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1. Introduction

Partition-Matrix Theory and Generalized-Inverses are interesting topics explored in linear
algebra and matrix computation. Partition-Matrix Theory is associated with the problem of
properly partitioning a matrix into block matrices (i.e. an array of matrices), and is a matrix
computation tool widely employed in several scientific-technological application areas. For
instance, blockwise Toeplitz-based covariance matrices are used to model structural proper‐
ties for space-time multivariate adaptive processing in radar applications [1], Jacobian re‐
sponse matrices are partitioned into several block-matrix instances in order to enhance
medical images for Electrical-Impedance-Tomography [2], design of state-regulators and
partial-observers for non-controllable/non-observable linear continuous systems contem‐
plates matrix blocks for controllable/non-controllable and observable/non-observable eigen‐
values [3]. The Generalized-Inverse is a common and natural problem found in a vast of
applications. In control robotics, non-collocated partial linearization is applied to underactu‐
ated mechanical systems through inertia-decoupling regulators which employ a pseudoin‐
verse as part of a modified input control law [4]. At sliding-mode control structures, a Right-
Pseudoinverse is incorporated into a state-feedback control law in order to stabilize
electromechanical non-linear systems [5]. Under the topic of system identification, definition
of a Left-Pseudoinverse is present in auto-regressive moving-average models (ARMA) for
matching dynamical properties of unknown systems [6]. An interesting approach arises
whenever Partition-Matrix Theory and Generalized-Inverse are combined together yielding
attractive solutions for solving the problem of block matrix inversion [7-10]. Nevertheless,
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several assumptions and restrictions regarding numerical stability and structural properties
are considered for these alternatives. For example, an attractive pivot-free block matrix in‐
version algorithm is proposed in [7], which unfortunately exhibits an overhead in matrix
multiplications that are required in order to guarantee full-rank properties for particular
blocks within it. For circumventing the expense in rank deficiency, [8] offers block-matrix
completion strategies in order to find the Generalized-Inverse of any non-singular block ma‐
trix (irrespective of the singularity of their constituting sub-blocks). However, the existence
of intermediate matrix inverses and pseudoinverses throughout this algorithm still rely on
full-rank assumptions, as well as introducing more hardness to the problem. The proposals
exposed in [9-10] avoid completion strategies and contemplate all possible scenarios for
avoiding any rank deficiency among each matrix sub-block, yet demanding full-rank as‐
sumptions for each scenario. In this chapter, an iterative-recursive algorithm for computing
a Left-Pseudoinverse (LPI) of a MIMO channel matrix is developed by combining Partition-
Matrix Theory and Generalized-Inverse concepts. For this approach, no matrix-operations’
overhead nor any particular block matrix full-rank assumptions are needed because of
structural attributes of the MIMO channel matrix, which models dynamical properties of a
Rayleigh fading channel (RFC) within wireless MIMO communication systems.

The content of this work is outlined as follows. Section 2 provides a description of the
MIMO communication link, pointing out its principal physical effects and the mathematical
model considered for RFC-based environments. Section 3 defines formally the problem of
computing the Left-Pseudoinverse as the Generalized-Inverse for the MIMO channel matrix
applying Partition-Matrix Theory concepts. Section 4 presents linear algebra and matrix
computation concepts and tools needed for tracking a solution for the aforementioned prob‐
lem. Section 5 analyzes important properties of the MIMO channel matrix derived from a
Rayleigh fading channel scenario. Section 6 explains the proposed novel algorithm. Section 7
presents a brief analysis of VLSI (Very Large Scale of Integration) aspects towards imple‐
mentation of arithmetic operations presented in this algorithm. Section 8 concludes the
chapter. Due to the vast literature about MIMO systems, and to the best of the authors’
knowledge, this chapter provides a nice and strategic list of references in order to easily cor‐
relate essential concepts between matrix theory and MIMO systems. For instance, [11-16] de‐
scribe and analyze information and system aspects about MIMO communication systems, as
well as studying MIMO channel matrix behavior under RFC-based environments; [17-18]
contain all useful linear algebra and matrix computation theoretical concepts around the
mathematical background immersed in MIMO systems; [19-21] provide practical guidelines
and examples for MIMO channel matrix realizations comprising RFC scenarios; [22] treats
the formulation and development of the algorithm presented in this chapter; [23-27] detail a
splendid survey on architectural aspects for implementing several arithmetic operations.

2. MIMO systems

In the context of wireless communication systems, MIMO (Multiple-Input Multiple-Output)
is an extension of the classical SISO (Single-Input Single-Output) communication paradigm,
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where instead of having a communication link composed of a single transmitter-end and a
receiver-end element (or antenna), wireless MIMO communication systems (or just MIMO
systems) consist of an array of multiple elements at both the transmission and reception
parts [11-16,19-21]. Generally speaking, the MIMO communication link contains nT  trans‐
mitter-end and nR receiver-end antennas sending-and-receiving information through a wire‐
less channel. Extensive studies on MIMO systems and commercial devices already
employing them reveal that these communication systems offer promising results in terms
of: a) spectral efficiency and channel capacity enhancements (many user-end applications
supporting high-data rates at limited available bandwidth); b) improvements on Bit-Error-
Rate (BER) performance; and c) practical feasability already seen in several wireless commu‐
nication standards. The conceptualization of this paradigm is illustrated in figure 1, where
Tx is the transmitter-end, Rx the receiver-end, and Chx the channel.

Figure 1. The MIMO system: conceptualization for the MIMO communication paradigm.

Notice that information sent from the trasnmission part (Tx label on figure 1) will suffer
from several degradative and distorional effects inherent in the channel (Chx label on figure
1), forcing the reception part (Rx label on figure 1) to decode information properly. Informa‐
tion at Rx will suffer from degradations caused by time, frequency, and spatial characteris‐
tics of the MIMO communication link [11-12,14]. These issues are directly related to: i) the
presence of physical obstacles obstructing the Line-of-Sight (LOS) between Tx and Rx (exist‐
ance of non-LOS); ii) time delays between received and transmitted information signals due
to Tx and Rx dynamical properties (time-selectivity of Chx); iii) frequency distortion and in‐
terference among signal carriers through Chx (frequency-selectivity of Chx); iv) correlation
of information between receiver-end elements. Fading (or fading mutlipath) and noise are
the most common destructive phenomena that significantly affect information at Rx [11-16].
Fading is a combination of time-frequency replicas of the trasnmitted information as a con‐
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sequence of the MIMO system phenomena i)-iv) exposed before, whereas noise affects infor‐
mation at every receiver-end element under an additve or multiplicative way. As a
consequence, degradation of signal information rests mainly upon magnitude attenuation
and time-frequency shiftings. The simplest treatable MIMO communication link has a slow-
flat quasi-static fading channel (proper of a non-LOS indoor environment). For this type of
scenario, a well-known dynamical-stochastic model considers a Rayleigh fading channel
(RFC) [13,15-16,19-21], which gives a quantitative clue of how information has been degra‐
dated by means of Chx. Moreover, this type of channels allows to: a) distiguish among each
information block tranmitted from the nT  elements at every Chx realization (i.e. the time
during which the channel’s properties remain unvariant); and b) implement easily symbol
decoding tasks related to channel equalization (CE) techniques. Likewise, noise is common‐
ly assumed to have additive effects over Rx. Once again, all of these assumptions provide a
treatable information-decoding problem (refered as MIMO demodulation [12]), and the
mathematical model that suits the aforementioned MIMO communication link characteris‐
tics will be represented by

y = Hx + η (1)

where: x ∈ ℤ
j

nT ×1 ⊂ ℂnT ×1is a complex-valued nT − dimensional transmitted vector with en‐

tries drawn from a Gaussian-integer finite-lattice constellation (digital modulators, such as:

q-QAM, QPSK); y ∈ ℂnR×1is a complex-valued nR − dimensional received vector; η ∈ ℂnR×1is
a nR − dimensional independent-identically-distributed (idd) complex-circularly-symmetric

(ccs) Additive White Gaussian Noise (AWGN) vector; and H ∈ ℂnR×nT is the (nR × nT ) − di‐
mensional MIMO channel matrix whose entries model: a) the RFC-based environment be‐
havior according to a Gaussian probabilistic density function with zero-mean and 0.5-
variance statistics; and b) the time-invariant transfer function (which measures the
degradation of the signal information) between the i-th receiver-end and the j-th trasnmitter-
end antennas [11-16,19-21]. Figure 2 gives a representation of (1). As shown therein, the
MIMO communication link model stated in (1) can be also expressed as

y1

⋮
ynR

=

h 11 ⋯ h 1nT

⋮ ⋮
h nR1 ⋯ h nRnT

x1

⋮
xnT

+

η1

⋮
ηnR

(2)

Notice from (1-2) that an important requisite for CE purposes within RFC scenarios is that H
is provided somehow to the Rx. This MIMO system requirement is classically known as
Channel State Information (CSI) [11-16]. In the sequel of this work, symbol-decoding efforts
will consider the problem of finding x from y regarding CSI at the Rx part within a slow-flat
quasi-static RFC-based environment as modeled in (1-2). In simpler words, Rx must findx
from degradated informationythrough calculating an inversion overH . Moreover, nR ≥ nT is
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commonly assumed for MIMO demodulation tasks [13-14] because it guarantees linear in‐
dependency between row-entries of matrix H  in (2), yielding a nonhomogeneous overdeter‐
mined system of linear equations.

Figure 2. Representation for the MIMO communication link model according toy = Hx + η. Here, each dotted arrow
represents an entry h ij in H  which determines channel degradation between the j-th transmitter and the i-th receiver
elements. AWGN appears additively in each receiver-end antenna.

3. Problem definition

Recall for the moment the mathematical model provided in (1). Consider Φ rand Φ ito be the

real and imaginary parts of a complex-valued matrix (vector)Φ, that is,Φ = Φ r + jΦ i. Then,
Equation (1) can be expanded as follows:

y r + j y i = (H rx r − H ix i + η r) + j(H ix r + H rx i + η i) (3)

It can be noticed from Equation (3) that:x r, x i ∈ ℤnT ×1;y r, y i ∈ ℝnR×1;η r, η i ∈ ℝnR×1; and

H r, H i ∈ ℝnR×nT . An alternative representation for the MIMO communication link model in
(2) can be expressed as
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y r

y i =
H r − H i

H i H r

x r

x i +
η r

η i
(4)

where
y r

y i ≐ Y ∈ ℝ2nR×1, 
H r − H i

H i H r ≐ h ∈ ℝ2nR×2nT , 
x r

x i ≐ X ∈ ℤ2nT ×1, and

η r

η i ≐ N ∈ ℝ2nR×1. CSI is still needed for MIMO demodulation purposes involving (4).

Moreover, if Nr = 2nR andN t = 2nT , thenNr ≥ N t . Obviously, while seeking for a solution of
signal vector X from (4), the reception part Rx will provide also the solution for signal vector
x, and thus MIMO demodulation tasks will be fulfilled. This problem can be defined formal‐
ly into the following manner:

Definition 1. Given parameters Nr = 2nR ∈ ℤ+andN t = 2nT ∈ ℤ+, and a block-matrix

h ∈ ℝN r ×N t , there exists an operator Γ : (ℝN r ×1 × ℝN r ×N t) ↦ ℝN t ×1 which solves the matrix-
block equation Y=hX+N so thatΓ Y,h = X. ■

From Definition 1, the following affirmations hold: i) CSI over his a necessary condition as
an input argument for the operatorΓ; and ii) Γcan be naïvely defined as a Generalized-In‐
verse of the block-matrixh. In simpler terms,X=h†Y1 is associated with Γ Y,h  and

h† ∈ ℝN t ×N r  stands for the Generalized-Inverse of the block-matrixh, where h† = (hTh)−1hT

[17-18]. Clearly, � −1and � T represent the inverse and transpose matrix operations over real-
valued matrices. As a concluding remark, computing the Generalized-Inverse h† can be sep‐

arated into two operations: 1) a block-matrix inversion(hTh)−12; 2) a typical matrix

multiplication(hTh)−1 ⋅ hT. For these tasks, Partition-Matrix Theory will be employed in or‐
der to find a novel algorithm for computing a Generalized-Inverse related to (4).

4. Mathematical background

4.1. Partition-matrix theory

Partition-Matrix Theory embraces structures related to block matrices (or partition matrices:
an array of matrices) [17-18]. Furthermore, a block-matrix L  with (n + q) × (m + p) dimen‐
sion can be constructed (or partitioned) consistently according to matrix sub-blocksA, B, C ,
and D ofn × m,n × p , q × m, and q × p dimensions, respectively, yielding

1 In the context of MIMO systems, this matrix operation is commonly found in Babai estimators for symbol-decoding
purposes at the Rx part [12,13]. For the reader’s interest, refer to [11-16] for other MIMO demodulation techniques.
2 Notice that and .
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L =
A B
C D

(5)

An interesting operation to be performed for these structures given in (5) is the inversion,
i.e. a blockwise inversionL −1. For instance, let L ∈ ℝ(n+m)×(n+m) be a full-rank real-valued
block matrix (the subsequent treatment is also valid for complex-valued entities, i.e.
L ∈ ℂ(n+m)×(n+m)). An alternative partition can be performed withA ∈ ℝn×n, B ∈ ℝn×m,
C ∈ ℝm×n, andD ∈ ℝm×m. Assume also A and D to be full-rank matrices. Then,

L −1 =
(A − BD −1C)−1 − (A − BD −1C)−1BD −1

− (D − C A −1B)−1C A −1 (D − C A −1B)−1
(6)

This strategy (to be proved in the next part) requires additonally and mandatorily full-rank

over matrices A − BD −1C  andD − C A −1B. The simple case is defined for L =
a b
c d (indis‐

tinctly for ℝ2×2 orℂ2×2). Once again, assumingdet(L ) ≠ 0, a ≠ 0, and d ≠ 0(related to full-rank
restictions within block-matrixL ):

L −1 =
(a − bd −1c)−1 − (a − bd −1c)−1bd −1

− (d − ca −1b)−1ca −1 (d − ca −1b)−1 =
1

ad − bc
d − b
− c a ,

where evidently(ad − bc) ≠ 0,ℝℂ(n+m)×(n+m)(a − bd −1c) ≠ 0, and(d − ca −1b) ≠ 0.

4.2. Matrix Inversion Lemma

The Matrix Inversion Lemma is an indirect consequence of inverting non-singular block ma‐
trices [17-18], either real-valued or complex-valued, e.g., under certain restrictions3. Lemma
1 states this result.

Lemma 1. LetΨ ∈ ℝℂr×r ,Σ ∈ ℝℂr×s ,�∈ ℝℂs×s , and Ξ ∈ ℝℂs×r  be real-valued or complex-val‐

ued matrices. Assume these matrices to be non-singular:Ψ,� ,(Ψ + Σ�Ξ) , and(�−1 + ΞΨ −1Σ).
Then,

(Ψ + Σ�Ξ)−1 = Ψ −1 − Ψ −1Σ(�−1 + ΞΨ −1Σ)−1ΞΨ −1 (7)

Proof. The validation of (7) must satisfy

i. (Ψ + Σ�Ξ) ⋅ (Ψ −1 − Ψ −1Σ(�−1 + ΞΨ −1Σ)−1ΞΨ −1) = Ir (8)

3 Refer to [3,7-10,17,18] to review lemmata exposed for these issues and related results.
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(Ψ −1 − Ψ −1Σ(�−1 + ΞΨ −1Σ)−1ΞΨ −1) ⋅ (Ψ + Σ�Ξ) = Ir ., where Ir  represents the r × r  identity ma‐

trix. Notice the existance of matricesΨ −1, �−1, (Ψ + Σ�Ξ)−1and(�−1 + ΞΨ −1Σ)−1. Manipulating i)
shows:

(Ψ + Σ�Ξ) ⋅ (Ψ −1 − Ψ −1Σ(�−1 + ΞΨ −1Σ)−1ΞΨ −1)

= Ir − Σ(�−1 + ΞΨ −1Σ)−1ΞΨ −1 + Σ�ΞΨ −1 − Σ�ΞΨ −1Σ(�−1 + ΞΨ −1Σ)−1ΞΨ −1

= Ir + Σ�ΞΨ −1 − Σ�(�−1 + ΞΨ −1Σ)(�−1 + ΞΨ −1Σ)−1ΞΨ −1

= Ir + Σ�ΞΨ −1 − Σ�ΞΨ −1 = Ir .

Likewise for ii):

(Ψ −1 − Ψ −1Σ(�−1 + ΞΨ −1Σ)−1ΞΨ −1) ⋅ (Ψ + Σ�Ξ)

= Ir + Ψ −1Σ�Ξ − Ψ −1Σ(�−1 + ΞΨ −1Σ)−1Ξ − Ψ −1Σ(�−1 + ΞΨ −1Σ)−1ΞΨ −1Σ�Ξ

= Ir + Ψ −1Σ�Ξ − Ψ −1Σ(�−1 + ΞΨ −1Σ)−1(�−1 + ΞΨ −1Σ)�Ξ

= Ir + Ψ −1Σ�Ξ − Ψ −1Σ�Ξ = Ir .■

Now it is pertinent to demonstrate (6) with the aid of Lemma 1. It must be verified that both
L L −1 and L −1L  must be equal to the (n + m) × (n + m) identity block matrix

I(n+m) =
In 0n×m

0m×n Im
, with consistent-dimensional identity and zero sub-blocks:In,Im;0n×m,

0m×n, respectively. We start by calulating

L L −1 =
A B
C D

(A − BD −1C)−1 − (A − BD −1C)−1BD −1

− (D − C A −1B)−1C A −1 (D − C A −1B)−1
(9)

and

L −1L =
(A − BD −1C)−1 − (A − BD −1C)−1BD −1

− (D − C A −1B)−1C A −1 (D − C A −1B)−1
A B
C D

(10)

by applying (7) in Lemma 1 to both matrices (A − BD −1C)−1 ∈ ℝℂn×n and
(D − C A −1B)−1 ∈ ℝℂm×m, which are present in (8) and (9), and recalling full-rank conditions
not only over those matrices but also for A andD, yields the relations

(A − BD −1C)−1 = A −1 + A −1B(D − C A −1B)−1C A −1 (11)

Linear Algebra – Theorems and Applications8



(D − C A −1B)−1 = D −1 + D −1C(A − BD −1C)−1BD −1 (12)

Using (10-11) in (8-9), the following results arise:

a. for operations involved in sub-blocks ofL L −1:

A(A − BD −1C)−1 − B(D − C A −1B)−1C A −1

= A A −1 + A −1B(D − C A −1B)−1C A −1 − B(D − C A −1B)−1C A −1

= In + B(D − C A −1B)−1C A −1 − B(D − C A −1B)−1C A −1 = In

− A(A − BD −1C)−1BD −1 + B(D − C A −1B)−1

= − A A −1 + A −1B(D − C A −1B)−1C A −1 BD −1 + B(D − C A −1B)−1

= − BD −1 − B(D − C A −1B)−1C A −1BD −1 + B(D − C A −1B)−1

= − BD −1 − B(D − C A −1B)−1( − C A −1B + D)D −1 = 0n×m

C(A − BD −1C)−1 − D(D − C A −1B)−1C A −1

= C(A − BD −1C)−1 − D D −1 + D −1C(A − BD −1C)−1BD −1 C A −1

= C(A − BD −1C)−1 − C A −1 − C(A − BD −1C)−1BD −1C A −1

= C(A − BD −1C)−1 A − BD −1C A −1 − C A −1 = 0m×n;

− C(A − BD −1C)−1BD −1 + D(D − C A −1B)−1

= − C(A − BD −1C)−1BD −1 + D D −1 + D −1C(A − BD −1C)−1BD −1

= − C(A − BD −1C)−1BD −1 + Im + C(A − BD −1C)−1BD −1 = Im;

thus,

L L −1 = I(n+m) (13)

.

2. for operations involved in sub-blocks ofL −1L :

(A − BD −1C)−1A − (A − BD −1C)−1BD −1C

= (A − BD −1C)−1 A − BD −1C = In;

(A − BD −1C)−1B − (A − BD −1C)−1BD −1D = 0n×m;
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− (D − C A −1B)−1C A −1A + (D − C A −1B)−1C = 0m×n;

− (D − C A −1B)−1C A −1B + (D − C A −1B)−1D

= − (D − C A −1B)−1 − C A −1B + D = Im;

thus,L −1L = I(n+m).

4.3. Generalized-Inverse

The concept of Generalized-Inverse is an extension of a matrix inversion operations applied
to non-singular rectangular matrices [17-18]. For notation purposes and without loss of gen‐
eralization, ρ(G)and G T  denote the rank of a rectangular matrixG ∈ Mm×n, and G T = G H is
the transpose-conjugate of G (whenM=ℂ → G ∈ ℂm×n) or G T = G T is the transpose of G
(whenM=ℝ → G ∈ ℝm×n), respectively.

Definition 2. Let G ∈ Mm×n and0 ≤ ρ(G) ≤ min(m, n). Then, there exists a matrix G † ∈ Mn×m

(identified as the Generalized-Inverse), such that it satisfies several conditions for the fol‐
lowing cases:

case i: if m > n and0 ≤ ρ(G) ≤ min(m, n) ⇒ ρ(G) = n, then there exists a unique matrix
G † ≐ G + ∈ Mn×m (identified as Left-Pseudoinverse: LPI) such thatG +G = In, satisfying: a)

GG +G = G, and b)G +GG + = G +. Therefore, the LPI matrix is proposed asG + = (G T G)−1G T .

case ii: if m = n anddet(G) ≠ 0 ⇔ ρ(G) = n, then there exists a unique matrix
G † ≐ G −1 ∈ Mn×n (identified as Inverse) such thatG −1G = GG −1 = In.
case iii: if m < n and0 ≤ ρ(G) ≤ min(m, n) ⇒ ρ(G) = m, then there exists a unique matrix
G † ≐ G − ∈ Mn×m (identified as Right-Pseudoinverse: RPI) such thatGG − = Im, satisfying: a)

GG −G = G, and b)G −GG − = G −. Therefore, the RPI matrix is proposed asG − = G T (GG T )−1. ■

Given the mathematical structure for G † provided in Definition 2, it can be easily validated
that: 1) For a LPI matrix stipulated in case i, GG †G = Gand G †GG † = G † with

G † = (G T G)−1G T ; 2) For a RPI matrix stipulated in case iii, GG †G = Gand G †GG † = G † with

G † = G T (GG T )−1; iii) For the Inverse in case ii,G + = (G T G)−1G T = G T (GG T )−1 = G −. For a
uniqueness test for all cases, assume the existance of matrices G1

† ∈ Mn×m and G2
† ∈ Mn×m

such that G1
†G = In and G2

†G = In (for case i), and GG1
† = Im and GG2

† = Im (for case iii). Notice

immediately, (G1
† − G2

†)G = 0n(for case i) and G(G1
† − G2

†) = 0m(for case iii), which obligates

G1
† = G2

† for both cases, because of full-rank properties overG. Clearly, case ii is a particular
consequence of cases i and iii.

Linear Algebra – Theorems and Applications10



5. The MIMO channel matrix

The MIMO channel matrix is the mathematical representation for modeling the degradation

phenomena presented in the RFC scenario presented in (2). The elements h ij in H ∈ ℂnR×nT

represent a time-invariant transfer function (possesing spectral information about magni‐
tude and phase profiles) between a j-th transmitter and an i-th receiver antenna. Once again,
dynamical properties of physical phenomena 4 such as path-loss, shadowing, multipath,
Doppler spreading, coherence time, absorption, reflection, scattering, diffraction, basesta‐
tion-user motion, antenna’s physical properties-dimensions, information correlation, associ‐
ated with a slow-flat quasi-static RFC scenario (proper of a non-LOS indoor wireless
environments) are highlighted into a statistical model represented by matrixH . For H † pur‐
poses, CSI is a necessary feature required at the reception part in (2), as well as the nR ≥ nT

condition. Table 1 provides severalnR > nT  MIMO channel matrix realizations for RFC-based
environments [19-21]. On table 1: a)MIMO(nR, nT ): refers to the MIMO communication link
configuration, i.e. amount of receiver-end and transmitter-end elements; b)Hm: refers to a

MIMO channel matrix realization; c)Hm
+: refers to the corresponding LPI, computed as

Hm
† = (Hm

HHm)−1Hm
H; d)h: blockwise matrix version forHm; e)h+: refers to the corresponding

LPI, computed ash† = (hTh)−1hT. As an additional point of analysis, full-rank properties over
H  and h (and thus the existance of matricesH +,H −1 ,h+ , andh−1) are validated and corrobo‐
rated through a MATLAB simulation-driven model regarding frequency-selective and time-
invariant properties for several RFC-based scenarios at different MIMO configurations.
Experimental data were generated upon 106 MIMO channel matrix realizations. As illustrat‐
ed in figure 3, a common pattern is found regarding the statistical evolution for full-rank
properties of H  and h with nR ≥ nT  at several typical MIMO configurations, for instance,
MIMO(2, 2),MIMO(4, 2) , andMIMO(4, 4). It is plotted therein REAL(H,h) against
IMAG(H,h), where each axis label denote respectively the real and imaginary parts of: a)
det(H )and det(h) whennR = nT , and b) det(H HH )and det(hTh) when. Blue crosses indicate

the behavior of ρ(H ) related to det(H ) and det(H HH ) (det(H) legend on top-left margin),
while red crosses indicate the behavior of ρ(h) related to det(h) and det(hTh) (det(h) legend
on top-left margin). The black-circled zone intersected with black-dotted lines locates the
0 + j0 value. As depicted on figures (4)-(5), a closer glance at this statistical behavior reveals
a prevalence on full-rank properties of H andh, meaning that non of the determinants
det(H ),det(h) ,det(H HH ) and det(hTh) is equal to zero (behavior enclosed by the light-blue
region and delimited by blue/red-dotted lines).

4 We suggest the reader consulting references [11-16] for a detail and clear explanation on these narrowband and wi‐
deband physical phenomena presented in wireless MIMO communication systems.
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Figure 3. MIMO channel matrix rank-determinant behavior for several realizations for H  andh. This statistical evolu‐
tion is a common pattern found for several MIMO configurations involving slow-flat quasi-static RFC-based environ‐
ments withnR ≥ nT .
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Table 1. MIMO channel matrix realizations for several MIMO communication link configurations at slow-flat quasi-
static RFC scenarios.
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Figure 4. MIMO channel matrix rank-determinant behavior for several realizations forH . Full-rank properties for H
and H HH  preveal for RFC-based environments (light-blue region delimited by blue-dotted lines).
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Figure 5. MIMO channel matrix rank-determinant behavior for several realizations forh. Full-rank properties for hand
hTh preveal for RFC-based environments (light-blue region delimited by red-dotted line).

6. Proposed algorithm

The proposal for a novel algorithm for computing a LPI matrix h+ ∈ ℝ2nT ×2nR (withnR ≥ nT ) is
based on the block-matrix structure of h as exhibited in (4). This idea is an extension of the
approach presented in [22]. The existence for this Generalized-Inverse matrix is supported
on the statistical properties of the slow-flat quasi-static RFC scenario which impact directly
on the singularity of H  at every MIMO channel matrix realization. Keeping in mind that
other approaches attempting to solve the block-matrix inversion problem [7-10] requires
several constraints and conditions, the subsequent proposal does not require any restriction

at all mainly due to the aforementioned properties ofH . From (4), it is suggested that 
x r

x i  is

somehow related to
ℜ{H +} − ℑ{H +}
ℑ{H +} ℜ{H +} ⋅ Y; hence, calculating h+will lead to this solution.
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Let A = H r andB = H i. It is kwon a priori thatρ(A + jB) = nT . Then h =
A − B
B A  with

ρ(h) = 2nT = N t . Define the matrix Ω̃ asΩ̃ ≐ hTh ∈ ℝN t ×N t , where Ω̃ =
M − L
L M  with

M = A TA + B TB ∈ ℝnT ×nT , L = A TB − (A TB)T ∈ ℝnT ×nT , and ρ(Ω̃) = N t  as a direct conse‐

quence from2nR ≥ 2nT → Nr ≥ N t . It can be seen that

h+ = Ω̃−1hT ∈ ℝN t ×N r (15)

For simplicity, matrix operations involved in (12) require classic multiply-and-accumulate

operations between row-entries of Ω̃−1 ∈ ℝN t ×N tand column-entries ofhT ∈ ℝN t ×N r . Notice

immediately that the critical and essential task of computing h+ relies on finding the block

matrix inverse Ω̃−15. The strategy to be followed in order to solve Ω̃−1 in (12) will consist of
the following steps: 1) the proposition of partitioning Ω̃ without any restriction on rank-def‐
ficiency over inner matrix sub-blocks; 2) the definition of iterative multiply-and-accumulate
operations within sub-blocks comprised inΩ̃; 3) the recursive definition for compacting the
overall blockwise matrix inversion. Keep in mind that matrix Ω̃ can be also viewed as

Ω̃ =

ω̃1,1 ⋯ ω̃1,N t

⋮ ⋱ ⋮
ω̃ N t ,1 ⋯ ω̃ N t ,N t

. The symmetry presented in Ω̃ =
M − L
L M  will motivate the de‐

velopment for the pertinent LPI-based algorithm. From (12) and by the use of Lemma 1 it

can be concluded thatΩ̃−1 =
Q P
− P Q , whereQ = (M + L M −1L )−1 ∈ ℝnT ×nT ,

P = QX ∈ ℝnT ×nT  , andX = L M −1 ∈ ℝnT ×nT . Interesting enough, full-rank is identified at
each matrix sub-block in the main diagonal of Ω̃ (besidesρ(Q) = nT ). This structural behav‐

ior serves as the leitmotiv for the construction of an algorithm for computing the blockwise

inverseΩ̃−1. Basically speaking and concerning step 1) of this strategy, the matrix partition
procedure obeys the assignments (13-16) defined as:

W k =
ω̃ N t−(2k +1),N t−(2k +1) ω̃ N t−(2k +1),N t−2k

ω̃ N t−2k ,N t−(2k +1) ω̃ N t−2k ,N t−2k
∈ ℝ2×2 (16)

X k =
ω̃ N t−(2k +1),N t−(2k−1) … ω̃ N t−(2k +1),N t

ω̃ N t−2k ,N t−(2k−1) … ω̃ N t−2k ,N t

∈ ℝ2×2k (17)

5 Notice that . Moreover, , where and .
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Y k =

ω̃ N t−(2k−1),N t−(2k +1) ω̃ N t−(2k−1),N t−2k

⋮ ⋮
ω̃ N t ,N t−(2k +1) ω̃ N t ,N t−2k

∈ ℝ2k ×2 (18)

Z0 =
ω̃ N t−1,N t−1

ω̃ N T −1,N t

ω̃ N t ,N t−1
ω̃ N t ,N t

∈ ℝ2×2 (19)

The matrix partition over Ω̃ obeys the indexk = 1 : 1 : (N t / 2 − 1). Because of the even-rec‐
tangular dimensions ofΩ̃, matirx Ω̃ owns exactly an amount ofN t / 2 = nT  sub-block matri‐
ces of 2 × 2 dimension along its main diagonal. Interesting enough, due to RFC-based
environment characteristics studied in (1) and (4), it is found that:

ρ(W k ) = ρ(Z0) = 2 (20)

After performing these structural characteristics forΩ̃, and with the use of (13-16), step 2) of
the strategy consists of the following iterative operations also indexed by
k = 1 : 1 : (N t / 2 − 1), in the sense of performing:

ϕk = W k − X kZk−1
−1 Y k (21)

αk = ϕk
−1X kZk−1

−1 (22)

θk = Zk−1
−1 + Zk−1

−1 Y kαk (23)

Here:Zk−1
−1 ∈ ℝ2k ×2k , ϕk ∈ ℝ2×2, αk ∈ ℝ2×2k , andθk ∈ ℝ2k ×2k . Steps stated in (18-20) help to

construct intermediate sub-blocks as

Ω̃k



yielding correspondinglyW k
−1, Z0

−1, andϕk
−1) are required to be performed throughout this

iterative-recursive process, unlike the operation linked toZk−1
−1 , which comes from a previous

updating step associated with the recursion belonging toZk
−1. Although ρ(Ω̃) = N t  assures

the existance ofΩ̃−1, full-rank requirements outlined in (17) and non-zero determinants for
(18) are strongly needed for this iterative-recursive algorithm to work accordingly. Also,
full-rank is expected for every recursive outcome related toZk

−1(Zk−1
−1 ). Again, thank to the

characteristics of the slow-flat quasi-static RFC-based environment in which these opera‐
tions are involved among every MIMO channel matrix realization, conditions in (17) and
full-rank of (18) are always satisfied. These issues are corroborated with the aid of the same
MATLAB-based simulation framework used to validate full-rank properties over H  andh.
The statistical evolution for the determinants forW k , Z0, andϕk , and the behavior of singu‐

larity within the Zk
−1(Zk−1

−1 ) recursion are respectively illustrated in figures (6)-(8).
MIMO(2, 2),MIMO(4, 2) , and MIMO(4, 4) were the MIMO communication link configura‐
tions considered for these tests. These simulation-driven outcomes provide supportive evi‐
dence for the proper functionality of the proposed iterative-recursive algorithm for
computing Ω̃−1 involving matrix sub-block inversions. On each figure, the statistical evolu‐
tion for the determinants associated withZ0,W k  ,ϕk  , and Zk

−1(Zk−1
−1 ) are respectively indicated

by labels det(Zo), det(Wk), det(Fik), and det(iZk,iZkm1), while the light-blue zone at bottom
delimited by a red-dotted line exhibits the gap which marks the avoidance in rank-deficincy
over the involved matrices. The zero-determinant value is marked with a black circle.

The next point of analysis for the behavior of the h+ LPI-based iterative-recursive algorithm
is complexity, which in essence will consist of a demand in matrix partitions (amount of ma‐
trix sub-blocks: PART) and arithmetic operations (amount of additions-subtractions: ADD-
SUB; multiplications: MULT; and divisions: DIV). Let PART-mtx and ARITH-ops be the
nomenclature for complexity cost related to matrix partitions and arithmetic operations, re‐
spectively. Without loss of generalization, define C ∗  as the complexity in terms of the
costs PART-mtx and ARITH-ops belonging to operations involved in∗ . Henceforth,
C h+ = C Ω̃−1 + C Ω̃−1 · hT denotes the cost of computing h+ as the sum of the costs of in‐
verting Ω̃ and multiplying Ω̃−1 byhT. It is evident that: a) C Ω̃−1 · hT implies PART=0 and
ARITH-ops itemized into MULT=8nRnT

2, ADD-SUB=4nRnT (2nT − 1), and DIV=0; b)

C Ω̃−1 = C hT · h + C (hTh)-1 . Clearly, C hT · h demands no partitions at all, but with a
ARITH-ops cost of MULT=8nRnT

2, and ADD-SUB=4(2nR − 1)nT
2. However, the principal com‐

plexity relies critically onC (hTh)-1 , which is the backbone forh+, as presented in [22]. Table
2 summerizes these complexity results. For this treatment, C (hTh)-1 consists of 3nT − 2 par‐

titions, MULT =∑
k=1

nT −1

Ck
I + 6, ADD-SUB =∑

k=1

nT −1

Ck
II + 1, and DIV =∑

k=1

nT −1

Ck
III + 1. The ARITH-ops cost

depends onCk
I , Ck

II , andCk
III ; the constant factors for each one of these items are proper of

the complexity presented inC Z0
−1 . The remain of the complexities, i.e.Ck

I , Ck
II , andCk

III , are
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calculated according to the iterative stpes defined in (18-20) and (21), particularly expressed

in terms of

C ϕk
−1 + C − αk + C − θkY kW k

−1 + C θk (25)

(22)

It can be checked out that: a) no PART-mtx cost is required; b) the ARITH-ops cost employs

(22) for each item, yielding: Ck
I = 40k 2 + 24k + 12(for MULT), Ck

II = 40k 2 + 2(for ADD_SUB),

and Ck
III = 2(for DIV).

An illustrative application example is given next. It considers a MIMO channel matrix reali‐

zation obeying statistical behavior according to (1) and a MIMO(4, 4) configuration:

H =

− 0.3059 + j0.7543 − 0.8107 + j0.2082 0.2314 − j0.4892 − 0.416 − j1.0189
− 1.1777 + j0.0419 0.8421 − j0.9448 0.1235 + j0.6067 1.5437 + j0.4039
0.0886 − j0.0676 0.8409 + j0.5051 − 0.132 + j0.8867 − 0.0964 − j0.2828
0.2034 − j0.5886 − 0.0266 + j1.148 0.5132 − j1.1269 0.0806 + j0.4879

∈ ℂ4×4

withρ(H ) = 4. As a consequence,

Ω̃ =

2.4516 − 1.2671 0.1362 − 2.7028 0 − 1.9448 0.6022 − 0.2002
− 1.2671 4.5832 − 1.7292 1.3776 1.9448 0 − 1.229 − 2.4168
0.1362 − 1.7292 3.0132 0.0913 − 0.6022 1.229 0 0.862
− 2.7028 1.3776 0.0913 4.0913 0.2002 2.4168 − 0.862 0

0 1.9448 − 0.6022 0.2002 2.4516 − 1.2671 0.1362 − 2.7028
− 1.9448 0 1.229 2.4168 − 1.2671 4.5832 − 1.7292 1.3776
0.6022 − 1.229 0 − 0.862 0.1362 − 1.7292 3.0132 0.0913
− 0.2002 − 2.4168 0.862 0 − 2.7028 1.3776 0.0913 4.0913

∈ ℝ8×8 with

ρ(Ω̃) = 8 (26)

.
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Figure 6. Statistical evolution of the rank-determinant behaviour concerningZ0,Wk  ,�k  , and Zk
−1(Zk−1

−1 ) for a MIMO(2, 2)
configuration.
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Figure 7. Statistical evolution of the rank-determinant behaviour concerningZ0,Wk  ,�k  , and Zk
−1(Zk−1

−1 ) for a MIMO(4, 2)
configuration.
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Figure 8. Statistical evolution of the rank-determinant behaviour concerningZ0,Wk  ,�k  , and Zk
−1(Zk−1

−1 ) for a MIMO(4, 4)
configuration.
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Table 2. Complexity cost results of the LPI-based iterative-recursive algorithm forh+.

Applying partition criteria (13-16) and givenk = 1 : 1 : 3, the following matrix sub-blocks are

generated:

W1 =
2.4516 − 1.2671
− 1.2671 4.5832 ,

X1 =
0.1362 − 2.7028
− 1.7292 1.3776 , Y1 =

0.1362 − 1.7292
− 2.7028 1.3776 , Z0 =

3.0132 0.0913
0.0913 4.0913 ,

W2 =
3.0132 0.0913
0.0913 4.0913

X2 =
− 0.6022 1.2290 0 0.862
0.2002 2.4168 − 0.862 0 , Y2 =

− 0.6022 0.2002
1.229 2.4168

0 − 0.862
0.862 0

,

Partition-Matrix Theory Applied to the Computation of Generalized-Inverses for MIMO Systems in Rayleigh Fading
Channels

http://dx.doi.org/10.5772/48198

23



W3 =
2.4516 − 1.2671
− 1.2671 4.5832 ,

X3 =
0.1362 − 2.7028 0 − 1.9448 0.6022 − 0.2002
− 1.7292 1.3776 1.9448 0 − 1.229 − 2.4168 ,

andY3 =

0.1362 − 1.7292
− 2.7028 1.3776

0 1.9448
− 1.9448 0
0.6022 − 1.229
− 0.2002 − 2.4168

. Suggested by (18-20), iterative operations (23-25) are comput‐

ed as:

ϕ1 = W1 − X1Z0
−1Y1, α1 = ϕ1

−1X1Z0
−1, θ1 = Z0

−1 + Z0
−1Y1α1 (27)

ϕ2 = W2 − X2Z1
−1Y2, α2 = ϕ2

−1X2Z1
−1, θ2 = Z1

−1 + Z1
−1Y2α2 (28)

ϕ3 = W3 − X3Z2
−1Y3, α3 = ϕ3

−1X3Z2
−1, θ3 = Z2

−1 + Z2
−1Y3α3 (29)

From (21), the matrix assignments related to recursion Zk
−1(Zk−1

−1 ) produces the following in‐

termediate blockwise matrix results:

Z1
−1(Z0

−1) = Ω̃1
−1 =

ϕ1
−1 − α1

− θ1Y1W1
−1 θ1

=

1.5765 0.1235 − 0.0307 1.0005
0.1235 0.3332 0.1867 − 0.0348
− 0.0307 0.1867 0.4432 − 0.093
1.0005 − 0.0348 − 0.093 0.9191

,

Z2
−1(Z1

−1) = Ω̃2
−1 =

ϕ2
−1 − α2

− θ2Y2W2
−1 θ2

=

0.4098 0.0879 − 0.0829 − 0.1839 − 0.0743 − 0.0775
0.0879 0.4355 − 0.2847 − 0.3182 − 0.0422 − 0.0985
− 0.0829 − 0.2847 1.7642 0.3393 0.0012 1.0686
− 0.1839 − 0.3182 0.3393 0.6023 0.2376 0.0548
− 0.0743 − 0.0422 0.0012 0.2376 0.4583 − 0.0738
− 0.0775 − 0.0985 1.0686 0.0548 − 0.0738 0.9499

,

Z3
−1(Z2

−1) = Ω̃−1 =
ϕ3
−1 − α3

− θ3Y3W3
−1 θ3
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=

1.9798 0.3808 − 0.1114 1.0224 0 0.3605 0.2524 0.2183
0.3808 0.6759 0.2619 0.0856 − 0.3605 0 0.2368 0.1193
− 0.1114 0.2619 0.5493 − 0.0218 − 0.2524 − 0.2368 0 − 0.0535
1.02224 0.0856 − 0.0218 0.9839 − 0.2183 − 0.1193 0.0535 0

0 − 0.3605 − 0.2524 − 0.2183 1.9798 0.3808 − 0.1114 1.0224
0.3605 0 − 0.2368 − 0.1193 0.3808 0.6759 0.2619 0.0856
0.2524 0.2368 0 0.0535 − 0.1114 0.2619 0.5493 − 0.0218
0.2183 0.1193 − 0.0535 0 − 0.1114 0.0856 − 0.0218 0.9839

. This

last recursive outcome from Zk
−1(Zk−1

−1 ) corresponds toΩ̃−1, and is further used for calculating

h+ = Ω̃−1hT ∈ ℝ8×8. Moreover, notice that full-rank properties are always presented in matri‐
cesZ0,W1 ,W2 ,W3 ,ϕ1 ,ϕ2 ,ϕ3 ,Z1

−1 ,Z2
−1 , andZ3

−1.

7. VLSI implementation aspects

The arithmetic operations presented in the algorithm for computing h+ can be implemented
under a modular-iterative fashion towards a VLSI (Very Large Scale of Integration) design.
The partition strategy comprised in (13-16) provides modularity, while (18-20) is naturally
associated with iterativeness; recursion is just used for constructing matrix-blocks in (21).
Several well-studied aspects aid to implement a further VLSI architecture [23-27] given the
nature of the mathematical structure of the algorithm. For instance, systolic arrays [25-27]
are a suitable choice for efficient, parallel-processing architectures concerning matrix multi‐
plications-additions. Bidimensional processing arrays are typical architectural outcomes,
whose design consist basically in interconnecting processing elements (PE) among different
array layers. The configuration of each PE comes from projection or linear mapping techni‐
ques [25-27] derived from multiplications and additions presented in (18-20). Also, systolic
arrays tend to concurrently perform arithmetic operations dealing with the matrix concaten‐
ated multiplicationsX kZk−1

−1 Y k ,ϕk
−1X kZk−1

−1  ,Zk−1
−1 Y kαk  , and θkY kW k

−1 presented in (18-20).
Consecutive additions inside every PE can be favourably implemented via Carry-Save-Add‐
er (CSA) architectures [23-24], while multiplications may recur to Booth multipliers [23-24]
in order to reduce latencies caused by adding acummulated partial products. Divisions pre‐
sented inW k

−1, Z0
−1, and ϕk

−1 can be built through regular shift-and-subtract modules or clas‐
sic serial-parallel subtractors [23-24]; in fact, CORDIC (Coordinate Rotate Digital Computer)
processors [23] are also employed and configured in order to solve numerical divisions. The
aforementioned architectural aspects offer an attractive and alternative framework for con‐
solidating an ultimate VLSI design for implementing the h+algorithm without compromis‐
ing the overall system data throughput (intrinsicly related to operation frequencies) for it.
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8. Conclusions

This chapter presented the development of a novel iterative-recursive algorithm for comput‐
ing a Left-Pseudoinverse (LPI) as a Generalized-Inverse for a MIMO channel matrix within a
Rayleigh fading channel (RFC). The formulation of this algorithm consisted in the following
step: i) first, structural properties for the MIMO channel matrix acquired permanent full-
rank due to statistical properties of the RFC scenario; ii) second, Partition-Matrix Theory
was applied allowing the generation of a block-matrix version of the MIMO channel matrix;
iii) third, iterative addition-multiplication operations were applied at these matrix sub-
blocks in order to construct blockwise sub-matrix inverses, and recursively reusing them for
obtaining the LPI. For accomplishing this purpose, required mathematical background and
MIMO systems concepts were provided for consolidating a solid scientific framework to un‐
derstand the context of the problem this algorithm was attempting to solve. Proper function‐
ality for this approach was validated through simulation-driven experiments, as well as
providing an example of this operation. As an additional remark, some VLSI aspects and ar‐
chitectures were outlined for basically implementing arithmetic operations within the pro‐
posed LPI-based algorithm.
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