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1. Introduction  

Salmonella, and especially Salmonella enteritidis, are one of the major causes of human toxi-
infections (Humphrey, 1990), even if the trend is decreasing (European Food Safety 
Agency [EFSA], 2011). Many prophylactic means have thus been investigated to control 
the incidence of Salmonella in poultry flocks, including vaccination (Zhang-Barber et al., 
1999, Curtiss et al, 2010), competitive exclusion (Nurmi & Rantala, 1973), acidification of 
feed and genetic resistance. More precisely, animals’ ability to clear bacteria was 
considered. Indeed, the absence of clinical symptoms (which is the most classical 
definition of resistance) does not preclude human contamination since some animals may 
remain contaminated for weeks or even months without showing any symptoms. Such 
silent carriers cannot be identified as dangerous and may therefore enter the food chain. 
At the opposite spectrum, animals’ ability to clear bacteria will reduce the risk of 
transmission, first to other animals and second to humans. It will thereafter be denoted as 
resistance to carrier-state. 

The feasibility of selection for an improved resistance to asymptomatic carriers has been 

demonstrated by a divergent selection experiment (§2). Thanks to development of genomics, 

many results were obtained in the past 10 years: several genome regions controlling 

different traits were identified and the role of other genes was suggested. It will 

dramatically increase the efficiency of selection. With traditional selection, it is necessary to 

perform experimental inoculations and to slaughter animals to register the level of 

contamination. With marker-assisted selection and furthermore genomic selection, it will be 

possible to directly choose the future breeders. In addition to improved selection efficiency, 

it will discard the need for artificial infections.  
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However, even if numerous data are currently available, strategy for application of these 
results are still questionable: genetic relations between resistance traits are complex and the 
choice of selection criteria deserves more investigations. Therefore, the whole process, 
leading from fowl contamination to transmission to other animals or humans was described 
in an integrated approach, combining genetics and other means. First results showed 
possible synergy between resistance and at least one another mode of prevention, 
vaccination. Other studies are required to compare different combinations of prophylactic 
means and identify new strategies for eradication of Salmonellosis, in coherence with new 
regulation implemented by the European Commission. They aim at reducing Salmonella 
prevalence in poultry flocks at less than 2% while a recent study estimated it at 29.7 and 
23.7%, respectively, of laying and broiler flocks, respectively, with large differences between 
countries (EFSA, 2007a, 2007b) 

The goal of this chapter is to make a review of data currently available on the possibility of 
reduction of fowl carrier-state through genetic selection. It will enhance the benefits that 
may be obtained from an integrated approach of genetics of resistance in hens to improve 
the control of the incidence of Salmonella within a flock.  

2. Main results on genetics of resistance to Salmonella 

First studies were achieved very early (Lambert & Knox, 1928; DeVolt et al., 1941) at a time 
when many animals died from acute salmonellosis. They thus focussed on the reduction of 
mortality. No experimental inoculation was needed to observe diseased animals and 
experiments could be achieved directly on the field. Studies focussed on serotypes 
pathogenic for birds (Salmonella Pullorum, Salmonella Gallinarum and Salmonella 
Typhimurium). Later on, the incidence of those diseases dramatically reduced with the 
reinforcement of preventive measures in poultry breeding. The same held for studies of 
resistance to Salmonella. But, in the end of the 1980’s, many outbreaks of human toxi-
infections due to Salmonella Enteritidis occurred, resulting in new developments in genetics 
of resistance to Salmonella. As in former studies, feasibility of such an approach was 
considered through selection experiment; genetic parameters were estimated to appreciate 
the response that could be expected. However, with the beginnings of molecular genetics, 
the research of genes controlling these traits was also addressed.  

2.1 Development of protocols of measures and identification of genetic models 

One main feature of studies of genetic resistance to Salmonella is the very large number of 
resistance-related traits that were considered (see Calenge et al., (2010) for a review). They 
differ in many factors. Inoculation by the oral route is more representative of what occurs in 
the field but less reproducible than the intravenous or intramuscular route. According to the 
Salmonella serotype, carrier-state (mostly observed after inoculation with Salmonella 
Enteritidis) or acute disease (mostly observed after inoculation with Salmonella 
Typhimurium) will be studied, but to an extent also depending, among others, on the 
number of inoculated bacteria. The animal’s age at infection is a very important parameter. 
The interval between infection and observation will also be of importance, especially with 
reference to long-term carrier-state. Animals’ conditions of rearing also influence the 
outcome of the infection. The susceptibility of egg to Salmonella multiplication may also be 
considered as described by Sellier et al. (2007). 
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Many studies involve both the development of a protocol of measure of resistance and the 
identification, with this protocol, of lines differing in resistance. Identifying such 
genotypes is of great importance: their existence strongly suggests the role of genetics in 
the control of resistance-related traits that are measured. Genetic models for resistance or 
susceptibility are needed for research of genome regions controlling those traits. The first 
study was achieved by Bumstead & Barrow (1988). They considered resistance to acute 
disease due to Salmonella Typhimurium and observed difference between partially inbred 
lines that are especially interesting for QTL research. Other studies addressed carrier-state 
and focussed on Salmonella Enteritidis. Guillot et al., (1995) observed differences in 
response to inoculation of chickens with a high bacterial dose. To mimic carrier-state in 
chicks, Duchet-Suchaux et al., (1995) developed a protocol of experimental inoculation 
where animals were orally infected with a low dose, showed no symptom but remained 
infected for several weeks. They could thus identify genetic models for further research, 
both outbred (Duchet-Suchaux et al., 1997) and partially inbred lines (Tilquin et al., 2005). 
It is to notice that the former study focussed on the same lines as in Bumstead & Barrow, 
(1988). Other protocols of inoculation were developed to study persistence for a shorter 
term (Lamont et al., 2002; Kramer et al., 2003; Hasenstein & Lamont, 2007).  

Studies on resistance to carrier-state in adults were less numerous, in spite of importance of 
laying hens for the risk of human contamination. Protais et al., (1996) orally contaminated 
hens at the peak of lay and bacteria were searched in caeca, spleen, liver and ovary four 
weeks later. They observed differences between outbred poultry lines. Later on, Sadeyen et 
al., (2006) identified differences between inbred lines using the same protocol while Lindell 
et al., (1994) used a slightly different protocol. 

2.2 Response to selection 

The first selection experiment for resistance to salmonellosis after an experimental 
inoculation was undertaken in 1932; it proved to be efficient (Lambert, 1932). A higher 
resistance was observed for some breeds, among which White Leghorns (Robert and Card, 
quoted by Hutt & Scholes (1941)). But De Volt et al., (1941) showed that the former were less 
resistant than selected Rhode Island Red hens. This result and others contributed to the 
development of selection for a higher resistance (see Beaumont et al., 2003a, for a review). 

These results are coherent with the estimations of heritability of resistance to death (0.15 and 
0.12) obtained respectively by Beaumont et al., (1999) after intramuscular inoculation of day-
old chicks and by Janss & Bolder (2000) after inoculation at two weeks of age. It is to notice 
that, according to genetic parameters estimated by the latter, more resistant animals would 
survive longer, contributing to a higher risk for consumers if they were still carriers. This 
emphasizes the importance of an increase in genetic resistance to carrier-state. An experiment 
of divergent selection on this trait was achieved by Beaumont et al., (2009; 2010). The base 
population was issued from a layer-type line. Two series of divergent lines were selected, for 
increased or decreased resistance at a younger age (as in Duchet-Suchaux et al., 1995) or at the 
peak of lay (using the protocol described by Protais et al., 1996). In adults, selection was on an 
all-or-none trait called global contamination, coded “1” if at least one organ (i.e. spleen, liver, 
caeca or ovary) was found positive and “0” in the other cases. Resistance of chicks was 
assessed by the logarithm of the number of colonies forming units (c.f.u.) per gram of caeca 
measured 5 weeks after inoculation (i.e. contamination level). A total of 3817 animals were 
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thus measured (1408 adults and 2409 chicks). Clear and significant differences were observed 
in lines selected on adult performance, with difference in prevalence of about 20%. Selection 
may be efficient in reducing the level of Salmonella carrier-state in hens. Differences between 
the “chicken” lines were, at least until now, smaller. This may be due to lower heritability but 
also smaller selection pressure and family sizes, due to experimental constraints and to 
variations in responses to infections. Indeed, in two hatches out of eight, only a small 
proportion of animals were still contaminated by Salmonella at slaughter; others could not be 
measured for level of contamination, which also slowed down selection.  

Values of estimated genetic parameters were the main information from this experiment. 
Heritability of resistance was estimated at 0.16 in chicks while it varied from 0.14 to 0.23 
with analysed organ in adult hens. It was higher in caeca (0.23) while heritability of ovarian 
contamination was estimated at a lower value (0.11). Heritability of adult global 
contamination was found at 0.18.  

All genetic correlations between contamination rates of individual organs were positive, 
ranging from 0.46 to 0.67. Genetic correlations between adult global contamination and 
contamination in individual organs were very high (from 0.75 for liver to 0.85 for spleen and 
caeca), except for ovary (0.32). These results are related to the central role of intestine in 
carrier-state of gastro-intestinal bacteria: bacteria pass through it when inoculated or after 
recontamination; at the opposite, contamination of other organs is dependent on 
translocation of intestinal barrier. Contamination of ovaries is especially rare: in this 
experiment only 6% of them were found contaminated versus 49%, 21% and 62%, 
respectively, for spleens, livers and caeca, respectively (resulting in a percentage of 
contaminated adults equal to 76%). This low rate of ovarian infection further reduced the 
expected response to direct selection against ovarian contamination. An indirect selection on 
another criterion should be more efficient. This result and the positive values of genetic 
correlations between contamination rates of individual organs reinforce the interest of the 
overall adult contamination: it is more precisely assessed and combines several traits, all of 
which being positively correlated.  

All genetic correlations between carrier-state in chicks and production traits (egg numbers, 
egg weights and body weights at various ages) were small and positive (ranging from 0 to 
0.37) except for the number of eggs laid between 18 and 24 weeks of age, which was slightly 
but negatively correlated with Salmonella load (0.17). These results suggest that selection for 
increased resistance may be achieved without much detrimental effect on production traits. 
Unlike what was observed for resistance at a younger age, genetic correlation between adult 
carrier-state (global contamination) and egg numbers laid at the beginning of lay (between 
18 and 24 weeks of age) was positive. At the opposite, those with laying intensity at older 
ages were negative or very close to 0 (ranging between -0.33 and 0.01). Correlation with 
body weight at 17 weeks of age was close to 0. These differences in genetic correlations 
between production traits and resistance at a younger or an older age are consistent with the 
negative genetic correlation observed between chicken and adult resistance. 

The latter was estimated at a quite high and negative value (-0.50) and the probability of the 
true correlation being positive was estimated at only 5%. This major result holds whether 
overall contamination is considered or different organs distinguished and whatever the 
method of estimation. It is probably linked to differences in mechanisms of resistance 
between chicks, whose immune system is not mature, and hens, who may also benefit from 
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adaptive immune response. The variation with animals’ age in genetic control of adult and 
chicken resistance was suspected, because of differences in relative resistance of poultry 
lines to resistance to carrier-state at a younger (Duchet-Suchaux et al., 1997) or an older age 
(Protais et al., 1996). This result implies that most results obtained at a younger age are 
expected to be irrelevant in adults, if not of opposite sign. They may not be extrapolated to 
hens without experimental validation. Indeed, differences in expression of gallinacins 
observed by Sadeyen et al., (2004) and Sadeyen et al. (2006) were found to be associated, in 
young chicken, with increased susceptibility but, in adults, with resistance. Similar 
variations with age should also be the case of a large proportion of genes or genome regions 
found to be involved in resistance (for a review, see Calenge et al., 2010). This result also 
implies that increasing genetic resistance of hens should reduce resistance in chicks. This 
holds for marker-assisted or genomic selection. 

2.3 Towards identification of genes or genome regions involved in the control of 
resistance 

Though promising these results may seem, large-scale selection for increased resistance is 
very difficult to implement since experimental infections, which are both very expensive 
and time consuming, are required. Identifying the underlying genes of genetic markers 
could make it possible to alleviate the need of such experiments. 

The major drawback of such genomic studies is the numbers of both phenotypes and 
genotypes which are required. Studying crosses between inbred lines, following the pioneer 
studies of Bumstead & Barrow, (1988; 1993) is of great relevance, as it makes it possible to 
identify QTLs with much less animals than with crosses between outbred lines. Backcross 
(Mariani et al., 2001; Lamont et al., 2002; Fife et al., 2011), F2 cross ( Tilquin et al., 2005) or, 
more recently, advanced intercross lines (AIL) were considered (Hasenstein et al., 2007; 
Ghebremichael et al., 2008) .  

Candidate genes, i.e. genes chosen according to an a priori knowledge of their effect in 
Salmonella resistance were first investigated. That was in particular the case for two genes, 
SLC11A1 and TLR4, known to be involved in resistance to Salmonella in mouse. The first one 
corresponds to the formerly called Nramp1 (natural resistance-associated macrophage 
protein) gene. It is responsible for resistance of mice to inoculation with Salmonella 
Typhimurium, Mycobacterium bovis and Leishmania donovani (Vidal et al., 1993). Later, 
Nramp1 has been described as a member of a solute carrier family and hence renamed 
Slc11a1. It is involved in the control of the intracellular replication of parasites in 
phagosomes. An homologue of Nramp1 was mapped on the chicken chromosome 7 (Hu et 
al., 1995; Girard-Santosuosso, 1997) and subsequently cloned (Hu et al., 1996).  

The second candidate gene, TLR4 (Toll-like receptor 4), previously named Lps, belongs to 
the large family of Toll-like receptors involved, among others, in the recognition of LPS 
(lipo-polysaccharides), a component specific of Gram negative bacteria (among which 
Salmonella). Its mutation results in a lack of response to LPS and a higher susceptibility to 
Gram negative bacteria. The positional cloning of Lps led to the identification of TLR4 as a 
positional candidate. It was mapped to the chicken micro-chromosome 17 and cloned 
(Leveque et al., 2003). 

Hu et al., (1997) observed that both genes explained together up to 33% of the difference in 
survival of young chicks during the first week after an intra-muscular inoculation at one day 
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of age with Salmonella Typhimurium. This difference was smaller when survival during the 
whole experiment was considered. The effect of the NRAMP1 gene was shown in many 
other experiments: in early stages of systemic Salmonella infection in meat-type chicks 
(Kramer et al., 2003) and layer-type hens (Lamont et al., 2002; Liu et al., 2002) or in spleen 
infection after intravenous inoculation of pullets (Girard-Santossuoso et al. 2002) or hens 
(Beaumont et al., 2003b). It is interesting to note that Caron et al., (2002) showed that the 
NRAMP1 allele coding for a better resistance of mice to an early and acute infection was 
also responsible for a higher excretion rate in later stages. This result has not yet been 
investigated in fowls. If it held, it could imply that selecting for the NRAMP1 allele coding 
for higher resistance to disease would result in a more intense excretion of Salmonella in the 
environment and thus quicker and more important transmission between animals. At the 
opposite, only the study of Beaumont et al (2003b) suspected a role of the TLR4 gene. Other 
candidate genes involved in the immune response were investigated using either 
polymorphisms within the gene or genetic markers (for a review, see Calenge et al (2010).  

Searching for Quantitative Trait Loci (QTLs) is another way to identify genome regions 
involved in resistance. It is based on a systematic research of effects, on resistance, of 
anonymous genetic markers, chosen to cover as regularly as possible the whole genome. A 
first genome scan was achieved by Mariani et al., (2001) on resistance to disease due to 
Salmonella typhimurium. A major QTL controlling spleen bacterial load was identified on 
chromosome 5 and named SAL1. A 6th generation backcross allowed confirming and 
refining the QTL (Fife et al., 2009). It also suggested two very promising functional 
candidate genes, which should lead to the identification of the gene(s) underlying the QTL. 
Tilquin et al., (2005) identified QTL for resistance to both disease and carrier-state. One 
genome-wise significant QTL and five chromosome-wise significant QTL were observed on 
chromosomes 2, 1, 5, 11 and 16, respectively. This genome scan used selective genotyping 
(i.e. genotyping of only a subset of animals, chosen as particularly informative, because of 
extreme phenotypic values); two of those QTLs (on chromosomes 2 and 16) were confirmed 
after targeted genotyping of all animals (Calenge et al., 2009) while the QTLs on 
chromosomes 1 and 16 were also observed in the lines issued from the experiment of 
divergent selection on resistance to carrier-state described by Beaumont et al., (2010) 
(Calenge et al., 2009). More recently, the development of a new generation of genetic 
markers, Single Nucleotide Polymorphisms (SNP) allowed a denser coverage of the genome 
and the identification of new QTLs (Calenge et al., 2011; Fife et al., 2011) one of which is 
close to the zone observed on chromosome 2 by  Fife et al. (2011). The results of all 
publications of QTL research are shown on Table 1. 

Functional genomics compares the levels of expression (i.e. of activity) of genes at the 
genome-wide level. It allows the identification of genes involved in the mechanisms of 
resistance and may also lead to the identification of the genes controlling resistance, 
provided that the mutations responsible for differences in resistance also result in variations 
in the levels of expression. Studies compared levels of expression before and after infection, 
on animals from the same genotypes, or between animals issued from resistant and 
susceptible poultry lines (for a review, see Calenge et al., 2010). Focussing on the expression 
of candidate immune genes allows a better understanding of their role (as in Sadeyen et al., 
2004; Sadeyen et al., 2006; Swaggerty et al., 2006) in relation with the type of cells as shown 
by Chausse et al., (2011), when comparing results obtained on the whole caeca by Sadeyen 
et al. (2004) to observations obtained on sorted cells from this organ.  
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Chromosome 
Position

(in cM or Mb)
Reference 

1 
85, 207 cM

509 cM
Tilquin et al., 2005 
Calenge et al., 2011

2 
87 cM
20 Mb

Tilquin et al., 2005 
Fife et al., 2011

3 
123 cM
96 Mb

Calenge et al., 2011
Fife et al., 2011

4 158, 242 cM Calenge et al., 2011

5 
157 cM

100, 111 cM 
38 cM

Mariani et al., 2001 
Tilquin et al., 2005 
Calenge et al., 2011

6 8 cM Calenge et al., 2011
9 68 cM Calenge et al., 2011

11 
18 cM
63 cM

Tilquin et al., 2005 
Calenge et al., 2011

12 15 Mb Fife et al., 2011
14 72, 74, 80 cM Calenge et al., 2011
16 2 cM Tilquin et al., 2005
18 12, 14 cM Calenge et al., 2011
22 29 cM Calenge et al., 2011
24 41 cM Calenge et al., 2011
25 1 Mb cM Fife et al., 2011
27 37, 54, 68 cM Calenge et al., 2011

Table 1. Position of QTLs for resistance to Salmonella in chicken already published. 

2.4 Potential efficiency of marker assisted or genomic selection 

Using results currently available makes it possible to use marker-assisted selection. A first 
experiment of SNP-assisted selection was achieved by Legarra et al., (2011). A total of 600 
animals were genotyped for 831 SNP; these markers explained a large proportion of genetic 
variance, even if no reduction in residual variance could be observed. This drawback will no 
doubt be alleviated when a larger number of SNP will be considered, leading to genomic 
selection, i.e. marker-assisted selection based on genotypes assessed on a very large number 
of anonymous markers, most often SNP (Meuwissen et al., 2001). Genomic selection 
investigates the whole genome at least as far as the markers cover it. Even if no application 
of this procedure to selection of commercial fowls is known yet, that should be the case in 
the near future. That should especially hold for traits whose measure is expensive and 
heritability low, as resistance related traits. It should also make it possible to select for 
several resistance related traits, even if genetic correlations are negative. 

However, even with genomic selection, the choice of selection criteria remains a main issue. 
Whatever the method, it is not possible to consider the numerous resistance-related traits 
that might be measured using the different protocols of experimental infection described in 
subsection 2.1. It is necessary to find out the most important ones. Modelling will no doubt 
be of great interest for such studies. It will consider current knowledge on genetic resistance 
and other prophylactic means and investigate what may be expected from different 
methods of selection and prevention as well as from their combination.  
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3. Mathematical modelling: A way to integrate genetic results for a better 
understanding of Salmonella propagation within a flock of hens 

A few models have already been proposed to study Salmonella spread within hens (Leslie, 
1996, Thomas et al., 2009; Prévost et al., 2006; Zongo et al, 2010a). In two models (Leslie, 
1996; Thomas et al., 2009), the transmission of the Salmonella is determined by direct contact 
between animals and the density of bacteria in environment neglected. Prévost et al. (2006, 
2007, 2008) and Zongo et al. (2010a) took into account the effect of the bacterial load of the 
environment. Variability in animal genetic resistance was introduced by Prévost et al, 
(2008). They distinguished two subpopulations of hens, with a lower or higher resistance to 
Salmonella carrier-state, as the model is a deterministic compartmental model (i.e. the 
population is divided into categories). In Zongo et al (2010a), individuals are represented, 
which makes it possible to model the contamination of each hen and to assume them to have 
varying degrees of resistance. In particular, effects of animal’s capacity of defense on the 
evolution of the individual bacterial load were considered. Since the model is stochastic, the 
impact of this variability on propagation within the flock can be investigated. 

3.1 Model at the population level  

Classically, for a large population (as a flock), compartmental deterministic models are 
defined and the numbers of animals in each category are modelled. Prévost et al., (2006) 
developed such a model. These authors considered four categories of hens. Naïve (also 
called susceptible) birds have no protection against Salmonella: they are at risk of becoming 
infected. For hens’ contamination, three steps were distinguished. The first is digestive 
contamination, when the bacteria are located in the digestive tract. Systemic infection occurs 
after translocation of bacteria through the digestive barrier; it results in contamination of 
systemic organs, such as liver or spleen, and sometimes also in egg contamination. 
Afterwards, bacterial clearance leads to recovery (see figure 1).  

First contamination depends on the environmental bacterial load. Indeed, propagation of the 
infection may occur through aerosols from one contaminated animal to another animal, 
especially when they are reared in the same cage, or indirectly because of environmental 
contamination, mainly through water and feed. It is to note that this model neglected vertical 
transmission though transovarian route (Humphrey et al., 1989). Once contaminated at the 
digestive level, animals will become infected to a systemic level then get immunised. Thus, the 
rates of transition to the systemic level and, afterwards, the recovered status are constant. 

Numerical analyses give hints for developing control measures as they highlight the influence 
of factors contributing to the variation of egg contamination and thus to the risk of human 
contamination. The recovery rate, representing the ability of hens to eliminate Salmonella, 
influences both maximal prevalence and duration of the epizooty. The rate of return to the 
susceptible state, i.e. the loss of protective immunity, is also of major importance. These results 
could be related to biological mechanisms. The mechanisms explaining the response to 
selection for a lower or higher contamination level were not the same. Selection on higher 
resistance had mostly modified the hen’s clearance ability while a higher rate of return to the 
susceptible state was responsible for the higher level of contamination of the other line, which 
had a shorter immune protection time. This is coherent with results on immune response of 
lines differing (among other resistance traits) in resistance to carrier state, whether inbred 
(Sadeyen et al., 2006), or outbred (Proux et al., 2002; Protais et al., 2003).  
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Fig. 1. Diagrammatic representation of the evolution of health status for an individual at a 
given time t: individual may be susceptible (S), infected at the digestive level (ID) or at the 
systemic level (IS) or recovered (R). βE and βI are the rates of excretion of infected animals at 
the digestive or systemic levels. They contribute to the increase in the number of bacteria in 
the environment. The rate of transition (k C(t)) from the susceptible (S) to the infected at the 
digestive level (ID) status depends on the number of bacteria in the environment (C(t)). 
Parameters γ, η and μ, respectively, are the rates of transition from one status to another (i.e. 
from infected at the digestive (ID) to infected at the systemic level (IS), from infected at the 
systemic level IS to recovered (R) and from recovered to susceptible (S), respectively). 

The effect of the introduction of a proportion of more resistant animals among the 
population was investigated. It reduces the peak of infection (i.e. the maximal percentage of 
infected animals), because the more resistant animals excrete less bacteria in the 
environment, reducing cross contamination. But it also delays the extinction of the epizooty 
as a higher proportion of animals are still naïve and infected later. Increasing genetic 
resistance to a greater extent but in a proportion of the population or increasing it to a lesser 
extent but in all animals will lead to different results. Inversely, results of genotype 
comparisons will not be the same when animals with different degrees of bacterial clearance 
are reared together or not. This point should be further studied in practice.  

The effect of vaccination on flocks with different levels of genetic ability to clear bacteria 
was also investigated. The vaccine was more efficient in more resistant animals, in relation 
with the differences in the persistence of immunity. These differences are coherent with 
observations made by Protais et al. (2003). It is important to note that the combination of 
vaccination and genetic selection resulted in a percentage of contamination similar to what 
the European community is asking for. 

3.2 Taking into account the variability at the animal level  

A stochastic individual-based model was developed for a finer modelling of the variability 
of hen’s response to contamination (Zongo et al., 2010a). Such models are largely used in 
ecology (Grimm et al., 2006) and were already used to model the growth and migration of 
Salmonella enteritidis in hens’ eggs (Grijspeerdt et al., 2005). The model extends the model 
previously derived by Prévost et al. (2006).  
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The variation over time (that is the derivative) of the individual bacterial load B(,x) was 
modelled as resulting from bacterial multiplication within the individual (i.e. growth rate), 
and from contamination by environmental bacteria. The latter was dependant on the 
number of bacteria present in the neighbourhood of the individual, that is the density of 
bacteria. It is to note that such a more precise modelling could also be derived using a 
deterministic approach as follows: 

 ( , ) / ( , )) ( , )P

Variation within individual Growth rate Inhaled or ingested
within environment

B x B x I t x          

Equation 1: Derivative, according to time, of individual bacterial load (B(t,x) at time t and 
position x is equal to the sum of growth rate, g, of B(t,x) and of contamination through 
ingestion or inhalation of bacteria present in in the neighbourhood, that is Ip(C(t,x)). This 
derivative is computed at each time step and position. 

Contrary to Prévost et al. (2008), two steps in digestive contamination were distinguished 
(Figure 2): a transient contamination and a long term one. When in the transient status, 
animals may overcome the contamination and get rid of the bacteria, provided that their 
bacterial load (thereafter denoted B) remains lower than a threshold D. Once the hen is 
contaminated at a bacteria load higher than D, its capacities of defence are overwhelmed 
and it will become systematically infected.  

 

Fig. 2. Diagrammatic representation of the evolution of health status for an individual at time t 
and position x and its interaction with the level of environmental contamination at this 
position, C(t,x). The individual may be susceptible (S0), infected at the digestive level with a 
low dose of contamination (ID-), suffering from a long term digestive contamination (ID+), 
contaminated at the systemic level (IS) or recovered (R). The number of bacteria carried by an 
individual in the ID- status depends on the growth rate g of its bacterial load and of the 
quantity of ingested bacteria; the latter depends on the level of environmental contamination 
in the neighbourhood (Ip(t,x)). The individual bacterial load regulates transitions from S0 to ID- 

(reciprocally from ID- to S0) and from ID- to ID+. Parameters γ, η and μ, respectively, regulates 
durations of status ID+, IS and R, respectively. βD+ and βI are the rates of excretion of infected 
animals at respectively the transient digestive and systemic level.  
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Transitions from susceptible to digestive contamination status (both ID− and ID+) are 
regulated by the individual bacterial load, which is computed at each time step and for 
each animal. When it is greater than zero and lower that the individual threshold, D(x), 
individual status changes from S0 to ID-. The individual may go back in S0-state unless 
B(tn+1,x) becomes greater than D(x) and individual status changes from ID- to ID+. Other 
transitions are stochastic with average durations equal to 1/γ, 1/η(B1x) and 1/µ, 
respectively, for the transitions from ID+ -state to IS-state, IS- -state to R-state and from R 
state to S0 respectively.  

The threshold D(x) is assumed to vary from an animal to another as it depends on many 
factors: the bacterial strain (as can be seen for example from Bumstead and Barrow, 1993), 
gut flora (Nurmi & Rantala, 1973), animals’ genetic resistance (§ 1). This variability and 
the differences in initial contamination result in a variability in bacterial load as can be 
seen in Figure 3.  

 

   

 

Fig. 3. Evolution of individual bacterial load (B(t,x)) within an individual at the position x 

and time t according to the number of bacteria ingested by the animal and the threshold for 

animals’ ability to overcome the contamination (D(x)). M is the maximal bacterial load that 

an animal may carry (set here at 10 log10 c.f.u.). In (a), D(x) is set to the same value for each 

animal (5 log10 c.f.u.). Four initial doses are above the threshold, one equal to it and four 

doses below it. In (b), the thresholds D are random, leading to different thresholds for each 

animal so that, for the same initial dose (set here at 6log10 c.f.u.), there is individual 

variability in evolution of the bacteria load.  

The density of bacteria (C(t,x)) in the environment at time t and position x depends on the 

rate of diffusion of bacteria, on the natural rate of mortality of bacteria, λ, as well as on the 

density of bacteria excreted by infectious individuals close to position x.  

As the model is spatial, Zongo et al (2010a) show that the position of the first contamination 

influences both the kinetics of infection and the maximal percentages of infected animals 

(see figure 4).  
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Fig. 4. Influence of the position of the first infection on the evolution over time of the 
percentage of infected animals (at the digestive level, in a persistent way (ID+), or 
systematically (IS)), when (a) infection starts in the middle (row 4 out of 8) or (b) in the 
corner of the hen house (row 1 out of 8). Only median values of the sum of percentages of 
infected animal are represented. The color bars indicate the relation between color and 
percentage of infected animals. 

One investigation considered two levels of excretion, since it may vary between hens 
(Ishola, 2009). As can be seen on figure 5, both the propagation speed and the maximum 
level of infection are strongly influenced (Zongo et al, 2010b). But more studies are still 
needed to investigate this question.  

 

   
 

Fig. 5. Evolution of status of individuals (susceptible (S0), infected at the digestive level with 
a low dose of contamination (ID-), suffering from a long term digestive contamination (ID+), 
contaminated at the systemic level (IS) or recovered (R)), according to days after the first 
contamination, when (a) all individuals in the ID+ or I-state excrete (b) half of individuals at 
ID+-state or IS-state excrete. Median values obtained on 100 simulations are shown by solid 
lines curves, while the 5th and 95th percentiles are shown by dotted lines.  
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3.3 Perspectives 

First, the relative effects of animals’ capacity of bacterial clearance and level of excretion 
should be studied. Both have important effects and most probably interact with each other 
and with the animals’ capacities to overcome transient digestive contamination (threshold 
D). Since, in hen houses, bacterial doses are most often rather small, it will be important to 
study the effects of both average values and variability of these factors.  

Second, interactions between animals may be more precisely modelled. The model derived 
by Zongo et al. (2010a) assumes that all hens within a cage are contaminated at the same 
time and carry the same bacterial load. When the number of hens within cage becomes 
large, this major hypothesis does not totally hold. Moreover, new systems of rearing should 
be considered, such as aviaries, extensive rearing or enriched cages. They should be more 
and more frequent with the European commission banning of traditional cages after 2012. 
They no doubt interact with sanitary risks. Salmonella propagation should also be considered 
in flocks of younger animals.  

Rearing together animals with different profiles of resistance should also be considered. It is 
worth comparing whether it is more efficient to select one type of resistance (as for example 
capacity of bacterial clearance or low level of excretion) or several resistance-related traits. In 
particular, flocks composed of several lines selected on different resistance related traits or 
performance should be considered. At a longer term, such studies should integrate the links 
between immune capacities and performance, as investigated by Van der Most et al. (2010). 
Complementary studies should also consider egg yolk’s genetic ability to resist bacterial 
infection as evidenced by Sellier et al., (2007). 

4. Conclusion 

Selection for higher resistance to carrier-state may be  an efficient way to control Salmonella 
propagation within a flock. It might profitably be used as an additional mean of prevention of 
human food poisoning. The choice of the selection criteria must be considered carefully as it 
will have a strong influence on the results of selection. Other means of prevention must also be 
considered to choose the best strategy of prevention according to its impact on the level of 
animal contamination and then on the Salmonella propagation. Modelling will contribute to 
integrate genetic and experimental data at individual level to evaluate the propagation at the 
population level. It will allow the comparison of the impact of different scenarios on the 
propagation within a flock with, for example, different profiles of resistance or different 
prophylactic measures. Reversely, these studies will ask new questions and necessitate new 
experiments to confirm results or give values of some parameters. In particular, if the 
resistance and the propagation are different according to Salmonella strains, different models 
can be developed, providing there are sufficient data to define them. For other pathogenic 
agents, such as Campylobacter, integrated studies should also be envisaged. 
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