapril [22]. These observations of clinical 

trials support that ACEIs have the power to improve the natural history in a patient with 

broad range of reduced left ventricular function through several mechanisms including 

blood pressure lowering, suppression of neurohormonal system, and RAS independently 

cardioprotective effects. ACEIs should be initiated in low doses, followed by increments 

in each dose if lower doses have been well tolerated. Usually, titration is achieved by 

doubling the dosage every 3 to 5 days. The dose of ACEIs should be increased until the 

doses used are similar to those that have been shown to be effective in clinical trials or 

permissibly maximum dosage in each country. Higher doses of ACEIs are more effective 

than lower doses in preventing hospitalization because of suppression of the sustained 

activated RAS in patients with heart failure. ACEIs should keep being used for patients 

with reduced left ventricular function for reasons other than severe hypotension, severe 

renal dysfunction or high potassium retention associated with ACEIs treatment. The side 

effects of ACEIs that are related to kinin potentiation include a nonproductive cough, 

which is in about 10% of patients, and angioedema, which is in 1% of patients. For pa-

tients who cannot tolerate ACEIs taking because of the cough or angioedema, ARBs are 

the next recommended line of therapy. Patients intolerant to ACEIs because of hyper-

kalemia or renal insufficiency are likely to experience the same side effects with ARBs. 

The combination of hydralazine and an oral nitrate should be considered to the latter 

patients.  
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4.2. Angiotensin II receptor blocker and heart failure 

ARBs are well tolerated in patients who are intolerant of ACEIs treatment because of the de-

velopment of nonproductive cough, angioedema or skin rash. Under such conditions, ARBs 

should be used in symptomatic and asymptomatic patients with reduced left ventricular func-

tion who are ACEI-intolerant for reasons other than hyperkaremia or renal insufficiency. Alt-

hough the target of ACEIs and ARBs is the inhibition of the AT1 receptor, their mechanisms 

are different. ACEIs suppress Ang II production, while ARBs interfere the activation of the AT1 

receptor leading to an unlocking of the negative feedback of RAS, which results in an incre-

ment of the RAS peptides. The increased renin, Ang I, Ang II may evoke an unblocked AT1 

receptor by ARB. Therefore, high-dose ARBs appear to be better than low-dose ARBs for treat-

ing patients with heart failure. The question of high-dose versus low-dose ARB clinical out-

comes was evaluated in the Heart Failure Endpoint Evaluation of Angiotensin II Antagonist 

Losartan (HEAAL) trial [23]. However, this study showed that treatment with high-dose losar-

tan was not associated with a significant reduction in the primary endpoint of all-cause death 

or admission for heart failure when compared to that of low-dose losartan. Although ARBs are 

as effective as ACEIs in some clinical trials, ARBs does not cap ACEIs in a direct comparison of 

ACEIs versus ARBs trails. In the Losartan Heart failure Survival Study (ELITE-II), losartan was 

not associated with improved survival in older heart failure patients when compared to cap-

topril, but was significantly better tolerated [24]. In the Valsartan in Acute Myocardial Infarc-

tion Trail (VALIANT), losartan was not as effective as captopril on all-cause mortality in post 

myocardial infarction patients who developed left ventricular dysfunction associated with 

signs of heart failure, while valsartan was shown to be non-inferior to captopril on all-cause 

mortality [25]. Hence, the general consensus is that ACEIs remain as the first-line drug for the 

treatment of systolic heart failure, while ARBs are strongly recommended for ACE-intolerant 

patients.  

 

Figure 9.  

4.3. Direct renin inhibitor and heart failure 

Direct renin inhibitor, aliskiren, is the 3rd RAS inhibitor and it is available in clinics since the 

21th century. Aliskiren is an orally active renin inhibitor and is a competitively non-peptide 
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inhibitor that binds to the active site in cleft of renin instead of angiotensinogen. Since renin 

is the limiting protease of RAS, aliskiren may be a rationalized RAS inhibitor in three RAS 

inhibitors. In the Aliskiren Observation of Heart Failure Treatment (ALOFT) study in 

patients with NYHA class II to IV heart failure. NT-pro BNP was significantly lower in 

patients who were randomized to aliskiren when compared to placebo [26].  

4.4. Aldosterone blocker and heart failure 

We already described that ACEIs is the first-line drug for patients with heart failure. Alt-

hough ACEIs may transiently decrease aldosterone secretion, long-term usage of ACEIs 

rapidly return of aldosterone to levels similar to those before ACEIs. This is termed “aldos-

terone breakthrough”. The predictable mechanism of aldosterone breakthrough is that RAS 

takes a detour through the tissue chymases but not ACE. The results of the Eplerenone Post-

Acute Myocardial Infarction Heart Failure Efficacy and Survival Study (EMPHASIS-HF) 

study, which recruits patients with NYHA class II heart failure and an ejection fraction of no 

more than 35% to receive eplerenone (up to 50 mg daily) or placebo, in addition to recom-

mended therapy, displays that the administration of an aldosterone blocker is an available 

drug in patients with severe heart failure [27]. The dose of aldosterone blocker should be 

increased until the doses used are similar to those that have been shown to be effective in 

clinical trials or permissibly maximum dosage in each country. Patients should be counseled 

to avoid high potassium-containing foods. Potassium levels and renal function should be 

rechecked within 3 days and again, 1 week after initiation of an aldosterone blocker.  

5. β-adrenergic receptor and heart failure 

In the cardiomyocyte, β-adrenergic receptors dominate, and NE evokes increment of heart 

rate and contractile force, while in the arterioles, NE has predominantly vasoconstrictive 

effects acting through postsynaptic α1-receptor. In addition, NE stimulates presynaptic α2-

receptors to invoke feedback inhibition of its own release, thereby modulating excess 

release of NE. Predominant β-adrenergic receptors are β1 subtype in the cardiomyocyte, 

while most non-cardiac receptors are β 2. The left ventricle of the human heart also ex-

presses β 2-receptors that are about 20% of the total β-receptor population, whereas the 

atria express β2-receptors about 40% of total population. The cardiac β1-receptors are col-

ligated stimulatory G protein Gs, which is a component of the G protein-adenylyl cyclase 

system. However on the contrary, the cardiac β2-receptors are colligated both Gs and the 

inhibitory G protein Gi. Therefore, the intracellular signaling of β2-receptors remains con-

troversially. Hypothetically, β2-receptors are more strongly coupled to Gs under normal 

conditions, but this coupling is weakened and the coupling to Gi is strengthened under 

heart failure. The percentage of β2-receptors in the left ventricle during heart failure is up 

to double because of β1-receptor downregulation. The β2-receptors may modulate the total 

valance of the adrenergic receptor system. Upon NE stimulation, the activation of Gs-

adenylyl cyclase system is initiated as the positive inotropic effects in the cardiomyocyte. 

NE stimulation induces the molecular change in β1-receptors, leading to the binding of 

GTP to αs subunit of Gs. The dissociated GTP-αs subunit of Gs from βs, γs subunits stimu-
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lates adenylyl cyclase resulting in the formation of cAMP from ATP. cAMP activates 

cAMP-dependent protein kinase A (PKA). PKA plays important roles as phosphorylation 

of various key proteins and enzymes. PKA is locally bound to A-kinase anchoring protein 

(AKAP), which induces phosphorylation of a sarcolemmal protein p27 leading to in-

creased entry of calcium ion through increased opening of the voltage-dependent L-type 

calcium channels in the sarcolemma. This small influx of calcium ion through the L-type 

calcium channels is a trigger of phosphorylation of the ryanodine receptor resulting in 

greater and more rapid rise of intracellular free calcium ion concentration. High concen-

tration of the intracellular calcium ion increases calcium-troponin C interaction with 

deinhibition of tropomyosin effect on actin-myosin interaction. Thereby, increased rate 

and number of cross bridges interacting with increased myosin ATPase activity are ampli-

fied. Finally the heart procures increased rate and peak of force development. The in-

creased relaxant effect is the consequence of increased PKA-mediated phosphorylation of 

phospholamban. Increased phosphorylation of troponin I also help desensitize the con-

tractile apparatus to calcium ions. Sustained β receptor stimulation rapidly induces the 

activity of the β-agonist receptor kinase (βARK1), G protein-coupled receptor kinase 

(GRK2). βARK1- GRK2 increases the affinity of the β receptor for another protein family, 

arrestins, which cause the dissociation. β-arrestin is scaffolding and signaling protein that 

links to one of the cytoplasmic loops of the GPCR coupled β adrenergic receptor, lessen-

ing activation of adenylyl cyclase to inhibit the function of this receptor. Furthermore, β-

arrestin switches the agonist coupling from Gs to Gi [28]. 

In heart failure, activation of the sympathetic nervous system is one of the most important 

adaptations. This occurs early in the course of heart failure. This activation is 

accompanied by a concomitant withdrawal of parasympathetic tone. This imbalance 

results in a resultant loss of heart rate and variability and increased peripheral vascular 

resistance in patients with heart failure. As a result of the increase in sympathetic tone, 

there is an increase in circulating levels of NE, a potent adrenergic neurotransmitter. The 

elevated levels of circulating NE result from a combination of increased release of NE 

from adrenergic nerve endings, and its consequent “spillover” into the plasma, with 

reduced uptake of NE by adrenergic nerve endings. In patient with moderate heart 

failure, the coronary sinus NE concentration exceeds the arterial concentration, indicating 

increased adrenergic stimulation of the heart. However, as heart failure progresses, there 

is a significant decrease in the myocardial concentration of NE. The mechanism 

responsible for cardiac NE depletion in severe heart failure is not clear and may relate to 

an exhaustion phenomenon resulting from the prolonged adrenergic activation of the 

cardiac adrenergic nerves in heart failure. For this reason, β-blocker therapy represents a 

major advance in the treatment of heart failure patients with reduced left ventricular 

function. Although there are a number of potential benefits to blocking all three receptors 

that are β1, β2 and α1, the blocking of β1-adrenergic receptor display most of the 

deleterious effects of sustained sympathetic activation. Three β blockers have been shown 

to be effective in reducing the risk of death in patients with chronic heart failure [29-31]. 

Sustained –release metoprolol succinate and bisoprolol both competitively block the β1-

adrenergic receptor, and carvedilol competitively blocks the α1-, β1- and β2-adrenergic 
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receptor. β-blockers should be initiated in low doses followed by gradual increments if 

low doses have been well tolerated. The dose of β-blockers should be increased until the 

doses used are similar to those that have been shown to be effective in clinical trials or 

permissibly maximum dosage in each country. However, the dose titration of β-blockers 

should proceed no sooner than at 2-week intervals, because the initiation and/or increased 

dosing of these agents may lead to worsening fluid retention because of the abrupt 

withdrawal of adrenergic support to the heart and circulation. Therefore, it is important to 

optimize the dose of diuretics before starting of β-blockers.  

6. Non-drug treatment and heart failure 

Other than internal and surgical therapies, there are implantable devices including the car-

diac resynchronization therapy (CRT) or left ventricular assist device (LVAD) for the man-

agement, monitoring and assisted circulation in heart failure. Patients with severe heart 

failure may require the non-drug treatments for the purpose of surviving or facilitating the 

process of heart transplantation. 6-1, Cardiac resynchronization therapy (CRT) and heart 

failure. 

Delays in interventricular or intraventricular electrical activation cause marked abnormali-

ties in the sequence of global and segmental right and left ventricular activation, and impair 

mechanical performance. In patients with moderate to severe heart failure colligating wide 

QRS, a significant improvement was demonstrated an increase in exercise duration, and 

quality of life [32]. CRT was associated with reverse remodeling of left ventricular resulting 

in improved EF, dimensions and volume, and reduced mitral regurgitation. Moreover, CRT 

reduced the risk of complications ant death among patients with moderate or severe heart 

failure owing to left ventricular systolic dysfunction and cardiac dysynchrony, and this 

effect was not limited to ischemic heart disease. The combination of Implantable cardiac 

defibrillator (ICD) and CRT (CRT-ICD) in addition of optimal medical therapy has resulted 

in a 39% reduction in heart failure hospitalization and a 36% reduction in mortality in com-

parison with ICD alone [33]. CRT also has led to a degree of improvement in left ventricular 

volume and EF in patients with mild heart failure similar to that in patients with severe 

heart failure [34]. CRT reduced mortality and hospitalizations among asymptomatic or 

mildly symptomatic heart failure patients [52]. Hence, recent clinical trials are directed to-

ward focus on delaying progression of heart failure in asymptomatic or less symptomatic 

patients.  

6.1. Ventricular assist device (VAD) and heart failure 

Timely referral for mechanical circulatory support (MCS) evaluation and appropriate 

implantation depends on familiarity with recent advances in pump design and clinical 

outcomes. The expansion of durable left ventricular assist device (LVAD) options for 

patients with advanced heart failure came just as the significant shortage of donor hearts 

was becoming apparent. In the U.S., according to the Centers for Medicare and Medicaid 

Services, implant strategies are divided into four groups; such as bridge to transplant (BTT), 
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bridge to candidacy (BTC), destination therapy (DT), and Bride to recovery (BTR). In 

contemporary thinking, the dichotomous decision of either a bridge to transplantation or 

destination therapy is no longer tenable, and one could consider mechanical circulatory in 

the context of a "bridge to decision"[35]. Evolving pump design has driven clinical progress. 

After the invention of a smaller high-speed, rotary impeller pump with a single moving 

part, continuous-flow VADs with enhanced durability and near-silent operation became 

available. The transition from pulsatile technology toward continuous flow has been 

remarkably swift, and this rapid rise of continuous flow has made improved survival and 

performance [36, 37]. Pump complications, such as stroke, bleeding and infection, remain 

substantial risks. Embolic strokes appear more common than hemorrhagic strokes with all 

device designs. The Heatmate II has relatively low thrombotic risk provided patients are on 

an anticoagulation regimen that features an antiplatelet agent such as aspirin along with 

warfarin with an international normalized ratio (INR) goal of 1.5 to 2.0 [38]. Infection related 

to LVAD is reported 11-20%. The importance of infections in the VAD patient prompted the 

creation of a comprehensive set of guidelines and definitions [39]. 

Another pump development is miniaturization along with less invasive surgery. INTER-

MACS profiles have been developed to define clinically important differences in the severity 

of disease among patients with advanced heart failure [40]. Sicker subset of INTERMACS 

profile has been consistently associated with higher perioperative mortality. This trend will 

prompt the application of implantation of mechanical circulatory support to less sick heart 

failure patients in earlier stage. Adequate right ventricular function is necessary for proper 

LVAD function. Right heart failure after LVAD implant results in up to a 6-hold increase 

risk of death and is a major contributing factor in prolonged hospitalizations [41]. Right 

ventricular failure (RVF) results in persistently elevated venous pressure and insufficient 

LVAD preload, which occurs 6 to 35% of LVAD recipients [41]. In DT setting, in addition to 

a right ventricular assist device (RVAD) support, biventricular ventricular assist device 

(BiVAD) support with two continuous flow devices has been reported [42]. However, if RVF 

persists and long-term RV support is required, then the total artificial heart (TAH) is an 

option for those patients who are eligible for transplant. The TAH offers full circulatory 

replacement therapy for patients with irreversible biventricular failure. Freedom Driver, one 

of the smaller-sized TAH may allow discharge from hospital, and is undergoing investiga-

tion [43]. 

7. Heart transplantation and heart failure 

Heart transplantation (HT) is indicated for those with chronic progressive heart failure de-

spite optimal therapy, or with cardiogenic shock requiring mechanical support or high-dose 

inotropes. Heart failure patients with adult congenital heart disease are also taken into con-

sideration for HT [44]. Various organizations for HT in the world have updated the waiting 

list of HT candidates to ensure an equitable system of donor organ allocation under the 

shortage of donor hearts. Cardiopulmonary exercise (CPX) is routinely used in the determi-

nation of candidacy for cardiac transplantation [45, 46]. In the presence of beta-blocker, a 

cutoff for peak VO2 of <14ml/kg/min should be used to guide listing (Class I) [47]. Right 
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ventricular failure (RVF) and pulmonary hypertension (PH) are factors that prompt to re-

consider suitability for waiting list. PH and elevated pulmonary vascular resistance (PVR) 

should be considered as relative contraindications to cardiac transplantation when the PVR 

is greater than 5 Woods units or the pulmonary vascular index is 6 or the transpulmonary 

gradient exceeds 16 to 20 mm Hg. If the systolic pulmonary arterial pressure exceeds 60 

mmHg in conjunction with any of the aforementioned three variables, the risk of RVF and 

early death is increased [48]. For those with irreversible pulmonary pressures, a combined 

heart-lung transplant is a therapeutic choice.  

Advances in post-transplant care have improved outcomes in older patients. A follow-up of 

HT recipients >65 years of age demonstrated survival rates comparable to those of younger 

patients [49]. Although the Patients older than 70 years have also been reported to have 

acceptable outcome with presumably less donor organ rejection, usually alternate-type 

program or permanent mechanical support should be pursued [50]. Active or recent malig-

nancy is a contraindication to HT due to limited survival rates. However, pre-existing neo-

plasms may be treatable with chemotherapy to induce remission. Therefore it is essential to 

assess each patient as to their risk of tumor recurrence. 

Diabetes with end-organ damage other than nonproliferative retinopathy or poor glycemic 

control with glycosylated hemoglobin (HbA1C) greater than7.5 despite optimal effort is a 

relative contraindication for transplant. It is reasonable to consider the presence of irreversi-

ble renal dysfunction (eGFR greater than 40ml/min) as a relative contraindication for HT. 

Obese patients with BMI > 30 kg/m2 demonstrated nearly twice the 5-year mortality [51]. 

Therefore for this population, weight loss should be mandatory before listing for HT. Other 

comorbidity includes cirrhosis, peripheral vascular disease, addictions (tabacco, excessive 

alcohol) [52]. Psychosocial evaluation is mandatory before listing-up for HT. Immunologic 

evaluation is also needed. Immunocompatibility testing including ABO blood group typing, 

human leukocyte antigen and antibody screening should be completed. Panel-reactive anti-

body (PRA) test, which can identify the presence of circulating anti-human leukocyte anti-

gen (HLA), and should be performed preferably by flow cytometry [53]. In France, single 

center data reported that actuarial survival rates were 75%, 58%, and 42% at 5, 10, and 15 

years, respectively [54]. In Netherland, comparable survival rate was reported with the 

overall 1-, 5-, 10- and 15-year survival was respectively 77%, 67%, 53% and 42% [55]. Recent 

advance in HT technology along with surrounding circumstances has disclosed further 

issues to revise. The proposed challenges in this regard include optimization and individu-

alization of immunosuppressive therapies, expansion and optimization of the donor and 

recipient candidate population, characterization of comorbidities, and understanding of 

antibody mediated rejection [56]. Late outcomes in the HT population remain poor with a 

median cardiac allograft survival of 11 years, a statistic that has not improved in over a 

decade [57]. The major causes of late morbidity and mortality are chronic kidney disease, 

cardiac allograft vasculopathy (CAV), and malignancy [46]. The dosing of calcineurin inhibi-

tor (CNI), cyclosporine or tacrolimus, a purine synthesis inhibitor such as mycophenolate 

mofetil, and corticosteroids, which have a narrow therapeutic index, is typically based on 

the weight and renal function of a patient. A key research priority should be to develop 
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clinical trials that evaluate how CNI sparing and elimination approaches (CNI-free immu-

nosuppression ). Better understanding of individualized immunologic characteristics is a 

key component to perform proper immunosuppressive therapy.  

8. Cardiac regeneration and heart failure 

Since usually heart failure results from deficiency of the cardiomyocyte, heart regeneration 

may become the prospective therapeutic technology of heart failure through regenerating 

lost cardiomyocytes to recovery of cardiac function. However, from the 19th century to the 

early 20th century, there had been the consensus that indicates that the heart is an organ 

incapable of regeneration [58]. Ventricular hypertrophy had been cause by enlargement 

rather than proliferation of the cardiomyocyte. From ‘60s, the investigators have opened up 

the milestone articles that display the evidence of heart regeneration of the human adult 

heart [59]. Pathologically hypertrophied heart demonstrates the evidence of cardiomyocyte 

proliferation when the heart weight exceeds 450g that contains about 210g of myocardium 

[60]. To evaluate cardiomyocyte proliferation, biochemical measurement of tissue DNA 

content and fluorescent analysis of individual nuclear DNA content associated with histo-

pathology have been employed [61]. Most human cardiomyocyte nuclei are polyploid by 

the onset of puberty. In response to pathological overloads, human cardiomyocytes com-

monly reinitiate DNA synthesis without nuclear division [62]. Human cardiomyocytes 

seems to remain mononucleated throughout life. Thus, DNA synthesis is common in the 

adult human heart. Although this cannot be equated to cardiomyocyte proliferation, the 

measurement of cardiomyocyte DNA content is useful for investigation of heart prolifera-

tion. Using these methods, researchers have displayed that the cardiomyocyte nuclear 

number is steady at ~2 billion, which is reached at about 2 months of age, in the range of 

heart weight from 50g to 350g [63]. However, there is a linear increase in nuclear number, 

reaching 4 billion cardiomyocyte nuclei in hypertrophied hearts, which are weighting 700-

900g. Since the number of non-cardiomyocytes such as fibroblasts and vascular cells in-

creases linearly with heart weight throughout life, these results indicate that cardiomyo-

cyte renewal occurs during pathological hypertrophy in the adult human heart [60, 64]. In 

2009, there was definitive evidence of regeneration of the human heart. Employing 14C, 

generated by nuclear bomb tests during the Cold War, infiltrate nuclear and label the DNA 

of dividing cells, the age of the cardiomyocyte composing the human heart was performed 

[65]. Mathematical modeling suggested that cardiomyocyte renewal was age-dependent, 

1% of human cardiomyocytes were renewed at the age of 20, and this rate was reduced to 

0.45% at the age of 75. About 45% of the cardiomyocytes would be predicted to be renewed 

over a normal human life on the basis of this kinetics. Most of the cardiac regeneration 

studies focused on the proliferation of existing cardiomyocytes, and were not designed to 

detect cardiomyocytes formed from progenitor cells or not. To determine whether such 

progenitor cells contribute to cardiomyocyte renewal, the genetic fate-mapping experiment 

was performed using transgenic mice [66]. This system allowed the authors to distinguish 

between cardiomyocyte renewal from existed cardiomyocytes via proliferation and cardi-

omyocyte renewal from progenitor cells. The adult mammalian heart shows that heart 

regeneration depends on replenishment by cardiomyogenic progenitor cells than on re-
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placement by cardiomyocyte proliferation. Thus, these human and rodent heart studies 

provide strong evidence for plasticity in the adult human heart. Although actually cardio-

myocyte regeneration from progenitor cells probably occurs in the human heart, it seems to 

be a very slow process different from that of the zebrafish, which rapidly promotes cardiac 

regeneration through cardiac proliferation, besides ageing is associated with the loss of ~ 

1g /of myocardium per year in the absence of specific heart disease [67].  

Stem cell biology is one of frontier areas of biomedical research including regeneration medi-

cine. In the latter part of 20th century, bone marrow stem cell (BMCs) transplantation was got-

ten a lot of attention as a next regeneration medicine, however, the accumulating evidences 

indicate that BMC do not work by directly differentiating into new cardiomyocytes. In the 21th 

century, the existence of several types of cardiac stem cells has been reported. Cardiac stem 

cells display cell surface markers as c-kit positive, Sca-1 positive, Abcg2 positive, cardiospere-

drived cells (CDCs) positive and islet-1 positive respectively [68]. These cells can be isolated 

and differentiated into fully mature cardiomyocytes that express contractile proteins, genera-

tion of calcium transients and respond to β-adrenergic stimulation. However, their abundant 

presence in the adult human heart and their capacity to engraft, regenerate myocardium lead-

ing to improving of cardiac function does not reach the sufficient evidence as the consensus. In 

fact, clinical trials using CDCs and c-kit positive cells are underway in California, Louisville 

and Kentucky respectively. Embryonic stem cells (ESC) and induced pluriopotent stem cells 

(iPS) are able to generate any cell type in our body. They have a tremendous potential for 

regeneration associated with obvious problems such as immune rejection, the carcinogenic 

potential. Therefore, they are a potentially inexhaustible supply of the human cardiomyocytes. 

IPS was originally generated by the reprograming of adult somatic cells by the forced expres-

sion of up to four stem cell related transcription factors, which is termed “Yamanaka factors”. 

So the cardiomyocytes from any pluripotent stem cell type are immature and lack the expres-

sion profile, morphology and function of the adult ventricular cardiomyocyte. Therefore, the 

cardiomyocytes from patient-derived iPS cells may play a normal cardiac function. Human 

ESC-derived cardiomyocyte express early cardiac transcription factors such as NKX2.5, as well 

as the expected sarcomeric proteins, ion channels, connexins and calcium-handling proteins. 

They show similar functional properties to those reported for cardiomyocytes in the develop-

ing heart, and undergo comparable mechanisms of excitation- contraction coupling and neu-

rohormonal signaling [69, 70]. Human iPS-derived cardiomyocytes show a very similar pheno-

type [71, 72]. Furthermore, these cells have shown to engraft in infarct mouse, rat, guinea pig 

and pig heart, forming islands of nascent, proliferating human myocardium within the scar 

zone [73, 74]. Furthermore, two research groups achieved directly reprogrammed cardiomyo-

cyte from somatic cells [75, 76]. These results may be one of most important evidences of car-

diac regeneration employing pluripotent stem cell. Final goal of these biochemical tools will 

depend on the long-term engraftment of regenerative cells. 

9. Summary 

We described recent topics of the heart failure in basic and clinical field. To materialize ap-

plicable conditions responding to an elderly society, therapeutic, economic or Social security 
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problems associated with heart failure have to be gotten fixed. Thereby, the research system 

close linkage between basic and clinic is important to prevent and remedy heart failure in 

the elderly societies. 
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