
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800



Chapter 1 

 

 

 
 

© 2012 Sugi et al., licensee InTech. This is an open access chapter distributed under the terms of the 
Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits 
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

The Gas Environmental Chamber  

as a Powerful Tool to Study  

Structural Changes of Living Muscle  

Thick Filaments Coupled with ATP Hydrolysis 

Haruo Sugi, Hiroki Minoda, Takuya Miyakawa,  
Suguru Tanokura, Shigeru Chaen and Takakazu Kobayashi 

Additional information is available at the end of the chapter 

http://dx.doi.org/10.5772/39199 

1. Introduction 

The gas environmental chamber (or the hydration chamber) has been developed to observe 

chemical reactions in water solutions under high magnifications with an electron micro-

scope (for an extensive review, see Buttler & Hale, 1981). The gas environmental chamber 

(EC) has been widely used for in situ observation of inorganic substances in the field of 

materials science. Fig.1 shows two different types of the EC. One is film-sealed EC, which is 

insulated from high vacuum of electron microscope with sealing film at is upper and lower 

windows to pass electron beam (Fig.1A). Water vapor (water gas) is constantly circulated 

through the EC to keep the specimen in hydrated state. The other is aperture-limited EC, 

which has apertures to pass electron beam without any sealing film. Water gas is constantly 

injected into the EC, and sucked out of the EC to keep the specimen in hydrated state 

(Fig.1B). 

In the research field of medical and biological sciences, it was a dream of investigators to 

observe living microorganisms moving under an electron microscope with high magnifica-

tions. In order to realize this dream, a number of attempts have hitherto been made to ob-

serve living microorganisms by means of the EC attached to an electron microscope. Such 

attempts have been, however, found to be unsuccessful because the function of living mi-

croorganisms are readily impaired by electron beam irradiation. On the other hand, the 

function of biological macromolecules, such as proteins and lipids, are expected to be much 

more resistant against electron beam irradiation. The experiments to be described in this 

chapter were started to ascertain whether the EC was useful in studying dynamic structural 
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changes of biological macromolecules related to their function. After many considerations, 

we decided to study molecular mechanism of muscle contraction using the EC, which was 

designed and constructed to be suitable for physiological experiments to investigate dynam-

ic structural changes of hydrated muscle myosin filaments coupled with ATP hydrolysis.  
 

 

Figure 1. Two types of the EC. (A) Film-sealed EC. (B) Aperture-limited EC. (Fukushima, 1988) 

As explained in detail in the following sections, the greatest mystery concerning the 

mechanism of muscle contraction is how the myosin heads extending from myosin 

filaments convert chemical energy derived from ATP hydrolysis into mechanical work 

producing force and motion in muscle. Despite extensive studies, the movement of the 

myosin heads still remains as a matter of debate and speculation. The reason for the present 

situation in the field of muscle research arises from the fact that the myosin head movement 

has been determined only indirectly. The most straightforward way to record the myosin 

head movement is to observe the myosin head movement in hydrated myosin filaments, 

which retain their physiological function. In the early 1980’s, we had an opportunity to meet 

Professor Fukami in Nihon University, who succeeded in preparing the carbon sealing film 

for the film-sealed EC at that time and was looking for coworkers to study physiological 

function of biological tissues. 
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We started to work with Fukami’s group using the EC, manufactured by the Japan Electron 

Optics Laboratory (JEOL, Ltd, Co., together with the carbon sealing film developed in 

Fukami’s laboratory. After the period of trials and errors, encompassed over ten years, we 

succeeded in recording the ATP-induced myosin head movement in hydrated myosin 

filaments with a number of unexpected findings, which are described in this chapter. 

2. The gas environmental chamber (EC) 

Fig.2 is a schematic diagram of the film-sealed gas environmental chamber (EC). The EC 

consists of a metal compartment (diameter, 3.5mm; depth, 0.8mm) with upper and lower 

window frames (copper grids) to pass electron beam. Each window frame has nine 

apertures, each having a diameter of 0.1mm. The specimen is placed on the surface of lower 

sealing film, and covered by a thin layer of experimental solution by constantly circulating 

water vapor through the EC. To obtain clear specimen images, the internal pressure of the 

EC is made 60―80 Torr. The flow rate of water vapor is adjusted to 0.1―0.2l/min, so that 

thin layer of experimental solution covering the specimen is in equilibrium with the vapor 

pressure in the EC (Fukushima et al.,1985; Fukami et al.,1991). The EC was attached to a 

200kV transmission electron microscope (JEM 2000EX, JEOL). (Sugi et al.,1997). 

 

Figure 2. Diagram of the film-sealed EC. The upper and lower windows (copper grids with nine aper-

tures) are covered with carbon sealing films held on copper grids. The EC contains an ATP-containing 

electrode to apply ATP to the specimen iontophoretically. The image of the specimen is recorded with 

the imaging plate (IP) (Sugi et al. , 1997). 
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3. Carbon sealing film 

The most important element of the film-sealed EC is the carbon sealing film developed in 

Fukami’s laboratory. In principle, both spatial resolution and contrast of electron 

micrographs taken by the EC increases with decreasing thickness of the sealing film. 

Preliminary experiments made in Fukami’s laboratory indicated that, to obtain a spatial 

resolution < 1 nm, thickness of the sealing film should be 15―20nm. Meanwhile, resistivity 

of a sealing film against pressure difference decreases sharply with increasing its area; the 

thickness of a sealing film covering a circular aperture of 50μm diameter should be ~100nm 

to bear a practical pressure difference. 

 

Figure 3. Photomicrographs of plastic microgrides with holes of small diameters (A), with holes of 

nonuniform diameters (B), and with holes of fairly uniform diameters (5―8nm)(C). (Fikushima, 1988). 

As it is practically difficult to a hole < 50μm into metal wall of the EC, Fukami & Adachi 

(1965) plastic microgrids made from high-molecular organic compound (cellulose 

acetobutylate). Examples of microgrids are shown in Fig. 3. Microgrids with small (A) or 

nonuniform holes (B) were unsuitable, while microgrids with fairly uniform holes of 5―

8nm diameters (C) were suitable for electron microscopic observation of the specimen.  

Fig. 4 illustrates steps to prepare carbon sealing film by covering the microgrid with a thin 

layer of carbon film (thickness, ~20nm). First, plastic microgrids prepared on a glass slide is 

put onto water surface (a), where the microgrids ( having trapezoidal cross-section) are 

floating with longer side dounwards (b). The position of the microgrids are inverted by 
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means of triacetylcellurose (TAC) membrane, and again put oto water surface (c,d). The 

inverted microgrids are then placed on a mica surface, and exposed to evaporated carbon 

gas so that the grids are coated with thin carbon layer (e,f). The carbon sealing film prepared 

on a mica surface are cut into rectangular pieces of appropriate size, and put onto water 

surface (g,h,i). Finally, pieces of the carbon insulating film is placed onto the copper grid, in 

such a way that each piece of the insulating film covers nine apertures of copper grid (k). 

 

Figure 4. Diagram showing steps to prepare carbon insulating film supported by copper microgrids 

(Fukushima,1988). For explanation, see text...  

The carbon insulating film prepared by the above method well resisted against pressure 

difference up to 1 atm (Fukushima, 1981). 
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4. Determination of the critical electron dose to impair function of 

contractile proteins 

Although biological specimens mounted in the EC can be kept in living, hydrated state ,their 

function is gradually impaired by electron beam irradiation, thus giving a serious limitation 

in the use of the EC for physiological experiments. Therefore, the critical incident electron 

dose to impair physiological function of contractile proteins in muscle was determined in by 

Suda et al. (1992). They observed muscle myofibrils, consisting of hexagonal array of actin 

and myosin filaments, in the EC (magnification, 2500X), and activated them with ATP. 

 

Figure 5. Relation between the total incident electron dose and the survival rate of muscle myofibrils, 

expressed as percentage of myofibrils contracted in response to ATP in the microscopic field (Suda et 

al.,1992). Note that contraction of myofibrils in response to ATP disappears when the electron dose 

exceeds 5 x 10-4C/cm2. 

The results are summarized in Fig.5. When the total incident electron dose was < 5 x 10-

4C/cm2, all the myofibrils in the electron microscopic field contracted in response to ATP. If, 

however, the total incident electron dose was further increased, the ATP-induced myofibril 

contraction disappeared in a nearly all-or-none manner, though the myofibrils showed no 

appreciable changes in appearance. 

The critical electron dose to impair physiological function of contractile proteins was con-

firmed by us with respect to both the ATP-induced myosin head movement and the ATPase 
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activity of hydrated myosin filaments mounted in the EC. Based on these results, electron 

microscopic observation and recording of the specimen was made with a total incident elec-

tron dose < 10-4C/cm2, being well below the critical dose to impair function of contractile 

proteins. In order to fulfill this condition, the specimen in the EC had to be observed with 

extremely weak electron beam intensities (at the fluorescent screen) < 5 x 10-13A/cm2. There-

fore, observation and focusing of the specimen required enormous skill and patience. The 

electron beam intensity through the specimen under a magnification of 10,000x was 5 x 10-

13x (10,000)2 = 5 x 10-5A/cm2. Immediately after the focusing of the specimen, electron beam 

was stopped until the time of recording. 

5. Background of experiments with the EC 

Before describing our experimental results, it seems necessary to give a brief overview of the 

experimental work to investigate mechanism of muscle contraction. In the middle1950s, 

H.E. Huxley & Hanson (1954) made a monumental discovery that a skeletal muscle consists 

of hexagonal lattice of actin and myosin filaments, and that muscle contraction results from 

relative sliding between actin and myosin filaments (Fig. 6).  

 

Figure 6. Electron micrographs of longitudinal thin section of rabbi psoas muscle myofibrils (H.E. 

Huxley, 1957). 

Considerable progress has been made with respect to the structure and function of actin and 

myosin filaments after the discovery of sliding filament mechanism in muscle contraction. 

As shown in Fig.7A, a myosin molecule is divided into two parts; (1) a long rod called light 

meromyosin (LMM) and (2) the rest of myosin molecule consisting of a short rod (S2) and 

two heads (S1) is called heavy meromyosin (HMM). In myosin filaments (or thick fila-

ments), LMM aggregates to form filament backbone, which is polarized in opposite direc-

tions on either side of the central part. 

While the S1 heads extend laterally from the filament backbone with an axial interval of 

14.3nm (Fig.7B). The central part of myosin filament is called the bare region (or bare zone), 

where the projection of myosin head is absent. 
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Figure 7. Ultrastructure of myosin (thick) and actin (thin) filaments and their arrangement within a 

sarcomere. (A) Diagram of a myosin molecule. (B) Arrangement of myosin molecules to form a myosin 

filament. (C) Arrangement of actin monomers (G-actin) in an actin filament. (D) Longitudinal arrange-

ment of actin and myosin filaments within a sarcomere. Note that the half sarcomere is the structural 

and functional unit of muscle (Sugi, 1992).  

On the other hand, actin filaments consist primarily of two helical strands of globular actin 

monomers (G-actin) , which are wound around each other with a pitch of 35.5nm. The axial 

separation of actin monomers in actin filaments is 5.46nm (Fig.7C). In vertebrate skeletal 

muscle, actin filaments contain tropomyosin and troponin.  

As shown in Fig.7D, actin filaments extend from the Z-line to penetrate in between myosin 

filaments, which are located centrally in each sarcomere. Within a sarcomere, the region 

containing only actin filaments is called the I-band, whereas the region containing myosin 

filaments and part of actin filaments is called the A-band. It has been confirmed by a num-

ber of experimental methods (H.E. Huxley & Hanson,1954; Page & Huxley,1963; Wray & 

Holmes,1981) that the filament lengths remain constant irrespective of whether a muscle 

shortens or being stretched. Therefore, the central problem in understanding the molecular 



The Gas Environmental Chamber as a Powerful Tool to  
Study Structural Changes of Living Muscle Thick Filaments Coupled with ATP Hydrolysis 

 

11 

mechanism of muscle contraction is: what makes actin and myosin filaments slide past each 

other? Since both actin binding site and ATPase activity are localized in the S1 heads of 

myosin molecule, it is generally believed that the S1 heads, extending from myosin filament 

backbone towards actin filaments, play a key role in converting chemical energy of ATP 

hydrolysis into mechanical work producing force and motion in muscle. 

 

Figure 8. Diagrams showing hypothetical attachment-detachment cycle between the myosin S1 head 

extending from myosin filament and the sites on actin filament. The myosin head first attaches to actin 

filament (top diagram), changes its configuration to move actin filament to the right (middle diagram), 

and then detach from actin filament (bottom diagram). Axial spacing of the myosin heads on myosin 

filament differs from that of the sites on actin filament, so that the attachment-detachment cycle takes 

place asynchronously (H.E. Huxley,1969). 

Fig.8 illustrates hypothetical attachment-detachment cycle between the S1 heads and the 

corresponding sites on actin filaments. Extensive studies have been made to prove confor-

mational changes (or movement) of the myosin heads coupled with ATP during muscle 

contraction. Although experimental methods used include muscle mechanics, time-resolved 

X-ray diffraction, chemical probes attached to myosin heads, electron microscopy of quick 

frozen muscle fibers, and nucleotide-dependent changes of myosin head crystals, no clear 

conclusion has been obtained (Cooke,1986; Hibbard & Trentham,1986, Geeves & Holmes, 

1999, A.F. Huxley,1998).  

Thus, the myosin head movement coupled with ATP hydrolysis in muscle still remains to be 

a matter for debate and speculation. The difficulties in this research field seem to arise from 

the fact that numerous myosin heads undergo conformational changes asynchronously, so 

that experimental data are statistical to obscure behavior of individual myosin heads. Since 

the most straightforward way to study conformational changes in individual myosin heads 

electron microscopically, we attempted to record ATP-induced movement of individual 
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myosin head in using the EC, enabling us to keep myofilaments in hydrated, living state. 

As described later, the EC has been proved to be extremely powerful tool in visualizing the 

behavior of individual myosin heads under the electron microscope with high magnifica-

tions. 

6. Experimental methods 

In order to achieve the purpose to record movements of myosin head in hydrated myosin 

filaments, the following problems in experimental technique had to be solved: (1) how to 

record images of the specimen with extremely weak electron beam intensities, (2) how to 

position-mark myosin heads without specimen staining used for conventional electron 

microscopy; and (3) how to apply ATP to the specimen without changing its position in the 

electron microscopic field. We solved these problems in the following ways. 

6.1. Recording of specimen image 

Based on the critical electron dose to impair function of contractile proteins (Fig.5), experi-

ments were performed under electron microscopic magnification of 10,000x, and the speci-

men images were recorded on an imaging plate (IP) system (PIX system, JEOL). The IP is 

10.2 x 7.7cm in size, and has a sensitivity ~60times that of X-ray film. The exposure time was 

0.18s with an electron beam intensity of 1―2 x 10-12A/cm2. The number of pixels in the IP is 

~12,000,000 to give a special resolution mdose, recording of the specimen image can only be 

repeated at most 4times. The IP system was developed by Fuji Photofilm Co., and is now 

used worldwide not noly for transmission electron microscope, but for other purposes like 

time-resolved X-ray diffraction. 

6.2. Preparation of synthetic bipolar myosin filaments and position marking of 

myosin heads 

We decided to use synthetic thick filaments, consisting of myosin-myosin rode mixture, 

prepared from rabbi psoas muscle. Myosin was prepared by the method of Perry (1955), 

while myosin rod was obtained by chymotryptic digestion of myosin by the method of 

Margossian & Lowey (1982). Myosin and myosin rod were mixed at a molar ratio of 1:1, and 

were slowly polymerized by dialysis against a solution of low ionic strength (KCl 

concentration, 120mM) to bipolar myosin filaments (1.5―3μm in length, and 50―200nm in 

diameter at the center) suitable for our experiments. As shown in Fig. 9, the synthetic 

filaments are spindle-shaped, and their polarity is reversed across their central region, as 

judged from the direction of extension of rod part of HMM (myosin S2) from the filaments. 

Though the myosin S1 heads are lost from the filaments, probably due to fixation and 

staining procedures, this indicates that the synthetic filaments are bipolar in structure, being 

similar to native myosin filaments in muscle.  

To position-mark individual myosin heads in the hydrated myosin filaments without stain-

ing procedures, colloidal gold particles (diameter, 20nm; coated with protein A; EY labora-
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tories) were attached to the myosin heads, using a site directed antibody (IgG) to the junc-

tional peptide between 50- and 20-kDa segments of myosin heavy chain (Sutoh et al.,1989). 

The antibody attaches to only one of the two myosin heads near its distal end facing actin 

filaments. Technical details to position-mark individual myosin heads have been described 

elsewhere (Sugi et al., 1997). It was essential to position-mark myosin heads sparsely, so that 

each gold particle was reasonably separated from neighboring particles. 

 

Figure 9. Conventional electron micrograph of synthetic bipolar myosin filaments. Note that the direc-

tion of extension of rod part of HMM (myosin subfragment 2) from the filaments is reversed across their 

central region 

6.3. Application of ATP to the specimen 

To apply ATP to the specimen without causing its displacement, we used conventional glass 

capillary microelectrodes containing 100mM ATP (see Fig.2). By passing current pulses 

through the electrode, negatively charged ATP ions are moved out of the electrode. The 

iontophoretically released ATP ions from the electrode reach to the specimen by diffusion in 

the experimental solution covering the specimen. Normally, a rectangular current pulse 

(intensity, 10nA; duration, 1s) from an electronic stimulator was applied to the electrode 

through a current clamp circuit (Oiwa et al.,1993). Total amount of ATP released from the 

microelectrode was estimated to be ~10―14mol (Oiwa et al.,1991). The time required for the 

released ATP to reach the specimen by diffusion was estimated to be <30s by video record-

ing 

ATP-induced shortening of myofibrils in the EC under a light microscope. Hexokinase 

(50units/ml) and D-glucose (2mM) were added to the experimental solution to eliminate 

contamination of ATP (Oiwa et al.,1991). In some experiments, ADP was also applied to the 

specimen with similar method. 
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6.4. Data analysis 

Under an electron microscopic magnification of 10,000x, the pixel size on the IP is 2.5 x 

2.5nm. In our experimental condition, the number of electrons reaching each pixel is esti-

mated to be at most 7―8. Each IP record of the specimen was divided into a number of 

subframes, and each subframe was observed on the monitor screen of electron microscope. 

Due to electron statistics, the shape of gold particle images was variable. Particles with near-

ly circular shape were selected to be used for analysis, after an appropriate binning proce-

dure, i.e. the procedure to determine each particle configuration consisting of particles with 

electron counts above a certain level. Particle shapes were not markedly altered by the level 

of binning. 

Then, the center of mass position of each selected gold particle was determined with an 

image processor (Nexus Qube System, Nexsus) in the early experiments, and with an ordi-

nary personal computer in the late experiments. The center of mass position was obtained as 

the coordinates (two significant figures) within a single pixel where the center of mass posi-

tion was located, and the coordinates, representing the position of the particle, were also 

taken to represent the position of the myosin head. The position of the myosin head, deter-

mined by the above method, was compared between the two IP records. The absolute coor-

dinates common to the two IP records were obtained from the position of natural markers, 

i.e. bright spots on the carbon sealing film. When the center of mass position was different 

between the two IP records, the distance (D) between the two center of mass positions (with 

the coordinates X1 and Y1 and X2 and Y2, respectively) was calculated as D = √(X1―X2)2 

+(Y1－Y2)２, and this value was taken as the amplitude of myosin head movement. 

7. Experimental results and their interpretation 

Prior to the experiments to be described in the following sections,we first made experiments 

with the EC using myosin-paramyosin hybrid filaments, in which rabbit skeletal muscle 

myosin was bound around the surface of long and thick paramyosin filaments obtained 

from molluscan somatic smooth muscle, because this hybrid filaments were very easy to 

handle experimentally. Although we established our experimental methods already de-

scribed in the preceding sections during the course of experiments, and succeeded in record-

ing the ATP-induced myosin head movement (Sugi et al.,1997), we do not mention the re-

sults obtained on this hybrid filaments because (1) the space available for this chapter is 

limited, and (2) the results obtained from the unusual material may not attract attention of 

general readers.  

7.1. Stability of myosin head position in the absence of ATP 

Fig.10 shows examples of spindle-shaped bipolar myosin filaments with a number of gold 

particles bound to individual myosin heads. The particle image consisted of 20―50 dark 

pixels with a wide range of gradation, reflecting electron statistics. We first examined 
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whether the particle position, representing the myosin head position, was stable or changed 

with time in the absence of ATP, by comparing the center of mass position of the same parti-

cle between the two IP records of the same filament, taken at an interval of 5―10min, and 

then the two IP records were superimposed to detect differences in particle position. 

 

Figure 10.  (a and b) Examples of IP records of single bipolar myosin filaments with a number of gold 

particles attached to individual myosin heads. (c) Enlarged view of myosin filament shown in (a) (Sugi 

et al.,2008).  

An example of superimposed tracings of the two IP records is presented in Fig. 11a, in 

which open and filled circles of 20nm diameter are drawn around the center of mass posi-

tion of particles in the first and the second records, respectively. It was found that filled 

circles in the second record are almost completely covered by open circles in the first record. 

This indicates that (1) the filament stick firmly to the surface of carbon sealing film, and that 

(2) the position of individual myosin heads on the filament remain almost unchanged with 

time. Fig.11b is a histogram showing distribution of the distance between the center of mass 

positions of particles in the first and the second records. Among 120 particles on three dif-

ferent pairs of IP records, 93 particles exhibited no significant changes in position (D < 

2.5nm), while the rest 27 particles showed only small position changes (2.5nm < D > 5nm). 

The stability in position of both the filament and the myosin heads in the absence of ATP pro-

vided an extremely favorable condition for recording the myosin head movement in response 

to applied ATP. Although individual myosin heads are believed to continue thermal fluctua-

tion, their mean position, time-averaged over the exposure time of IP recording (0.18s), re-

mains almost unchanged with time. Since the same stability of myosin heads has also been 
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observed in the hybrid filaments (Sugi et al.,1997), the stability in time-averaged myosin head 

mean position seems to be common to myosin heads extending from myosin filament in all 

kinds of muscle, and is consistent with the contraction model of A.F. Huxley, in which each 

myosin head fluctuates around a definite equilibrium position (A.F. Huxley, 1957). 

 

Figure 11. Stability of time-averaged myosin head position in the absence of ATP. (a) Comparison of 

the myosin head position between the two IP records of the same filament. Open and filled circles 

(diameter, 20nm) are drawn around the center of mass position of each particle in the first and the 

second IP records, respectively. In this and subsequent figures, broken lines indicate contour of the 

filament. Note that filled circles are barely visible because of almost complete overlap of open circles 

over filled circles. (b) Histogram showing distribution of distance between the center of mass positions 

of particles in the first and the second IP records (Sugi et al.,2008). Note also that, in Figs. 11 and 12, the 

term, cross-bridge, is used instead of the term, myosin heads. 

7.2. ATP-induced myosin head movement 

On the basis of the stability of time-averaged myosin head mean position with time, we 

explored myosin head movement in response to iontophoretically applied ATP, by 

comparing two IP records of the same filament, one taken 3―4min before while the other 
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taken 40―60s after ATP application. Since it was not easy to focus part of myosin filament 

including the bare region (see Fig.7B) within the critical electron dose to impair function of 

myosin molecules, we first examined ATP-induced myosin head movement at one side of 

the bare region.  

After ATP application, the position of individual myosin heads on the filament was found to 

move in one direction nearly parallel to the filament long axis, as shown in Fig. 12a (Sugi et 

al.,2008). Fig. 12b is a histogram showing distribution of the amplitude of ATP-induced 

myosin head movement, constructed from 1,285 measurements on 8 different pairs of IP 

records obtained from 8 different myosin filaments. The histogram exhibited a peak at 5―

7nm, and the average amplitude of myosin head movement was 6.5±3.7nm (mean±SD, 

(n=1,210). 

 

Figure 12. ATP-induced myosin head movement. (a) Comparison of the myosin head position between 

the two IP records. Open and filled circles (diameter, 20nm) are drawn around the center of mass posi-

tions of the same particles before and after ATP application, respectively. 

(Inset) an example of superimposed IP records showing the change in position of the same 

particle, before (red) and after (blue) ATP application. (b) Histogram showing distribution 

of the amplitude of ATP-induced myosin head movement, determined from changes in the 

center of mass position of each particle (Sugi et al.,2008). 
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In our experimental condition, gold particles located on both upper and lower side of the 

filaments were equally in focus in the microscopic field. The myosin heads on the filament 

upper side may move freely in response to ATP, while the movement of myosin heads on 

the lower side of the filament may be largely or completely inhibited due to firm attachment 

of the filament to the carbon sealing film. If this explanation is correct, the mean amplitude 

of ATP-induced movement of myosin heads that can move freely would be > 7.5nm. As has 

been the case in the previous study (Sugi, 1997), the ATP-induced myosin head movement 

was eliminated by treatment with N-ethylmaleimide, indicating that the myosin head 

movement is associated with its reaction with ATP. 

 

Figure 13. Examples of IP records showing the ATP-induced myosin head movement at both sides of 

the myosin filament bare region, across which the myosin head polarity is reversed. Open and filled 

circles (diameter, 20nm) are drawn around the center of mass positions of the same particles before and 

after ATP application, respectively. Note that the myosin heads move away from the bare region, indi-

cated by vertical broken lines (Sugi et al., 2008). 

7.3. Direct demonstration of myosin head recovery stroke 

After enormous painstaking efforts, we finally succeeded in recording the ATP-induced 

myosin head movement at both sides of the myosin filament bare region, across which the 
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myosin head polarity was reversed (see Figs. 7 and 9). It was found that, on application of 

ATP, myosin heads moved away from the bare region. Typical examples of IP records 

showing the reversal in the direction of myosin head movement are presented in Fig. 13.  

Fig. 14 is a diagram illustrating generally accepted view on the attachment-detachment cycle 

between the myosin head (M) extending from myosin filament and actin monomer (A) in 

actin filament, based on biochemical studies on the kinetics of actomyosin ATPase reaction 

in water solution (Lymn & Taylor, 1971). M in the form of complex, M・ADP・Pi, attaches 

to A (A), and exerts a power stroke, associated with release of Pi and ADP (from A to B). 

After the end of power stroke, M remains attached to A, taking its post-power stroke 

configuration (B). Upon binding with ATP, M detaches from A, and exerts a recovery stroke, 

associated with reaction, M・ATP → M・ADP・Pi (from C to D). Then M・ADP・Pi again 

attaches to A (from D to A) and the cycle is repeated. 

Though our experimental system does not contain actin filaments, it seems likely that 

myosin heads before ATP application may take configurations analogous to those at the end 

of power stroke (B in Fig. 14), and in response to applied ATP, they bind with ATP to form 

complex M・ADP・Pi, which is known to have average lifetime > 10s due to its slow Pi 

release (Lymn & Taylor,1971). Therefore, majority of myosin heads in the IP record, taken 

after ATP application, may be in the state of M・ADP・Pi, suggesting that the ATP-induced 

myosin head movement, recorded in our EC experiments, is coupled with reaction, M + ATP 

→ M・ADP・Pi, and therefore may correspond to the recovery stroke (C to D, in the 

diagram of Fig. 14.  

 

Figure 14. Diagram of the attachment-detachment cycle between myosin head (M) extending from 

myosin filament and actin monomer (A) in actin filament, based on biochemical studies on actomyosin 

ATPase reactions. For further explanations, see text. (Sugi et al.,2008). 
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In order that myosin heads in muscle repeat attachment-detachment cycles with actin 

filaments, the recovery stroke should be the same in amplitude as, but opposite in direction 

to, the power stroke, in which myosin heads should move towards the bare region of 

myosin filament. As a matter of fact, myosin heads that had moved away from the filament 

bare region, were found to return to their initial position after exhaustion of applied ATP 

with hexokinase and D-glucose serving as ATP scavenger. 

Fig. 15 illustrates 9 examples of superimposed IP records, each record showing sequential 

changes in location of the pixels (2.5 x 2.5nm), in which the center of mass position of the 

corresponding gold particles is included. Red, blue and yellow pixels in each record indicate 

the center of mass positions of the same particle before ATP application, during ATP 

application, and after complete exhaustion of applied ATP, respectively. It can be seen that 

myosin heads returned exactly to their initial position in records a, b and i, and close to their 

initial position in records c to h. The return of myosin heads to their initial position may be 

associated with reaction, M・ADP・Pi → M + Pi + ADP, i.e. detachment of Pi and ADP from 

M. In the presence of actin filaments, this reaction corresponds to the myosin head power 

stroke (A to B in Fig.14).  

To summarize, our findings on the ATP-induced myosin head movement in hydrated, 

living myosin filaments constitute the first direct demonstration of the myosin head 

recovery stroke. On the other hand, the return of myosin head to their initial position after 

exhaustion of applied ATP is not regarded to correspond to myosin head power stroke at 

present, as our experimental system does not contain actin filaments. Nevertheless, our 

results may be taken to indicate that, even in the absence of actin filaments, individual 

myosin head can exhibit cyclic movement coupled with ATP hydrolysis. In other words, 

individual myosin heads can perform cyclic movement analogous to that shown 

diagrammatically in Fig.14 without being guided by actin filaments. Recently, we have 

succeeded in recording the myosin head power stroke in the presence of actin filaments, and 

are obtaining extremely interesting preliminary results, further proving that the EC is a 

powerful tool in making breakthroughs in the field of molecular mechanism of muscle 

contraction.  

8. Electron microscopic evidence for lever arm mechanism of myosin 

head movement 

At the end of this chapter, we will describe our recent piece of work with EC concerning the 

myosin head lever arm mechanism. Fig. 16 is a diagram showing molecular structure of the 

myosin head, consisting of catalytic domain CAD) containing actin binding and ATPase 

sites, and lever arm domain (LD), connected to myosin filament backbone via myosin sub-

fragment 2 (S2). The two domains are connected by small, flexible converter domain (CD). 

Mainly based on crystallographic studies on nucleotide-dependent structural changes in 

myosin head crystals, which are detached from myosin filaments (Geeves & Holmes,1999), 

it has been suggested that the myosin head power stroke is produced by active rotation of 

LD around CD, while CAD remains rigid. It is not clear, however, whether the myosin head 
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power stroke is actually produced by the above lever arm mechanism in muscle, in which 

the myosin heads are not detached from, but are firmly connected to, myosin filament back-

bone. 

 

Figure 15. Examples showing sequential changes in position of 9 different pixels (each 2.5 x 2.5nm) 

where the center of mass positions of corresponding 9 particles are located. In each frame, pixel posi-

tions before ATP application (red), during ATP application (blue), and after exhaustion of ATP (yellow) 

are indicated. Note that myosin heads return towards their initial position after exhaustion of applied 

ATP (Sugi et al.,2008).  

To give answer to this question, we prepared three different monoclonal antibodies (IgG) 

directed to three different regions within a single myosin head. Antibody 1 is identical with 

that used in our previous experiments already described in this chapter, and attaches to 

junctional peptides between 50k and 20k segments of myosin heavy chain. Antibody 2 at-

taches around reactive lysine residue (Lys 83) in CD. Antibody 3 attaches to two peptides 

(Met 58―Ala 70 and Leu 106－Phe 120) in myosin regulatory light chain in LD. The ATP-
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induced movement at three different parts within individual myosin heads was recorded 

using myosin filaments with myosin heads position-marked with antibodies 1, 2 or 3 and 3’ 

by the method previously described. 

 

Figure 16. Myosin head structure showing approximate regions of attachment of antibody 1, 2 and 3, 

indicated by numbers 1, 2 and 3, respectively. The catalytic domain (CAD) comprises 25k (green), 50k 

(red) and part of 20k (dark blue) fragments of myosin heavy chain, while lever arm domain (LD) com-

prises the rest of 20k fragment and essential (ELC, light blue) and regulatory (RLC, magenta) light 

chains. CAD and LD are connected via converter domain (CD). Location of peptides around Lys 83 and 

that of two peptides (Met 58―Ala 70 and Leu 106―Phe 120) in LD are colored yellow. Regions of at-

tachment of antibodies 1,2 and 3 are indicated by numbers 1, 2 and 3 and 3’, respectively (Minoda et 

al.,2011). 

Fig. 17 illustrated the results obtained as well as their interpretation. As can be seen in the 

three histograms. Fig. 17A, B and C are histograms of amplitude distribution of ATP-

induced movement of myosin heads, position-marked with antibody 1, antibody 2 and 

antibody 3, respectively. The mean amplitude of ATP-induced movement was 6.14±0.09 

(mean±s.e.m., n =1,692) at the distal part of CAD (A), and 6.14±0.22 (n = 1,112) at the CAD-

CD boundary (B), indicating no significant difference between the two extreme regions of 

CAD. On the other hand, the average amplitude of ATP-induced movement at the 

regulatory light chain in LD was 3.55±0.11nm (n = 981), being significantly smaller than the 

corresponding values in CAD (t-test, P < 0.01).  

If it is assumed that the cyclic conformational changes of myosin heads in the absence of 

actin filaments (Fig.17D) are in principle similar to the conformational changes of myosin 
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heads in the presence of actin filaments in muscle (Fig.17E), the results shown in Fig.17 A―

C can be accounted for by the lever arm mechanism in the following way.  

 

Figure 17. (A―C) Histograms showing amplitude distribution of ATP-induced myosin head move-

ment, position-marked with antibody 1 (A(, antibody 2 (B), and antibody 3,3, respectively. (D,E) Dia-

grams illustrating myosin head lever arm mechanism in the absence (D) and in the presence (E) of actin 

filament. Attachment regions of ’of antibodies 1, 2 and 3 are indicated by numbers 1, 2 and 3,3’, respec-

tively (Minoda et al.,2011). 

In the absence of actin filaments, the myosin head is initially thought to be in the post-power 

stroke configuration (solid line in D), and on binding with applied ATP it changes its 

conformation to reach the post-power stroke configuration with bound ATP hydrolysis 

products( Pi and ADP) (broken line in D). During this recovery stroke, the myosin head lever 

arm domain rotates not only around the converter domain, but also around the boundary 

between the lever arm domain and myosin S2, connecting the myosin head to myosin filament 

backbone. As a result, the amplitude of ATP-induced movement is definitely larger at both the 

distal and the proximal end of myosin head catalytic domain (indicated by numbers 1 and 2) 

than at the regulatory light chain in myosin lever arm domain (3 and 3’).  

During the myosin head power stroke taking place in muscle, the myosin head is initially in 

the pre-power stroke configuration with bound Pi and ADP, and attaches to actin filament 
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(solid line in E). Then it undergoes power stroke releasing Pi and ADP, to take the post-

power stroke configuration (broken line in E). To summarize, the measurement of ATP-

induced movement at three different parts within individual myosin is not only consistent 

with the myosin head lever arm mechanism to produce force and motion in muscle, but 

may also constitute the first success in recording local structural changes taking place within 

a single macromolecule. 

9. Conclusion 

The experiments described in this chapter have proved that the EC is an extremely powerful 

tool in elucidating fundamental mysteries remaining in the research field on molecular 

mechanism of contraction. The greatest advantage of the use of EC for investigating muscle 

contraction is that it enables us to record movement of individual myosin heads coupled 

with ATP hydrolysis in hydrated myosin filaments, which retain their physiological func-

tion in an electron microscope.  

In contrast, all other experimental methods hitherto used by a number of investigators, 

including time-resolved X-ray diffraction and chemical probe experiments (Cooke,1986; 

Hibbard & Trentham,1986), to study myosin head movement can only obtain averaged values 

since these methods inevitably sample numerous number of myosin heads acting 

asynchronously. Crystallographic and electron microscopic studies on myosin S1 crystal and 

acto-S1 complex (Geeves & Holmes,1999) are also concerned only with static structures and the 

results obtained are also statistical in nature. We believe that our work using the EC has made a 

breakthrough to open new horizon in this research field. As a matter of fact, we have already 

succeeded to study the myosin head power stroke in hydrated myosin filaments in the presence 

of actin filaments. A preliminary report of this work has appeared (Minoda et al.,2011). 

Finally, we emphasize that the EC can be used not only for muscle research, but also for a 

number of other research fields to study function of biomolecules. We heartily hope that the 

EC will be used widely by life scientists to elucidate various mysteries in their respective 

research field. The EC system (JEOL,Ltd) is commercially available, and can be attached to 

any 100 or 200kV transmission microscope. Those who are interested in the carbon insulat-

ing film may consult JEOL or H.S. (sugi@kyf.biglobe.ne.jp) about its preparation. 
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