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1. Introduction

Wireless Sensor Networks (WSNs) consist of spatially distributed autonomous devices, called

sensors, that communicate in a wireless manner. Sensors cooperate together to monitor

physical or environmental conditions such as temperature, sound, vibration or pressure [1].

This technology has been originally developed for military applications such as battlefield

surveillance [2]. Recently, WSNs have been deployed in many other civilian application

areas. It includes environment applications such as fire detection in forest monitoring and

health-care applications like monitoring the patient status.

Sensor nodes are expected to be of tiny size. Therefore, the size of every sensor’s components,

such as the power source, processing and data storing memory, are expected to be also

very limited. In addition of the physical characteristics, a large number of sensors are

often deployed in hostile environments, where the human intervention is difficult if not

impossible, for example inside a volcano. Hence, in these networks it is not practical to

perform maintenance operations, such as changing batteries on deployed sensor nodes. This

requires sensors to be able to self-organize, self-configure and should optimize the energy

consumption to maximize the network’s lifetime. The network lifetime in WSNs refers to the

period of time from the deployment of the sensor nodes to the instant when the network is

considered unusable [3].

In terms of energy consumption, sensors consume energy for three main reasons: data

sensing, data processing and wireless data communicating. Wireless communication refers to

data transmission and reception. Among these three operations, the most power-consuming

task is data transmission. Approximatively 80% of power consumed in each sensor node

©2012Moad et al., licensee InTech. This is an open access chapter distributed under the terms of the
Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0),which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.
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is used to transmit data [4]. One field of research, aimed at extending the lifetime for

WSNs, is data compression. In general, by applying a suitable compression scheme,

power consumption can be reduced during the transmission and processing stages thus

extending network lifetime. Also, by reducing the data packet size, less bandwidth is

required to send and receive data [4]. In addition, to further enhance energy efficiency,

cluster-based communication schemes are widely used in WSNs [5]. In view of this, we

propose to take advantage of both data compression and clustering in order to further reduce

energy consumption in the network. Indeed, the compression and clustering strategies are

not supposed to work independently but rather the network design has to consider both

simultaneously. Therefore, by enabling both compression and clustering schemes in WSNs,

energy consumption would be greatly enhanced.

In this chapter, we propose a complete analysis of a new Compression Cluster-based scheme

in a Spatially-Correlated Region (CC_SCR) for event-driven applications in WSNs. As WSNs

are typically densely-deployed over a sensor field [6], sensor nodes are typically very close to

each other. Contrary to continuous monitoring applications, in Event Detection-Driven (EDD)

applications, active nodes are concentrated in a relatively small area. Therefore, readings from

these nodes are expected to be quite similar. Building on this, we propose a clustering scheme

that exploits the spatial correlation of sensed data among the nodes to reduce the size of the

data packets that will be sent. Specifically, in the proposed scheme, Cluster Members (CMs)

send only the differences between their readings and a reference data which corresponds to

the value sensed by the selected Cluster Head (CH). As such, one of the proposal’s main issue

is to select as CH the node that reduce the average packet size in the cluster. Note that, in this

chapter, we complement our previous work published in [7] with several simulation results

and analytical analysis.

The main contributions to this chapter are:

1. The CC_SCR compression cluster-based protocol for WSNs is proposed. It exploits the

spatial correlation of the sensed data in order to reduce energy consumption.

2. An analytical energy consumption model for comparison to both classical and single hop

schemes is developed.

3. The CC_SCR is implemented in TinyOS [8] for simulation analysis, in order to prove the

potential benefits of CC_SCR in future applications of real WSNs deployments.

The remainder of this chapter is organized as follows. Section 2 presents a background of

research related to this work, while Section 3 exposes the network model. Section 4 shows

the analytical results regarding the energy consumption and network lifetime, while Section 5

shows the simulation results. Finally, the chapter concludes in Section 6 with a summary of

the main advantages of the proposed scheme.

2. Related work

We review some of the related works regarding the compression and the clustering schemes

in Subsections 2.1 and 2.2, respectively.

208 Wireless Sensor Networks – Technology and Applications
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2.1. Compression schemes

In the literature, there has been an increased interest in studying compression algorithms

for WSNs. On the other hand, many of these compression algorithms have been proposed

for classical networks, which are not suitable to be deployed in the WSNs context [9, 10].

The main reason is the limited memory size of sensor nodes, for example, the size of bzip2

is 219KB and the size of LZO is 220KB. Another reason is the limited processor speed

of sensor nodes which is around 4 − 8MHz. Thus, embedding classical data compression

schemes in these tiny nodes is very difficult and it is necessary to design a low-complexity

and small-size data-compression algorithm for sensors. We review in the following some of

these compression techniques. A more detailed description of compression methods can be

found in [11].

One compression algorithm for WSNs is the coding-by-ordering data-compression

technique [12]. In this algorithm, when data is combined at an aggregation node, some of

these data are implicitly transmitted. The main idea behind this technique is to replace the

data transmission of certain nodes by the order in which the aggregated packets are placed

by the aggregator. For example, consider five nodes (n1, n2, n3, n4, n5) that send data to their

aggregator node, na and suppose that data value of each node can be any integer from a range

of 0 to 23. When the aggregator node receives a value from each node n1, n2, n3, n4, n5, the

order of transmission of first four nodes n1, n2, n3, n4 determines the value of n5 implicitly.

Indeed, there are 4! = 24 possible ways of ordering these data packets.

The pipelined in-network compression algorithm is discussed in [13]. The main idea behind

this technique is to combine data in order to make them smaller than the original size. After

the aggregator collects data from differents nodes, it is stored for a certain amount of time.

Data packets are then combined into one packet to minimize data transmission. For example,

consider that each data packet has the following form: < data value, node ID, timestamp >.

Then, the compressed data packet has the following form: < shared prefix, suffix list, node ID

list, timestamp list>. The shared prefix field, i.e. the most significant bits, is the same for all

the measured values. The suffix list field expresses the list of measured values excluding the

shared prefix part. The node ID list is the list of node identifiers and the timestamp list is the list

of timestamps. One advantage of this simple compression scheme is that the shared prefix

system can be used for both node ID and timestamp fields. By doing so, more data compression

can be achieved.

The distributed compression scheme proposed in [14] uses a side information to encode a

source information. For example, if there are two data sources: X and Y, which are correlated

and chosen from a discrete alphabet, then X can be compressed at the theoretical rate of

its conditional entropy H(X|Y). The receiving node maintains the cosets and can decode

X knowing Y’s codevector, and with partial information from the source X.

The main advantage of the CC_SCR algorithm, compared to those previously mentioned

is that CC_SCR takes into account the physical characteristics of the sensed data in order

to compress data and also considers clustering communication in order to reduce energy

consumption.

209Performance Analysis of a Compression Scheme for Highly Dense Cluster-Based Wireless Sensor Network
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2.2. Clustering schemes

In addition to the compression techniques, there has been an increased interest in studying

energy efficient clustering algorithms and extensive clustering algorithms have been proposed

for WSNs. Hereafter, we briefly review the most relevant energy efficient clustering

algorithms. For more details, the reader can review [15], [16], [5], and [17].

Hybrid Energy-Efficient Distributed clustering (HEED) [18] protocol operates in two main

phases: the set-up phase where clusters are formed and the steady phase where the sensor

nodes transmit their data using the Time Division Medium Access (TDMA) frames. HEED

set-up phase operates in three sub-phases. The first sub-phase is the initializing. Nodes

exchange hello messages to discover their neighborhoods. The second sub-phase consists of

a competition process. The third sub-phase is the finalizing and it allows nodes to join their

corresponding CH based on the connectivity degree.

Power-Efficient Gathering in Sensor Information Systems (PEGASIS) [19] steady phase

consists of a formation of chains instead of clusters. In the chain formation, the Base Station

(BS) and sensor nodes are connected via a chain using a greedy algorithm. One of the nodes,

in the chain, is selected by turns to represent the head. In data gathering phase, each node

delivers the sensing data to the nearest neighbor node until the data reach the head node

which aggregates and delivers the sensing data to the BS.

In [20], the authors proposed an Energy Efficient Clustering Scheme (EECS) protocol. In this

protocol, CH candidates compete for the ability to elevate to a CH with a certain probability.

This competition involves candidates broadcasting their residual energy to neighboring

candidates. If a given node does not find a node with more residual energy, it becomes a

CH.

The main difference between the aforementioned clustering algorithms and the CC_SCR

algorithm is that nodes use the physical characteristic of the sensed data to elects CHs. The

benefits of our proposed scheme is that nodes use the compression scheme to reduce the

energy consumption.

In this chapter, we combine the benefits of using both the clustering and the compression

techniques to reduce the energy consumption in the network. Indeed our proposal scheme

takes into account the characteristics of the physical surveilled event and also takes advantage
of the energy unconstrained of the Base Station (BS) which participates into the CH selection.

Specifically, our proposal scheme takes advantage of the fact that the nodes that sense a certain

event are usually very close to each other (which entails a high correlation between sensed

data) in order to reduce the size of data packets communicated through the network. The BS

then selects an efficient CH that minimize the data transmission over the network. To the best

of knowledge this is the first clustering protocol, that takes into consideration the physical

characteristics of the environment to elect energy efficient clusters and therefore implement

the compression scheme to reduce the energy consumption.

3. Network model

We consider an event-driven WSN consisting of N sensors deployed over a vast field as in

Figure 1. We denote the i-th sensor node as ni and the corresponding sensor node set as {n1,

210 Wireless Sensor Networks – Technology and Applications
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n2,...,nN}. Some assumptions concerning the sensor nodes and the underlying network model

are now presented:

• Nodes are uniformly distributed in an A × A area with (x, y) coordinates. Nodes are

homogenous and all have the same capabilities. A unique identifier ID is assigned to each

node.

• Sensor nodes and the sink node are all stationary after deployment.

• Nodes have two power controls to vary transmission power, which depends on the

distance to the receiver [21]. Each node, ni, can reach any other node with a transmission

range, Rc. The sink can be reached with a transmission range, Rt > Rc.

• CHs use the average operation as the aggregation technique in order to eliminate data

redundancy.

We consider event detection driven wireless sensor applications. The center of the event is

located in a random uniformly-distributed point with coordinates (xevent, yevent) within the

network’s area. The range of the event, i.e., the area range where sensors can detect the event,

is R_event meters, where R_event ∈ [1, A]. We also suppose that an event has a duration of

T_event seconds. In addition, only sensor nodes within R_event range are considered as active

nodes in the network and they are the only nodes performing as the source of the detected

event. The rest of the nodes in the system are not considered in our analysis as they do not

participate in data reporting. Additionally, in our model, only one event can be active inside

the system area and the data value C at the center of the event is constant, i.e., the stationary

model in which the measured data do not change during the T_event seconds that the event

is active.

Sink

Event region e

Event range R_event

inactive node active node

Figure 1. Event-driven application in WSNs.

A cluster-based WSN is considered where only one CH is elected for each event. The

clustering process is triggered whenever an event is sensed by the nodes inside the event

area.

The spatial correlation of the data from the different active nodes has been modeled on

previous works in the area according to the following models:

211Performance Analysis of a Compression Scheme for Highly Dense Cluster-Based Wireless Sensor Network
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1. Diffusion propriety [22].

2. Data is jointly Gaussian, with the correlation being a function of the distance [23].

3. Data is a function for their joint entropy [24].

4. Correlation is calculated from realistic environmental monitoring and testbeds [25].

In this chapter, we use diffusion property to model spatially-correlated data [26]. The model

considered in this chapter is the same as in [22] in which the data reading at a distance d

from the center of the event is D = C/(d + 1)α, where C is a constant representing the value

at the center of the event, and α is the diffusion parameter, which depends on the particular

environment and phenomenon surveyed, e.g., for light α = 2, heat = α ≃ 1.

Figure 2 shows the data reading using the aforementioned model, with different values for α,

and C = 250. On one hand, when α ≥ 1, we observe a relatively big difference between the

value sensed at the center of the event and the values observed at distance d far away from the

center of the event. On the other hand, when α < 1 (α = 0.1, 0.01 and 0.001), the data readings

away from the center of the event are very similar. In our study, we are interested, specifically,

in the types of event where data values are highly correlated.
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Figure 2. Variation in data reading with distance from the center of the event.

We use Henizelman’s energy consumption model [27]. Specifically, the energy consumed to

transmit a message at a distance d is given by

Etx(sz, d) =

{

sz × Eelec + sz × E f s × d2, if d ≤ d0.

sz × Eelec + sz × Emp × d4, otherwise.
(1)

where sz is the data packet size in bits, Eelec is the energy consumed due to the

transmitter/receiver circuitry, Emp is the energy consumed by the transmitter amplifier and

d0 =
√

E f s/Emp is the distance threshold between the transmitter and the receiver over which

the multi-path fading channel model is used. The energy consumed to receive a message is

Erx(sz) = sz × Eelec.
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3.1. Classical clustering protocol

A classical clustering process is composed of two phases: the set-up phase and the steady-state

phase, as depicted in Figure 3. When an event occurs in a random (uniformly-distributed)

point of the network, nodes inside the event area wake up and start the clustering process.

At the beginning of this phase, active nodes compete among each other to become a CH.

Specifically, active nodes transmit their control packet to the sink node according to the

specified random medium access protocol. In this chapter, CSMA control protocol is used,

which is the default MAC protocol for the Mica platform. The control packet only comprises

the node’s ID and no data is transmitted at this point. The first node that successfully transmits

this packet becomes the CH. All nodes involved in event-reporting immediately send their

signaling message to the sink node. Therefore, the sink node selects the first node that

successfully transmits a signaling message and then it broadcasts a signaling message over

the network for a CH notification. Thus, the rest of the nodes become CMs. In the steady

phase, CMs send their data in a scheduled fashion using a Time Division Multiple Access

(TDMA) protocol. Note that the CH assigns slots to its CMs to accomplish the successful data

transmission. Then, the CH aggregates the data values received from its CMs with its own,

and sends the resulting data to the sink node.

3.2. Proposed compression clustering protocol

The proposed clustering Compression Cluster-based scheme in Spatially-Correlated Regions

(CC_SCR), process is also composed of the same two phases, namely: the set-up phase and

the steady-state phase. As in classical protocol, the set-up phase happens whenever an event

occurs in a region of the network. However, in CC_SCR, the active nodes send their first

measured data value to the sink node, i.e., they no longer send just their control packet.

Instead, active nodes send a data packet. The reason for this is that this sensed data is used in

CH selection procedure. Indeed, this entails an extra energy consumption at the set-up phase,
compared to classical protocol. However, this first data transmission allows important energy

savings in the steady-state phase.

It is important to note that CC_SCR is best suited for environments where event conditions

are fairly stable during of the duration of the event. This is due to the fact that the CH is

chosen according to the first sensed data. Hence, if event conditions suffer a high variation,

the originally-selected CH may no longer render acceptable energy savings. An example of

such an application is a fire surveillance forest, in which, when a fire occurs in a region, the

temperature remains stationary for the duration of the fire in the region. Another example

includes target-tracking. In this kind of application, the target is the source of the measured

data at sensor nodes, such as light or temperature. Here, the measured data remains the

same whenever the target stays in the same place and hence the sensor nodes sense the

same measured data during the presence of the target. Next, we describe the set-up and

the steady-state phases of the proposed algorithm.

• In the set-up phase, after receiving the first data packets from all the active nodes, the

sink node calculates the difference between the data from node ni and those from node nj,

i �= j. Next, these differences are summed over. We call this sum of the difference between

data values Si. Then, the sink selects as CH the node which minimizes the total difference,

213Performance Analysis of a Compression Scheme for Highly Dense Cluster-Based Wireless Sensor Network
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calculated value Si, between each node ni and node nj, i �= j. Finally, the sink broadcasts a

control message to the active nodes in order to notify the node selected as CH. Therefore,

the rest of the nodes consider themselves as CMs. Note that there is no need for the CMs

to send any extra packets since the sink already knows which nodes are active.

• In the steady-state phase, the CMs send the difference between their sensed data and the

CH’s data value, which corresponds to a compressed value, called ∆i, rather than the

complete data packet, value_CMi. Therefore, ∆i = |value_CMi − value_CH| represents

the difference between the i-th CM’s data value value_CMi, and the corresponding CH

data value value_CH. In order to perform this compression, the CH sends its complete

sample data value to the CMs at the beginning of each event occurrence. Therefore, CMs

send only the ∆i to the CH. The main advantage of the proposed scheme is that the Si

calculation is made at the sink node, which is not energy or memory-constrained.

set up 

phase steady phase

The duration of the event T_event

set up 

phase steady phase

The duration of the event T_event

Time

CH report

CM report

time of the event occurence

Figure 3. System operation.

3.2.1. Example

To illustrate the protocol’s operation, let us consider the following example as presented in

Figure 4(a) (Figure 4(b) shows the case of a classical scheme). We consider five active nodes

n1, n2, n3, n4 and n5 in the event region e which covers a region of range R_event as in Figure 1.

In this example, we consider temperature as the sensed measurement value. Nodes n1, n2, n3,

n4 and n5 sense the value of 20◦ , 22◦ , 19◦, 20◦ and 15◦ , respectively, and they send the values

to the sink. When the sink receives the data values, it calculates the Si value for each node ni.

The node which has the smallest Si is considered as the CH.

The following calculation is done at the sink. For node n1:

|20 − 22| = 2

|20 − 19| = 1

|20 − 20| = 0

|20 − 15| = 5

The sink node calculates S1 = |20 − 22|+ |20 − 19|+ |20 − 20|+ |20 − 15| = 8

For node n2:

|22 − 20| = 2

|22 − 19| = 3

|22 − 20| = 2

|22 − 15| = 7

The sink node calculates S2 = |22 − 20|+ |22 − 19|+ |22 − 20|+ |22 − 15| = 14

214 Wireless Sensor Networks – Technology and Applications
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1
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(a) Proposed protocol.

1
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5
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event 
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22°
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15°

22°

(b) Classical protocol.

Figure 4. Example of the system operation.

For node n3:

|19 − 20| = 1

|19 − 22| = 3

|19 − 20| = 1

|19 − 15| = 4

The sink node calculates S3 = |19 − 20|+ |19 − 22|+ |19 − 20|+ |19 − 15| = 9

The calculation for node n4 is the same as node n1.

For node n5:

|15 − 20| = 5

|15 − 22| = 7

|15 − 19| = 4

|15 − 20| = 5

The sink calculates S5 = |15 − 20|+ |15 − 22|+ |15 − 19|+ |15 − 20| = 21.

Finally, it selects either node n4 or node n1 as a CH. Both nodes minimize the total difference

value measured. The other nodes become CMs. During the steady phase, CM nodes send

their ∆i value to the CH rather than their complete value. In this example, n3 sends the sample

value of 2 rather than the complete sample value of 22. Note that the compression data sent

in our scheme involves sending less coded bits compared to a complete data that is sent in

the classical scheme. Therefore, considerable energy saving is achieved in our scheme, as can

be seen in Sections 4 and 5. Note that this election algorithm can be achieved at nodes in a

distributed manner. Distributed scheme here means that nodes first exchange data and then

the calculations specified at the sink node will run at the level of individual nodes. However,

215Performance Analysis of a Compression Scheme for Highly Dense Cluster-Based Wireless Sensor Network
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in this scheme nodes will receive a considerable amount of data, which may complicate the

election process as nodes have a limited local memory.

4. Analytical results

In this section, the mathematical model of classical, single hop and CC_SCR protocols are

described. The total energy consumed in the network, Etotal, for the duration of an event, can

be calculated as follows:
Etotal = Ecompeting + Ereporting (2)

where Ecompeting is the energy consumed during the cluster formation phase and Ereporting is

the energy consumed during the steady-state phase. We calculate in the following E[Etotal] as

the expected energy consumed through the network for a single hop protocol and for both the

classical and CC_SCR protocols.

E[Etotal] = E[Ecompeting] + E[Ereporting] (3)

4.1. Classical protocol

For classical protocol, where no data compression is enabled, we first calculate E[Ecompeting].
The energy consumed in the cluster formation phase is due to the signaling packet

transmission of the active nodes in the event area directly to the sink plus the reception of

the signaling packet from the sink to the active nodes, then:

E[Ecompeting] = m × [Etx(S, Rt) + Erx(S)] (4)

where m = NπR_event2/A2 is the expected number of active nodes in the range R_event

when the disk is totally included in the area A × A and N is the total number of nodes in the

network. S = 24 bits is the size of signaling message, and

• m × Etx(S, Rt) is the energy consumed to send m competing messages to the sink.

• m × Erx(S) is the energy consumed by the resulting competing messages sent from the

sink through the network.

E[Ereporting] =Nbr × [Etx(S, Rc) + (m − 1)× Erx(S) + (m − 1)× Etx( f ixe, Rc)

+ (m − 1)× Erx( f ixe) + EDA × f ixe + Etx( f ixe, Rt)]
(5)

where f ixe bits is the size of the full data packet, Nbr is the number of packets sent during the

steady phase, and

• Etx(S, Rc) is the energy consumed from a signaling message sent by the CH to its CMs in

order to send their data.

• (m − 1)× Erx(S) is the energy consumed by CMs to receive the signaling message.

• (m − 1)× Etx( f ixe, Rc) is the energy consumed by CMs to send data to the CH.

• (m − 1)× Erx( f ixe) is the energy consumed by the CH to receive data sent by the CMs.

216 Wireless Sensor Networks – Technology and Applications
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• EDA × f ixe is the energy consumed by the CH due to data aggregation.

• Etx( f ixe, Rt) is the energy consumed by the CH to send the aggregated data to the sink.

In the simulation, we take f ixe = 32 and Nbr = 29.

4.2. Single hop protocol

In the single hop protocol, there is no energy consumed during the set-up phase. Nodes start

sending data packets directly to the sink, then:

E[Etotal] = Nbr × m × Etx( f ixe, Rt) (6)

where

• Nbr is the number of reports sent to the sink during T_event sec.

• m is the number of nodes involved in data reporting.

• Etx( f ixe, Rt) is the energy required to send a full data packet to the sink.

The interest of analyzing this case is to have an insight into the benefits of clustering schemes

in event-driven WSNs.

4.3. CC_SCR

We now consider the case where the CC_SCR strategy is enabled. It is to be noted that the

proposed scheme, CC_SCR, behaves in the same manner in the cluster formation phase as

classical protocol, with the important difference being that nodes transmit the data packet

instead of the signaling packet, then:

E[Ecompeting] = m × [Etx( f ixe, Rt) + Erx(S)] (7)

where

• m × Etx( f ixe, Rt) is the energy consumed to send m data packets to the sink.

• m × Erx(S) is the energy consumed by the resulting compete message sent from the sink

through the network.

In the steady-state phase, energy consumption is found as follows:

E[Ereporting] =Etx( f ixe, Rc) + (m − 1)× Erx( f ixe) + Nbr × [Etx(S, Rc)

+ (m − 1)× Erx(S) + (m − 1)× Etx(S + log2(E[∆i]), Rc)

+ (m − 1)× Erx(S + log2(E[∆i])) + f ixe × EDA + Etx( f ixe, Rt)]

(8)

where

• Etx( f ixe, Rc) is the energy consumed to send CH data packets to the CMs.

217Performance Analysis of a Compression Scheme for Highly Dense Cluster-Based Wireless Sensor Network
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• (m − 1)× Erx( f ixe) is the energy consumed by CMs in order to receive data sent by the

CH.

• Etx(S, Rc) is the energy consumed from a signaling message sent by the CH to its CMs in

order to send their data.

• (m− 1)× Erx(S) is the energy consumed by CMs in order to receive the signaling message.

• (m − 1) × Etx(S + log2(E[∆i]), Rc) is the energy consumed by the CMs to send the

compressed data to the CH.

• (m − 1) × Erx(S + log2(E[∆i])) is the energy consumed by the CH to receive the

compressed data from the CMs.

• EDA × f ixe is the energy consumed by the CH due to data aggregation.

• Etx( f ixe, Rt) is the energy consumed by the CH to send the aggregated data to the sink.

where E[∆i] is the average data packet size which corresponds to the difference between the

CMs’ data and the CH’s data. It is worth noting that when considering an uniform node

distribution with a large N, the node that minimizes the distance in the R_event region will be

located at the center of R_event. Therefore, to calculate E[∆i], let us first calculate the average
distance between active nodes and the CH, E[dtoCH]. We denote by D the disk of radius

R_event, i.e. D = {(x, y) | x2 + y2 ≤ R_event2}. Since active nodes are uniformly distributed

in D, we have

E[dtoCH] =
∫ ∫

D

√

x2 + y2dxdy =
1

πR_event2

∫ r=R_event

r=0

∫ 2π

0
r2drdθ =

2R_event

3
. (9)

We then calculate E[∆i], the average data difference between the data at the CM and the

maximum value at the CH C, considering that the CH is located at the center of the cluster.

Indeed, in a highly dense WSN, such the one considered in this work, it is reasonable to

consider that the CH is located at the center of the cluster, i.e., very close to the event origin.

E[∆i] = |C −
C

(E[dtoCH] + 1)α
| = C × |(1 −

1

( 2R_event
3 + 1)α

)| (10)

Note that the previous model is an approximation of reality, in which an ideal channel is

considered, i.e., there is no consideration of packet loss. According to the previous models,

Figure 5(a) and 5(b) show the average energy consumed in the network of N = 1000 for

different values of Rt and Rc, respectively.

In Figure 5(a), we set Rc = 100 m and Nbr = 29, and in Figure 5(b), we set Rt = 150 m,

Nbr = 29. These results show that the CC_SCR strategy is suitable when Rt is less than

around 180 meters and Rc is greater than around 50 meters.

Exceeding these thresholds makes the competing process of the proposed protocol very costly

in energy due to the full data packet sent to the sink during the set-up phase. Remember

that classical protocol only transmits a control packet in this phase. Therefore, CC_SCR

has the highest energy consumption when the distance from the cluster to the sink becomes

considerable.
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In addition, Figure 5(a) demonstrates that the single hop scheme achieves the greatest energy

consumption as 1) its transmissions depend directly on Rt, and 2) it sends the full data packets.

Figure 5(b) shows a steady energy consumption for the single hop scheme as it does not use a

CH to shorten its transmission range, therefore all nodes use a costly direct-transmission Rt ,
which dramatically decreases network lifetime.

Figure 5(c) shows the average energy consumed in the network when varying the Nbr

parameter. Here, Rt and Rc are set to 300m and 100m, respectively. The results show that

significative energy savings can be achieved when increasing the number of reports sent from

the CMs to the CH. Building on from these observations, in Figure 5(c) we observe that the

single hop scheme achieves the greatest energy consumption as its transmission depends

directly on Nbr.

The point of intersections, Rt_inter, Rc_inter, and Nbr_inter of Figure 5(a), 5(b) and 5(c),

respectively, are calculated as follows.

Rt_inter = 4

√

f ixe×(m×Eelec+Emp×R4
c )−Nbr×(m−1)×∆×[2×Eelec + Emp×R4

c ]−(S− f ixe)×Eelec

(S − f ixe)×Emp

(11)

Rc_inter=

√

m× f ixe×Eelec−m×(S− f ixe)×Eelec−m×(S− f ixe)×Emp×R4
c−2×Nbr×(m−1)×∆×Eelec

−f ixe×E f s+Nbr×(m−1)×∆×E f s

(12)

Nbr_inter =
−m×(S− f ixe)×Eelec − m×(S− f ixe)×Emp×R4

t + m× f ixe×Eelec + f ixe×Emp×R4
c

2×(m − 1)×∆×Eelec + ∆×Emp×R4
c

(13)

where ∆ = f ixe − S − log2 E[∆i].

We conclude from Figure 5(a), 5(b) and 5(c) that 1) using a clustering scheme saves more

energy than a single hop scheme, and 2) the application depends on Rt (referring to how far

the sink node is from the area-sensed field), Rc (referring to the size of the area field), and

Nbr (referring to the number of data updating to the CH). More specifically, we conclude

that for a fixed Rc, the higher Rt results a poor performance of CC_SCR concerning energy

consumption. However, increasing Rc or Nbr gives CC_SCR a better performance compared

to the classical scheme. In addition, we conclude that both CC_SCR and the classical scheme

outperforms the single hop scheme.

In the following, we analyze the network lifetime. Based on [28], the general definition of the

average network lifetime, li f etime, can be expressed as follows:

li f etime =
E[E0_total]

E[Etotal]
(14)

where E[E0_total] = m × E0 is the average total residual energy in the area of R_event range,

E0 is the initial energy of a node and E[Etotal] is the average energy consumed per unit of time

(i.e., during T_event seconds).

Using the same parameter settings as in the energy consumption analysis described above,

Figure 6(a), Figure 6(b) and Figure 6(c) show network lifetime for different values of Rt ,
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Figure 5. Analytical results of the energy consumption.
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Rc and Nbr, respectively. From Figure 6(a), we observe that CC_SCR outperforms the

classical scheme when Rt is lower than around 180m. The result of the single hop scheme, in

Figure 6(a), shows that network lifetime decreases faster than in CC_SCR and in the classical

schemes (Figure 7(a) shows the ratio gain of network lifetime).

From Figure 6(b), we observe that the more increase of Rt, the less network lifetime gain in

CC_SCR, compared to the classical scheme. We also notice the steady network lifetime for

the single hop scheme, but with a shorter value than for both the proposed and the classical

schemes (Figure 7(b) shows the ratio gain of network lifetime).

From Figure 6(c), we observe that the higher the Nbr, the longer the network lifetime,

concerning the CC_SCR strategy compared to the classical scheme. We also observe that the

network lifetime decreases faster in the single hop scheme, than compared to both CC_SCR

and the classical schemes (Figure 7(c) shows the ratio gain of network lifetime).

5. Simulation results

We use TinyOS [8] as a simulation tool. The parameters used for this set of results are

presented in Table 1.

Parameter value

E f s 10pJ/bit/m2

Emp 0.0013nJ/bit/m4

Eelec 50nJ/bit

EDA 5nJ/bit

Signaling packet length S 24bit
Data value at the center of the event C 250◦

Initial energy per node E0 10J

T_event 200 seconds
R_event 60 m

Rc 100 m

Rt 400 m

Area A (100 × 100)m2

Table 1. Simulation Parameters.

Figure 8 shows the average energy consumed in the network per unit of time for different

concentrations of nodes. In this case, there are twenty simulated events. The results clearly

demonstrate that our proposal outperforms the classical scheme. It can be seen that, as the

number of nodes in the system increases, also the energy consumption increases. Indeed,

when there is a high number of nodes in the network, there is also a high number of nodes

that sense the event. Hence, the number of packet transmissions (both control and data

packets) is much higher than in the case where just a few nodes are active per event. The

main reason for the better performance of the proposed protocol is that only the difference,

∆i, is transmitted rather than the complete data packet, during the steady-state. Note that this

difference between classical and the proposed protocol increases concerning higher densities

networks. The rationale behind this is that, in high density networks, nodes are closer to each
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Figure 6. Analytical results of network lifetime.
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other, which in turn entails a higher correlation degree among the sensed data. This in turn

renders a smaller packet size. Conversely, in the classical scheme, since the packet size is fixed,

a higher density network only increases the number of packets transmitted, consuming a lot

of energy.
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Figure 8. Average energy consumed per unit of time vs number of nodes.

Figure 9 shows the average energy consumed over time for 60 nodes in the classical, CC_SCR

protocols, and also for one single hop to reach the sink. In order to explore the benefits of

clustering architecture, a scenario where all nodes transmit directly to the sink is presented.

For the proposed scheme, all active nodes transmit their initial packet to the sink in order to

choose the reference node (note that in this case there is no CH). Then, the sink selects the node

that minimizes the data difference, as explained in the previous section, and then transmits

a control packet indicating the ID of the reference node. Then, for data transmission, active

nodes only transmit their difference, ∆i, directly to the sink. The results demonstrate clearly

that CC_SCR conserves more energy compared to the classical scheme. Also, it is clear that

the choice of clustering scheme offers more energy savings than the single hop scheme. The

ratio gain presented in Figure 10 may reach up to 11 times more energy conservation than the

classical scheme, and up to 119 times more energy conservation than the single hop scheme,

which are considerable results.

Figure 11 shows the average energy consumed for different values of R_event region. When

R_event is varied, also the number of active nodes per event is modified accordingly. Figure 12

shows the number of active nodes per event. It can be seen that the average number of active

nodes for both the classical and proposed scheme is approximately the same. Indeed, the

proposed mechanism has no impact on the number of active nodes. Note that, by increasing

the number of active nodes, energy consumption also increases. Observe, for instance,

that energy consumption, when R_event = 30 meters, is less than the consumption when

R_event = 60 meters and 90 meters. In each scenario, we observe that, by enabling our

compression scheme, energy consumption over the network is reduced, therefore extending
network lifetime.
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Figure 11. Average energy consumed while varying the R_event region.

Figure 13 shows the average energy consumed for different values of T_event period.

Increasing T_event also increases the period of the steady-state phase and the number of data

reported, thereby it can be seen as an increase in the energy consumption. That explains why

the energy consumed by T_event = 200 seconds is less than that of T_event = 300 and 400

seconds. In each scenario, we observe that enabling our compression scheme reduces energy
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consumption over the network and thereby extends network lifetime. It is important to note

that the proposed mechanism is particularly energy-efficient for high-event duration times.

This is due to the fact that, as event duration increases, CMs in the classical scheme transmit

many full-length packets while, in the proposed scheme, CMs also transmit many packets

but with a much smaller length. This results in a slight increase in energy consumption for

the proposed scheme while for the classical scheme there is a significant increase in energy

consumption when the event duration increases.

Figure 13. Average energy consumption vs number of rounds of length T_event.

Figure 14 shows the average energy consumption in CC_SCR when the aggregation technique

is enabled at the CH, compared to the case where no aggregation is performed. The results

clearly show that the aggregation technique conserves more energy (Figure 15 shows the ratio

of the gain). The result is expected because when the CH aggregates the data of its CMs, the
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CH only transmits one single packet to the sink, unlike the case when no aggregation is used,

where the CH transmits each data value received from the CMs.
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6. Conclusion and future work

In this chapter, we have proposed a novel clustering scheme, namely, CC_SCR protocol,

which uses a compression technique for event-driven applications in WSNs. The proposed

clustering scheme is based on selecting the node that reduces the packet size among all

the active nodes in the system. The sink selects the node which minimizes the total

amount of data as a CH, therefore increasing the efficiency of the compression technique by

sending only the difference, rather than the complete data value, to the CH. To analyze the

performance of the proposed scheme compared to both single hop (i.e., direct transmission to
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the sink) and classical schemes, an approximate mathematical model for energy consumption

was developed. In addition, we implemented the CC_SCR in TinyOS, and for different

system parameters, simulation results conclude that, considering the spatial correlation in the

communication of WSNs, achieves significant energy conservation compared to a classical
clustering scheme. The ratio benefit may be up to 11 times that of the classical scheme.

As such, the proposed scheme greatly extends network lifetime. In future work, we aim to

investigate a generalization of the clustering scheme in order to consider a higher number

of events that can occur simultaneously in within the network, as it is the case in some

environment monitoring applications. These results can be verified and deployed in our

testbed. We also aim to include a mobility aspect to a certain number of nodes in the network,

and consider this propriety in the clustering process in order to achieve considerable energy

savings.
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