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1. Introduction 

It has long been established that there is a relationship between hypercholesterolemia and 
cardiovascular disease in adulthood. However, only in the 90s, the biological consequence of 
low levels of cholesterol for mitotic cells was highlighted, with the description of the 
devastating effect of hypocholesterolemia on fetal development. This was supported by the 
discovery of a group of metabolic diseases caused by mutations in genes coding for 
enzymes involved in endogenous synthesis of cholesterol. This group is still growing as new 
diseases, phenotypes and mutated genes are being described by researchers. Despite the fact 
that they share some common clinical features - including abnormal morphogenesis and 
growth retardation - these inherited metabolic diseases are still poorly recognized in daily 
obstetric clinical practice.  

Cholesterol is an essential lipid found in all mammalian cells. It can modulate the activity of 
the Hedgehog proteins, which act as morphogens that regulate the precise patterning of 
many embryonic structures [Gofflot et al., 2003]. Furthermore, cholesterol is a key 
component of lipid-rafts, which have a structural role in cellular membranes and myelin 
sheets and it is a precursor molecule for sterol-based compounds, including bile acids, 
oxysterols, neurosteroids, glucocorticoids, mineralocorticoids, and sex hormones like 
estrogen and testosterone [Correa-Cerro et al., 2005]. Due to the panoply of biological 
functions of the sterols, a decrease of its availability during pregnancy has major 
consequences to the fetus, severely impairing his development [Cardoso et al., 2005a].  

2. Intestinal cholesterol absorption, transport and metabolism  

Dietary cholesterol is absorbed from bile salt micelles, with fatty acids and phospholipids, at 
the proximal part of the small intestine, in a process which involves Nieman-Pick C1-Like1 
protein (NPC1L1). This protein contains a sterol sensing domain (SSD) and is located in the 
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brush-border membrane of enterocytes where it plays a critical role in the intestinal uptake 
of cholesterol and phytosterols [Ikonen, 2006]. Once inside the enterocyte cholesterol is 
esterified by acyl-CoA: cholesterol acyltransferase (ACAT) whereas sterols other than 
cholesterol, are transported back into the intestinal lumen by an heterodimer transporter 
G5/G8 ATP binding cassette (ABCG5, ABCG8)1. Such mechanism prevents phytosterols 
molecules from passing to the blood to any significant extent [Charlton-Menys & 
Durrington, 2007].  

In order to enter in blood circulation cholesterol from enterocytes should be incorporated in 
lipoproteins named chylomicron. Chylomicrons assembly begins with the formation of 
primordial, phospholipid-rich particles in the membrane, taking together apolipoprotein 
B48 (ApoB-48)2 and cholesterol. Later in the lumen of the smooth endoplasmic reticulum 
(ER) these particles are converted into large chylomicrons. After that, they are transported 
(via specialized vesicles) from the ER to the Golgi3, for secretion into the lacteals of the 
intestine, and then they finally pass from linfa to blood (via thoracic duct) [Hussain et al., 
2005; Charlton-Menys & Durrington, 2007; Kindel, et al., 2010]. Once chilomicrons are in 
blood circulation they became smaller due to the action of lipoprotein lipase (LPL)4, which is 
anchored to the vascular endothelium of several organs, and hydrolyses the trigliceride 
from chilomicrons. Subsequently the circulating cholesterol-rich chylomicron remnant 
particles are uptaked by the liver in a process which involves the LDL-receptor like protein 
(LRP) [Charlton-Menys & Durrington, 2007].  

Liver, exports exogenous and endogenous cholesterol, to tisues by VLDL lipoproteins. The 
biosynthesis of VLDL consists of a number of distinct stages [Hebbachi & Gibbons, 2001; 
Shelness et al., 2001]. Briefly, the assembly of hepatic VLDL begins inside the rough ER, 
where, the peptide ApoB-100 2 is synthesized at membrane bound ribosomes and then sent 
through a protein channel into the cytoplasm. Additionally, microsomal triglyceride transfer 
protein (MTP)5 binds the precursor peptide and joins some triglycerides, phospholipids, and 
cholesteryl esters, allowing ApoB-100 to fold around a small lipid core. Then a higher 
amount of triglycerides are transferred into the precursor VLDL particle, and it sorts to the 
Golgi apparatus where additional lipids are recruited in order to form the mature VLDL 
lipoprotein [Daniels et al., 2009]. Finally VLDLs enter in circulation and distribute free fatty 
acids to muscle and adipose tissues expressing LPL and become intermediary density 
lipopoteins (IDLs) that can either be removed from circulation by the liver or they can lose 
further free fatty acids becoming low density lipoproteins (LDLs) which are important 
cholesterol transporters [Daniels et al., 2009].  

Therefore, low density lipoprotein receptor (LDLR)6, a transmembrane glicoprotein 
responsible for uptake of cholesterol-carrying lipoproteins from blood circulation, binds 
lipoprotein particles at the cell surface, which are internalized by endocytosis and later in 
the low-pH environment of the endosome, acid-induced dissociation of ligand and receptor 
occurs. LDLR peptide is recycled back to the membrane and LDL particles are released into 
the lysosomes whose enzymes degradate the lipoproteine into amino acids and lipid 
components. Cholesteryl esters are hydrolyzed by lysosomal acid lipase (LAL)7 to free 
cholesterol [Daniels et al., 2009; Jeon & Blacklow, 2005]. Therefore cholesterol can be re-
esterified by ACAT (a membrane-bound enzyme residing in the ER) and stored as lipid 
droplets [Zhang et al., 2003; Liu et al., 2005]. The mechanisms by which free and esterified 
cholesterol ingress and egress endosomes and lipid droplets, are not fully clarified. 
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Neverthless proteins NPC18 and NPC2 are involved in such process and other proteins like 
MLN64 (STARD3) and MENTHO (STARD3NL), are still under evaluation [Miller & Bose, 
2011; Vanier, 2010]. 

At steady state most cholesterol is in plasma membrane, but it must move inside the cell in 
order to be presented to the enzymes encharged of its metabolization, and it is transported 
between membrane organelles (as a component of lipid bilayers) in transport vesicles, as 
well as by non-vesicular means [Liscum et al., 1995; Maxfield & Wüstner, 2002].  

Meanwhile, the liver is consistently manufacturing high density lipoproteins (HDL) which 
have the critical task of removing excess cholesterol and serve as transport particles by 
which peripheral cell cholesterol is collected and delivered to the liver for catabolism in a 
process named reverse cholesterol transport [Ikonen, 2006]. The rate limiting step in this 
process is cholesterol efflux mediated by ABCA19 [Daniels et al., 2010].  

Cells inside the brain are cut off from this circuit by the blood-brain barrier and must 
regulate their cholesterol content in a different manner [Pfrieger & Ungerer, 2011].  

As cholesterol cannot be degraded by cells into noncyclic hydrocarbon products, 

hepatocytes excrete it into the bile, either directly, as free cholesterol, as well as transformed 

in bile salts. Bile salts are synthesized via two routes, the classic or neutral pathway and the 

alternative or acidic one [Kosters et al., 2003]. Cholesterol 7┙-hydroxylase (CYP7A1) is a 

hepatic microsomal cytochrome P450 enzyme that catalyzes the first step of bile acid 

synthesis in the classical pathway, whereas sterol 27-hydroxylase (CYP27A1) is the first 

enzyme of the alternative one. It is a mitochondrial cytochrome P450 ubiquitous enzyme 

with a much broader biologic role; it is involved in the 27-hydroxylation of a variety of 

sterols (cholesterol included) and in the formation of potentially important regulatory 

sterols [Dias & Ribeiro, 2011]. 

All major classes of biologically active steroid hormones are also synthesized from 
cholesterol by a complex array of enzymes located both in the mitochondria and ER 
[Miller, 2011; White, 1994]. Adrenals and gonads receive cholesterol from low-density 
lipoproteins, store it as cholesterol esters, and transport cholesterol to mitochondria by ill-
defined but critical mechanisms [Miller, 2011]. Effectively, the acute quantitative 
regulation of steroidogenesis is determined by cholesterol import into mitochondria by 
the steroidogenic acute regulatory protein (STAR) which undergoes conformational 
changes for accept ing and discharge cholesterol molecules [Miller & Auchus, 2011]. Then 
P450scc /CYP11A1 enzyme, located in the inner mitochondrial membrane catalyses the 
conversion of cholesterol to pregnenolone, the first step of steroidogenesis [Miller & 
Auchus, 2011]. 

Control of cholesterol homeostasis is a highly regulated process, consistent with the overall 

importance of this lipid for normal cellular function, with several transcription factors and 

functioning proteins playing important roles and regulating intracellular cholesterol levels 

[Tarling & Eduards, 2011]. Mutations in genes codifying for proteins involved in the above 

referred pathways (and signalised with small numbers), alter sterol homeostasis and results 

in specific diseases. Table 1 resumes the most commum phenotypes associated to deficient 

cholesterol intra and extracelular transport and metabolism which was construct based on 

OMIM (http://www.ncbi.nlm.nih.gov/omim) available data.  
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Disease MIM Gene Phenotype 

1. 

Sitosterolemia 

 

#210250

 
ABCG5, 
ABCG8 

AR. Characterized by unrestricted intestinal 

absorption of phytosterols. Patients show very 

high levels of plant sterols in the plasma with 

accumulation in tendons (tuberous 

xanthomas) and arteries.  

2. 

Hypobetalipo- 

proteinaemia 

 

+107730

 
APOB 

 

Apolipoprotein B, occurs in the plasma in 2 

main forms, apoB48 (synthesized exclusively 

by the gut) and apoB100 (synthesized by the 

liver) resulting from differential splicing of the 

same primary mRNA transcript. 

Heterozygous show reduced plasma 

concentrations of LDL cholesterol, total 

triglycerides, and APOB less than 50% of 

normal values.  

3. 

Anderson disease 

(Chylomicrons 

retention disease) 

 

#246700

 
SAR1B 

 

AR. It is a disease of severe fat malabsorption 

and steatorrhea, associated with failure to 

thrive in infancy. Patients show low fasting 

plasma concentrations of plasma total, HDL, 

and LDL cholesterol. Electron microscopy 

studies of jejunal biopsy specimens showed 

severe steatosis, and an apparent block of 

chylomicron secretion from the ER into the 

Golgi apparatus. 

4. 

Hyperlipo- 

proteinemia 

type Ia  

 

 

 

 

 

 

Hyperlipo- 

proteinemia 

type Ib 

 

#238600

 

 

 

 

 

 

 

 

#207750

 
LPL 

 

 

 

 

 

 

 

 
APOCII

AR. Massive hyperchylomicronemia occurs 

when the patient is on a normal diet and 

disappears completely in a few days on fat-

free feeding. Caused by low tissue activity of 

lipoprotein lipase (a defect in removal of 

chylomicrons and of other triglyceride-rich 

lipoproteins). Characterized by attacks of 

abdominal pain, hepatosplenomegaly, 

eruptive xanthomas, and lactescence of the 

plasma.  

Deficiency of apolipoprotein C-II the activator 

of lipoprotein lipase. Clinically and 

biochemically simulates lipoprotein lipase 

deficiency. 

5. 

Abetalipo- 

proteinaemia 

 

#200100

 
MTP 

Caused by mutations in the microsomal 

triglyceride transfer protein. Features are 

celiac syndrome, pigmentary degeneration of 

the retina, progressive ataxic neuropathy and 

acanthocytosis. Intestinal absorption of lipids 

is defective, serum cholesterol very low, and 

serum beta lipoprotein absent. 
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Disease MIM Gene Phenotype 
6. 
Familial 
hypercholesterolemia

#143890 LDLR 
AD. Caused by mutations in the low density 
lipoprotein receptor gene. Heterozygotes 
develop tendinous xanthomas, corneal arcus, 
and coronary artery disease (fourth or fifth 
decade). Homozygotes develop these features 
at an accelerated rate in addition to planar 
xanthomas, which may be evident at birth in 
the web between the first 2 digits. 

7. 
Wolman disease #278000 LIPA 

It is caused by lysosomal LAL deficiency. 
Homozygous present liver failure, 
hypercholesterolemia, hypertriglyceridaemia, 
liver fibrosis, early atherosclerosis and early 
death. Heterozygous show a milder phenotype 
named cholesteryl ester storage disease. 

8. 
Niemann-Pick 
disease type C 

#257220 NPC1 
AR. Neurodegenerative lipid storage disorder 
characterized by a highly variable clinical 
phenotype. In the classic form symptoms 
appearing between 2 and 4 years and patients 
develop neurologic abnormalities (ataxia, grand 
mal seizures, and loss of previously learned 
speech). Diagnosis relies on detection of delayed 
LDL-derived cholesterol esterification on skin 
fibroblasts as well as in filipin staining. 

9. 
Tangier disease #205400 ABCA1 

AR disorder characterized by markedly reduced 
levels of HDL resulting in tissue accumulation of 
cholesterol esters. Clinical features include very 
large, yellow-orange tonsils, enlarged liver, 
spleen and lymph nodes, hypocholesterolemia, 
and abnormal chylomicron remnants. Coronary 
artery disease is increased in heterozygotes for 
ABCA1 deficiency.

10. 
7┙-hydroxylase 
deficiency 

*118455 CYP7A1
Hypercholesterolemia (high LDL), 
hypertriglyceridemia, premature gallstone 
disease.

11. 
Cerebrotendinous 
xanthomatosis 

#213700 CYP27A1
AR. Characterized by progressive neurologic 
dysfunction, premature atherosclerosis, and 
cataracts. Large deposits of cholesterol and 
cholestanol are found in tissues, particularly 
the Achilles tendons, brain, and lungs.  

12. 
Congenital lipoid 
adrenal hyperplasia 
 

#201710 CYP11A1
STAR 

Congenital lipoid adrenal hyperplasia is the most 
severe form of congenital adrenal hyperplasia. 
Affected individuals can synthesize no steroid 
hormones; hence, all are phenotypic females 
with a severe salt-losing syndrome that is fatal if 
not treated in early infancy.

Legend: AR-autosomal recessive; AD-autosomal dominant; LAL-lysosomal acid lipase 

Table 1. Diseases /phenotypes associated to deficient cholesterol transport and metabolism  
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3. The cholesterol biosynthesis pathway 

Cholesterol is a 27-carbon tetracyclic compound synthesised by all nucleated mammalian 
cells [Kelly & Herman, 2001] by a metabolic process involving approximately 30 enzymatic 
reactions [Ikonen, 2006] which take place in several cellular compartments: cytoplasm, ER 
(or its extensions), nuclear envelope and peroxisomes [Ikonen, 2006; Thompson et al., 1987]. 
The substrate for cholesterol synthesis is acetyl-CoA which is derived largely from glucose 
in the brain, and from fatty acids and other fuels in other tissues [Clayton, 1998].  

Although complex, the biosynthesis of cholesterol is only one element of the larger 
isoprenoid biosynthetic system, which incorporates the de novo synthesis of important 
biomolecules as diverse as dolichol, ubiquinone, heme A or farnesyl pyrophosphate [Kelly 
& Herman, 2001].  

For simplification one can considerer five major steps on the metabolic pathway of 
cholesterol synthesis [Figure 1].  

 

Fig. 1. Simplified schematic representation of cholesterol biosynthesis pathway. 

Steps one to four catalyze the transformation of acetyl-CoA into the first sterol of the 
cascade: lanosterol. The fifth step includes all the reactions needed to transform this sterol 
into cholesterol [http://themedicalbiochemistrypage.org/cholesterol.html]. The biologically 
significant details of each step are: 
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1. Conversion of acetyl-CoAs to 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA), an organic 
acid conjugate of intermediate metabolism that is also important for ketogenesis. 

2. HMG-CoA conversion to mevalonate by HMG-CoA reductase, the limitating step of 
cholesterol biosynthesis. In fact, HMG-CoA reductase is subject to complex regulatory 
control by four distinct mechanisms (i) feed-back inhibition, (ii) control of gene 
expression, (iii) rate of enzyme degradation and (iv) phosphorylation-dephos- 
phorylation (the first three are exerted by the cholesterol molecule itself).  

3. 3. Mevalonate conversion to the isoprene based molecule, isopentenyl pyrophosphate 
with the concomitant loss of CO2. 

4. Isopentenyl pyrophosphate conversion to lanosterol. The reactions of this stage are also 
required for the synthesis of other important compounds as previously referred: (i) 
isopentenyl-tRNAs (the isopentenyl groups in tRNAs are thought to be important in 
stabilizing codon-anti-codon interaction, thus preventing misreading of the genetic 
code during protein synthesis), (ii) dolichol which is required for protein N-
glycosylation, (iii) farnesyl and geranylgeranyl pyrophosphate essential for protein 
prenylation which is a post-translational modification required to commit proteins to 
cellular membranes and (iv) ubiquinone, which is an important component of 
mitochondrial respiratory chain [Clayton, 1998, Ikonen, 2006].  

5. Lanosterol conversion to cholesterol [Figure 2].  

 

Fig. 2. The distal part of cholesterol biosyntesis pathway: from lanosterol to cholesterol 
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This stage constitutes the post-lanosterol part of cholesterol biosynthesis pathway. It 

includes a series of enzymatic reactions namely (i) three demethylations at C4, C4 and 
C14, which converts the 30-carbon molecule of lanosterol into the 27-carbon cholesterol ; (ii) 

the isomerization of the 8(9) double bond to 7 double bond, (iii) one reaction of 

desaturation to form a 5 double bond; (iv) and finally the reduction of three double bonds 

14,24,7 [Porter, 2003]. 

4. Sterols and development 

Cholesterol is indispensable for embryogenesis and fetal development in higher vertebrates. 

The fetus obtains most cholesterol from de novo synthesis, with fetal sterols synthesis rates 

being greater than those observed in other extra hepatic tissues. This happens, most likely, 

because of the large cholesterol fetal requirements, in order to sustain the rapid intra-uterine 

growth [Woollett, 2005]. Nevertheless, the fetus appears to have an exogeneous source of 

cholesterol as well. In fact, some studies have suggested that maternal cholesterol may also 

contribute to the cholesterol accrued in the fetus [Lindegaard et al., 2008; McConihay et al., 

2001; Yoshida & Wada, 2005]. Reinforcing this hypothesis, a strong association with preterm 

delivery in caucasian mothers with low serum cholesterol during pregnancy was found, and 

smaller birth weight in term babies from such mothers [Edison et al., 2007]. Thus, two layers 

of cells must be crossed by maternal cholesterol to reach the fetal circulation (i) the 

trophoblasts (which form the layer closest to the maternal circulation) and (ii) the 

endothelium (locate between the trophoblast and fetal circulation) [Woollett, 2011]. 

According to some experiments, the modulation of maternal-fetal cholesterol transport has 

potential for in uterus therapy of fetuses that lack the ability to synthesize cholesterol 

[Lindegaard et al., 2008; Woollett, 2005]. 

Distal inhibitors of cholesterol biosynthesis have been studied for more than 30 years as 

potent teratogens capable of inducing cyclopia and other birth defects. These compounds 

specifically block the Sonic hedgehog (Shh) signaling pathway [Cooper et al., 1998]. 

Hedgehog (Hh) proteins comprise a group of secreted embryonic signaling molecules that 

are essential for embryonic patterning [Kolejáková et al., 2010]. In higher vertebrates, 

including humans, they are implicated in an increasing number of different developmental 

processes. In fact, Shh proteins were implicated in neural tube development, lung and 

kidney morphogenesis and hair development, Shh and Indian hedgehog were related with 

skeletal morphogenesis and gastrointestinal development and Desert hedgehog with male 

differentiation, spermatogenesis and development of peripheral nerve sheaths [Waterman & 

Wanders, 2000]. Cholesterol has an important role in regulation and modification of 

Hedgehog proteins, what links cholesterol to early embryonic development. [Kolejáková et 

al., 2010]. Decreasing levels of cellular sterols correlate with diminished response of the Hh 

signal and sterol depletion affects the activity of Smoothened, an essential component of the 

Hh signal transduction apparatus [Cooper et al., 2003]. 

Mutations in the Sonic Hedgehog gene cause holoprosencephaly and this cerebral 
malformation has also been associated with perturbations of cholesterol synthesis and 
metabolism in mammalian embryos [Gofflot et al., 2001]. Furthermore, in rodents, triparanol 
treatment reproduces limb defects observed in human syndromes of cholesterol 
biosynthesis defects by a modification of Shh signaling in the limb resulting in an imbalance 
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of Indian Hedgehog expression in the forming cartilage leading to reduced interdigital 
apoptosis and syndactyly [Gollof et al., 2003]. 

5. Inborn errors of post-squalene cholesterol biosynthesis 

Genetic defects in enzymes responsible for cholesterol biosynthesis have recently emerged 

as important causes of congenital anomalies. Patients with these metabolic diseases present 

with complex malformation syndromes involving different organs and systems [Yu & Patel, 

2005]. So far, nine polimalformative disorders due to enzymatic defects in post-squalene 

cholesterol biosynthesis have been identified:  

a. Smith-Lemli-Opitz syndrome (SLOS),  
b. X-linked dominant chondrodysplasia punctata type 2 (CDPX2),  
c. Congenital hemidysplasia with ichthyosiform erythroderma and limb defects syndrome 

(CHILD)  
d. CK syndrome  
e. Greenberg dysplasia,  
f. Antley-Bixler syndrome with ambiguous genitalia (POR deficiency) 
g. Desmosterolosis,  
h. Lathosterolosis,  
i. Sterol-C4-methyloxidase–like deficiency. 

6. Prenatal diagnosis of cholesterol biosynthesis disorders 

For most inborn errors of metabolism, before attempting to perform prenatal diagnosis, it is 

essential to establish, or confirm the diagnosis of the disorder under consideration in the 

proband, or affected relatives. Nevertheless as inborn errors of cholesterol biosynthesis have 

been associated to a gestational biochemical marker (low maternal estriol) and abnormal 

ultrasound features, in many cases one can suspect of this spectrum of disorders in the 

course of a pregnancy, even without a previous index case in the family. 

6.1 Smith-Lemli-Opitz syndrome 

The Smith-Lemli-Opitz syndrome (SLOS, MIM #270400), is the most frequent disease of this 

group of inherited metabolic disorders, with a prevalence that varies between 1: 22.000 and 

1: 60.000, depending on the population. Nevertheless, a higher prevalence (between 1: 2.500 

and 1: 4.444) - close to that of cystic fibrosis and higher than phenylketonuria - would be 

expected based on carriers frequency studies [Porter et al., 2003].  

SLOS is caused by a deficit of the enzyme 7-dehydrocholesterol reductase (3--

hydroxysterol-7-reductase, E.C.1.3.1.21), encoded by the DHCR7 gene located on 11q13. 

This enzyme catalyses the conversion of 7-dehydrocholesterol to cholesterol [Waterham &, 

Wanders, 2000]. 

Since most of the cholesterol required for fetal growth and development is synthesized by 

the fetus, enzymatic deficiency affecting endogenous cholesterol biosynthesis leads to 

intrauterine growth restriction and aberrant organogenesis. Surveys of large series of 

patients with SLOS showed a constellation of severe abnormalities including intellectual 
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disability, microcephaly, failure to thrive, dysmorphic face, limb abnormalities and genital 

abnormalities in males [Cardoso et al., 2005b]. 

Prenatal diagnosis of SLOS has been performed in many pregnancies both retrospectively 
and prospectively. The prenatal diagnosis of this autosomal recessive metabolic disorder is 
based on a conjugation of methods that detect the dual aspects of the pathology: the 
polimalformative syndrome and the metabolic abnormalities [Cardoso et al., 2005a].  

6.1.1 Ultrasound findings 

A number of fetuses have been so far signalized as suspected of SLOS due to the 

identification, by ultrasound, of suggestive fetal abnormalities, such as: nuchal edema, 

microcephaly, cleft palate, polidactyly, cystic kidneys, ambiguous genitalia or a 46, XY 

karyotype in a phenotypically female fetus [Johnson et al., 1994, Kelley & Hennekam, 2001]. 

Nevertheless there is no pathognomonic ultrasound pattern associated with SLOS [Irons & 

Tint, 1998]. 

Concerning the detection of malformations in SLOS fetus, Goldenberg and collaborators 

evaluated the main abnormalities identified. Their results are as follows i) in the first 

trimester [11-13 weeks of gestational age]: increased nuchal translucency (26%); ii) in the 

second trimester [20-22 weeks of gestational age]: nuchal edema (26%), kidney 

malformation (26%), polydactyly (10%) [Figure 3], ambiguous genitalia (6%) [Figure 3], 

cerebral malformation (10%), heart malformation (10%), intrauterine growth restriction 

(20%); iii) in the third trimester [30-34 weeks of gestational age]: intrauterine growth 

restriction (46%) [Goldenberg et al., 2004]. However one should be aware that prenatal US 

examination of affected fetuses can also be normal [Irons & Tint, 1998].  

  

Fig. 3. Two ultrasound images of a male fetus with SLO. The white arrows are pointing a left 
foot with postaxial polydactyly (on the left) and a penis with large root and hypospadias (on 
the right).  

6.1.2 Serum maternal markers 

The fetoplacental biosynthesis of free estriol (E3) requires cholesterol as substrate 
[Palomaki et al., 2002]. Thus unconjugated estriol is produced by the fetus and then crosses 
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the placental barrier entering into mother’s blood circulation. By consequence fetal 
hypocholesterolemia can be suspected, if the pregnant woman shows low levels of this 
compound in serum. Low or undetectable unconjugated estriol levels in maternal serum 
and amniotic fluid have been reported in pregnancies of fetus affected with SLO [Hyett et 
al., 1995; Rossiter et al., 1995; Kratz & Kelley,1999; Cardoso et al., 2005a; Craig et al., 2006].  

Free estriol is not a specific marker of SLO and several other causes of low unconjugated 
estriol are known, namely intrauterine fetal demise and steroid sulphatase deficiency [Irons 
& Tint, 1998]. Meanwhile algorithms were proposed based on available values of maternal 

serum -fetoprotein and human chorionic gonadotrophin together with free estriol 
(obtained on the second-trimester screening program, for Down syndrome and open neural 
tube defects) which provide a more accurate estimation of individual risk for SLOS 
[Palomaki et al., 2002; Craig et al., 2006; Craig et al., 2007].  

According to our and others experience [Cardoso et al., 2005a; Dubuisson et al., 2008] a low 

level of free estriol alone is not a robust indicator for testing a pregnancy for SLOS. However 

the association of i) abnormal fetal US with ii) normal fetal karyotype and iii) low levels of 

unconjugated estriol on maternal blood are highly suggestive [Cardoso et al., 2005a; Shinawi 

et al., 2005; Dubuisson et al., 2008]. 

6.1.3 Biochemical approach  

The first report concerning prenatal diagnosis SLOS based on biochemical profile of sterols 

in amniotic fluid was performed in 1995 by Abuelo and collaborators [Abuelo et al., 1995]. 

Since then several cases referring the quantification of 7-dehydrocholesterol in amniotic 

fluid as well as in chorionic villus either by gas chromatography or gas chromatography-

mass spectrometry have been published [Irons & Tint, 1998; Chevy et al., 2005; Cardoso et 

al., 2005a]. The diagnosis can also be made based on the detection of low enzymatic 7-

dehydrocholesterol reductase activity on cultivated amniocytes or chorionic villus [Linck et 

al., 2000; Ginat et al., 2004]. 

Nowadays liquid chromatography-tandem mass spectrometry (LC-MS-MS) is available in 

many clinical biochemistry laboratories and efforts have been made in order to apply this 

highly sensitive technology to the diagnosis of inborn errors of cholesterol biosynthesis. 

Recently a protocol for prenatal diagnosis of SLOS by LC-MS-MS became available [Griffiths 

et al., 2008]. Another promising approach concerns the non-invasive SLOS biochemical 

prenatal diagnosis based on identification and measurement of abnormal steroids in 

maternal urine [Jezela-Stanek et al., 2006; Shackleton et al., 2007].  

6.1.4 Mutation analysis of DHCR7 gene 

Prenatal diagnosis of SLOS by mutation analysis of DHCR7 gene on DNA extracted directly 

from amniotic fluid, chorionic villus or the respective cell cultures is widespread used at this 

time [Yu & Patel, 2005]. This approach is accurate and reliable [Loeffler et al., 2002]. 

Moreover molecular prenatal diagnosis should be considered an option: (i) in laboratories 

without facilities for biochemical analysis, (ii) in families with known mutations who are 

interested in early and rapid testing and (iii) in cases with ambiguous biochemical results 

[Nowaczyk et al., 2001; Löffler et al., 2009; Waye et al., 2007].  
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6.2 X-linked dominant chondrodysplasia punctata type 2, CHILD Syndrome and CK 
Syndrome  

X-linked dominant chondrodysplasia punctata type 2 (CDPX2 or Conradi-Hunermann-
Happle syndrome, MIM #302960) and Congenital hemidysplasia with ichthyosiform 
erythroderma and limb defects syndrome (CHILD syndrome, MIM #308050), are two X-
linked dominant skeletal dysplasias caused by hypocholesterolemia, which affect almost 
exclusively females, as they are typically lethal in hemizygous males. In both diseases 
affected females usually present at birth with skeletal and skin abnormalities [Herman et al., 
2000]. In CDPX2 these include epiphyseal stippling and asymmetric rhizomelic shortening 
of the limbs, follicular atrophoderma, ichthyosiform erythroderma (following the Blaschko’s 
lines), asymmetrical cataracts and accumulation in plasma and body tissues of cholesterol 

precursors: 8-dehydrocholesterol and cholest-8(9)-en-3-ol. The disorder is caused by a 

deficiency of the enzyme 3-hydroxysterol-8,7-isomerase encoded by EBP gene 
[Braverman et al., 1999]. In most severe cases ultrasound during pregnancy can show 
polyhydramnios, intra-uterine growth restriction or both [Kelley et al., 1999].Only a few 
prenatal diagnosis have been reported and they were based on the identification of 
mutations on EBP gene.  

Both CHILD syndrome and CK syndrome are caused by mutations in NSDHL gene 

encoding a 3-hydroxysterol dehydrogenase [Konig et al., 2000, McLaren et al., 2010]. 
CHILD is associated with an inflammatory nevus with unique lateralization, ipsilateral 
hypoplasia of the body that affects all skeletal structures including shortness or absence of 
limbs and viscera such as lungs, heart or kidneys [Happle et al., 1980]. CK syndrome is an X-
linked recessive intellectual disability syndrome characterized by dysmorphism, cortical 
brain malformations, asthenic build, increased methyl-sterol levels and it is associated to 
hypomorphic temperature-sensitive alleles [McLaren et al., 2010]. As far as we know, there 
are no reports on prenatal diagnosis of these two syndromes in literature. 

6.3 Greenberg dysplasia 

The Greenberg dysplasia (MIM #215140), is a rare and lethal autosomal recessive skeletal 
dysplasia characterized by hydrops fetalis, ectopic calcifications, "moth-eaten" skeletal 
dysplasia, short limbs, and abnormal chondro-osseous calcification [Madazli et al., 2001]. In 
2003, Waterham and collaborators found elevated levels of a cholesterol precursor (cholesta-

8,14-dien-3-ol) in cultured skin fibroblasts of a fetus with Greenberg dysplasia, that were 

compatible with a deficiency of the enzyme 3--hydroxysterol-14reductase from the 
cholesterol biosynthesis pathway. Sequencing analysis of two candidate genes encoding 

putative human sterol-14reductases allow the identification of an homozygous mutation 
(resulting in a truncated protein) in LBR gene (which encodes a bifunctional protein – lamin 

B receptor – with both lamin B binding and sterol-14reductase domain) [Waterham et al., 
2003]. After the publication of these results it was acknowledged that Greenberg dysplasia 
was a disorder of cholesterol biosynthesis. Nevertheless, recent studies with mice models 
raised some doubts about this classification and proposed that Greenberg dysplasia should 
be classified as a laminopathy rather than an inborn error of cholesterol synthesis [Wassif et 
al., 2007]. Despite this controversy i) ultrasound, ii) biochemical analysis of sterols on 
cultivated skin fibroblasts and iii) mutation analysis of LBR remain available to diagnose 
Greenberg dysplasia prenatally.  
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6.4 Antley–Bixler 

Antley-Bixler syndrome (ABS) is a very rare congenital multiple malformation disorder 

characterized by craniofacial anomalies, skeletal defects and, in a subset of patients, 

ambiguous genitalia. The craniofacial anomalies include brachycephaly due to severe 

craniosynostosis. The typical facial dysmorphism include: depressed nasal bridge with 

very short upturned nose, small mouth and dysplastic ears. Skeletal features include 

radiohumeral or other forearm synostoses, arachnodactyly, bowing of femurs, multiple 

contractures and neonatal fractures. A variety of congenital heart defects and 

gastrointestinal malformations have also been reported. Urogenital anomalies include 

absent, dysplastic, ectopic, or horseshoe kidneys, abnormal ureters and abnormalities of 

the external genitalia, including cryptorchidism. [Porter et al., 2011]. Recently it has been 

considered that the minimum criteria to establish the diagnosis of ABS are the presence, 

from the prenatal period, of craniosynostosis and radiohumeral synostosis [McGlaughlin, 

et al., 2010]. 

ABS is genetically heterogeneous and there has been some debate about the definition of the 

disease: by the clinical phenotype versus according to the genetic etiology [Cragun & 

Hopkin, 2005; Huang et al., 2005]. In fact, some patients present ABS without disordered 

steroidogenesis (MIM #207410) due to one gain-of-function mutation in the FGFR2 gene 

(hence following autosomal dominant inheritance) while others present ABS with disorderd 

steroidogenesis (MIM #201750) due to two loss of function mutations in the POR gene 

(therefore, following autosomal recessive inheritance) [Flück et al., 2004]. ABS patients with 

mutations in POR are included in the spectrum of metabolic disorders due to abnormal 

cholesterol pathway. The POR gene encodes a cytochrome P450 oxidoreductase. The POR 

protein is an electron donor to many cytoplasmic P450 enzymes, including the cholesterol 

C14-lanosterol demethylase encoded by the CYP51 gene and several other enzymes 

involved in steroid hormone synthesis.  

ABS patients due to POR deficiency usually present with abnormal genitalia 
(underdeveloped genitalia and cryptorchidism in affected 46,XY males and external 
virilization, with clitoromegaly and fused labia, in 46,XX females) but a much wider 
spectrum of the remaining phenotype (milder craniofacial and skeletal malformations and 
normal cognitive function). The mildest end of the POR spectrum presents as individual 
with only steroidogenesis defects (amenorrhea, polycystic ovarian syndrome and infertility) 
[Fukami et al., 2009]. 

Independently of the severity, all POR deficient patients demonstrate biochemical evidence 
of partial blocks at multiple steps in the conversion of cholesterol to cortisol, estrogens, and 
androgens and biochemical diagnosis of POR deficiency can be made by GC-MS of urinary 
steroids, which reveals a characteristic profile of elevated pregnenolone and 17-OH- 
progesterone and other progesterone metabolites, in the presence of low androgens. 
Mineralocorticoid synthesis and metabolism are normal. Mild abnormalities of serum 
steroids are often, but not always, present. The steroid metabolites that accumulate in POR 
deficiency are consistent with partial deficiencies of 21-hydroxylase (CYP21A2) and 17┙-
hydroxylase (CYP17A1). The biochemical findings are explained by the fact that the POR 
enzyme serves as an electron donor for all cytoplasmic P450 enzymes, including CYP17A1 
and CYP21A2. 
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A POR deficient fetus can be referred to prenatal diagnosis due to common abnormalities 

such as oligohydramnios or two vessel cord, to fetus with full blown ABS (multiple 

craniofacial, skeletal and urogenital abnormalities as described in detail above) on the 

ultrasound. Moreover, the diagnosis of ABS due to POR deficiency should be considered in 

pregnancies with low or undetectable serum uE3, like in SLOS [Cragun et al., 2004; 

Williamson et al., 2006]. Likewise, maternal virilization (e.g. acne, facial edema) shouldn’t be 

overlooked as it may comprise an important clue for the diagnosis of POR deficiency 

[Cragun et al., 2004].  

There should be an effort towards the confirmation of the diagnosis through molecular 

analysis since it is clinically relevant to distinguish ABS patients with disordered 

steroidogenesis from ABS patients with normal steroidogenesis, not only because of 

differences in inheritance patterns, but also because patients with POR deficiency are 

vulnerable to different risk factors and require different management. 

6.5 Possible approaches for prenatal diagnosis of Desmosterolosis, Lathostherolosis 
and Sterol-C4-methyloxidase–like deficiency 

Desmosterolosis (MIM #602398) and Lathostherolosis (MIM #607330) and Sterol-C4-

methyloxidase–like deficiency are additional autosomal recessive polimalformative 

syndromes due to defective cholesterol biosynthesis. Desmosterolosis is associated to 

mutations in DHCR24 gene and 3-hydroxysterol-24-reductase deficiency [Clayton et al. 

1996, Waterham et al., 2001] whereas mutations on SC5D gene, that encodes lathosterol-5-

desaturase, cause lathostherolosis [Krakowiak et al., 2003, Brunnetti-Pierri et al., 2002]. Both 

diseases are still poorly characterized due to the small number of cases identified. They both 

share some phenotypic characteristics with SLOS and the diagnosis of new cases will 

contribute for a better phenotypic characterization of these metabolic disorders. In order to 

contribute for the recognition of these entities, we have recently established reference values 

for several sterols in amniotic fluid at different gestational ages (lathostherol and 

desmosterol included) [Amaral et al., 2010].  

A patient with psoriasiform dermatitis, arthralgias, congenital cataracts, microcephaly, and 
developmental delay was recently identified as harboring mutations in sterol-C4-methyl 
oxidase–like gene (SC4MOL), which encodes a sterol-C4-methyl oxidase. This enzyme also 
belongs to the cholesterol biosynthesis pathway and catalyses the demethylation of C4-
methylsterols. Sterol-C4-methyl oxidase deficiency is a novel disease of inborn errors of 
cholesterol biosynthesis, which clinical spectrum remains to be defined [He et al., 2011].  

No prenatal diagnosis of these three disorders has so far been reported. However, in theory, 
it can be performed based on sterols profile of amniotic fluid or through the identification of 
mutations in the above mentioned genes. 

7. The teratogenic effect of drugs that interfere with cholesterol biosynthesis 

Many women on reproductive age take medicines on a regular basis. However, most drugs 

presently available on the market are not licensed for use in pregnancy. Therefore, these 

women may conceive on medication, leading to a large number of early pregnancies being 

exposed to a wide range of drugs. Moreover, fetuses have been increasingly exposed to new 
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classes of compounds, as these compounds have been shown to be effective and well 

tolerated outside pregnancy [Kyle, 2006].  

Drugs that block crucial steps of cholesterol biosynthesis exert a teratogenic effect on the 

fetus, mimicking the genetically determined enzymatic defects. These phenocopies have 

features that resemble the phenotype of the corresponding inherited metabolic disease. 

Drugs with such properties are identified among antifungal, hipocholesterolemic and some 

antineoplastic agents. 

7.1 Antifungals 

A variety of antimycotic compounds are currently available to treat systemic or 
mucocutaneous fungal infections and some of them are capable of penetrating the placental 
barrier [Moudgal & Sobel, 2003]. Azoles antifungals act by competitive inhibition of CYP51 

(lanosterol 14-demethylase) decreasing the synthesis of ergosterol, the main sterol in 
fungal cell membrane. Apart from ergosterol depletion, selective inhibition of CYP51 also 
leads to accumulation of lanosterol and other 14-methylsterols, resulting in alterations of 
fungal wall, cell growth, cell replication and inhibition of morphogenic transformation of 
yeasts into mycelia [Giavini & Menegola, 2010, Pursley et al., 1996 ]. The inhibitory potential 
of these compounds is not limited to fungi; it has also been seen in a number of mammalian 
cytochrom P450-dependent activities, including microsomial enzymes [Sheets & Mason, 
1984] and studies carried out in pregnant animals taking high doses of azole fungicides 
revealed their teratogenic potential. Malformations were found at branchial apparatus 
(related with facial structures), axial skeleton and limbs [Giavini & Menegola, 2010, 
Menegola et al., 2003].  

Fluconazole, a bis-triazole anti-fungal agent is commonly used to treat human mycosis. It 
shows excellent oral absorption, low plasma protein affinity, long half-life, high 
concentrations in urine and CSF, minimal adverse reactions, wide spectrum of anti-fungal 
activity and it has high specificity for fungal cytochrome P450 system [Agrawal et al., 1996]. 

Nevertheless, at least five cases reporting children with a multiple malformation syndrome 
due to first-trimester fluconazole exposure were published. In all cases, high doses (400-800 
mg/day) of fluconazole were administrated during several weeks (in order to treat a severe 
systemic mycotic infection) before women were aware that they were pregnant [Aleck & 
Bartley, 1997; Lopez-Rangel & Van Allen, 2005; Pursley et al., 1996]. The newborns showed 
anomalies analogous to those seen in experimental animals [Aleck & Bartley, 1997] and the 
phenotype identified resembled that of Antley-Bixler syndrome (thoroughly described 
above) [Lopez-Rangel & Van Allen, 2005]. A possible explanation for the similarity between 
this embriopathy and Antley-Bixler phenotype is a compromised cytochrome P450 system 
in both situations. 

In contrast to the above described teratogenicity of fluconazole, the use of topical azoles for 
treatment of superficial fungal infections in pregnancy seems safe and efficient [Moudgal & 
Sobel, 2003] and there are several epidemiologic reports of tens of women who took 
sporadically low doses (50 -150mg/day) of fluconazole during first trimester of pregnancy 
and did not show increased overall risk of birth defects, compared with a control group 
(fluconazole free during pregnancy) [Giavini & Menegola, 2010; Inman et al., 1994; 
Mastroiacovo et al., 1996; Nørgaard et al., 2008]. Hence, as it has been previously 
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demonstrated for other drugs [Polifka et al., 2002], dosage seems to be a critical factor on the 
teratogeneticity potential of fluconzazole given that apparently the exposure is harmful only 
if it is chronic or exceeds a certain threshold.  

7.2 Statins  

Another group of compounds that strongly interferes with cholesterol biosynthesis pathway 
are the hypocholesterolemic drugs: statins. These compounds inhibit the enzyme 3-hydroxy-
3-methylglutaryl-CoA (HMG-CoA) reductase that catalyses a limitating step of cholesterol 
biosynthesis: the conversion of HMG-CoA to mevalonate. Because this key compound is 
also required for the synthesis of several other biologically important molecules, levels of 
HMG-CoA reductase may regulate many cellular processes and functions in cell. In fact, 
knock out embryos for HMG-CoA reductase died prematurely suggesting that the loss of 
HMG-CoA reductase activity leads to implantation failure or to embryonic death prior to 
implantation [Ohashi, 2003].  

The use of statins for treatment of hyperlipidemia is increasingly common [Taguchi et al., 
2008] and the effectiveness of these agents in reducing mortality and morbidity associated 
with coronary artery disease is well established [Kusters et al., 2010]. However, when 
pregnancy is considered, lipid-lowering drugs are often discontinued because of the fear of 
teratogenic effects [Kusters et al., 2010].  

There is scarce and conflicting evidence on the teratogenic potential of statins and most of 

the information on drug safety for the fetus is limited to animal studies, a few case reports 

and retrospective uncontrolled data [Avis et al., 2009]. A study focusing on the toxicity of 

atorvastatin in pregnant rats and rabbits has shown that only the hightest doses tested - 

which were also toxic for the mothers - had harmful effects in pregnancy by increasing 

postimplantation loss and decreasing fetal body weight [Dostal et al., 1994]. Later, studies 

evaluating in vitro effects of statins in a human placental model have demonstrated that 

simvastatin (i) inhibited half of the proliferative events in the villi, (ii) increased apoptosis of 

cytotrophoblast cells and (iii) significantly decreased secretion of progesterone from the 

placental explants. These effects may contribute to the failure of implantation and be 

deleterious to the growth of the placental tissues which could explain the higher abortion 

rate and teratogenicity observed in animals exposed to statins during pregnancy [Kenis et 

al., 2005].  

Moreover, due to the occurrence of unplanned pregnancies, there are a number of cases in 

which statins were inadvertently taken during the first trimester of pregnancy, some of 

them resulting in newborns with birth defects [Edison & Muenke, 2004, 2005; Petersen et al., 

2008; Trakadis et al., 2009]. Nevertheless, these studies are not conclusive due to 

ascertainment bias: (i) in some cases pregnant women took potentially teratogenic drugs 

other than statins [Trakadis et al., 2009] or (ii) previous maternal health disorders like pre-

pregnancy diabetes, obesity or both [Petersen et al., 2008] or (iii) the small number of cases 

identified enables the validation of a stastically significant conclusion [Edison & Muenke, 

2004, 2005; Petersen et al., 2008]. Furthermore, none of the studies evaluated the possibility 

of decreased fertility, increased pre-implantation or peri-implantation losses that could be 

increased as shown in animal experiments [Elkin & Yan , 1999; Lee et al., 2007; Ohashi et al., 

2003; Richards & Cole, 2006; Zapata et al., 2003]. 
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7.3 Tamoxifen 

Another interesting compound is tamoxifen, a nonsteroidal selective estrogen receptor 
modulator, used for the treatment and prevention of breast cancer [de Medina et al., 2004]. 
This drug is currently used as adjuvant treatment in premenopausal women affected or at 
risk for breast cancer [Berger & Clericuzio, 2008]. Tamoxifen has also been reported to 
protect against the progression of coronary artery diseases in human and animal models [de 
Medina et al., 2004]. Such property can be related to the capacity of tamoxifen to inibit 
several enzymes related with cholesterol metabolism namely acyl-CoA cholesterol 
acyltransferase which catalyses cholesterol esterification [de Medina et al., 2004] as well as 
with its hypocholesterolemic properties. As a matter of fact, tamoxifen inibits several 

cholesterogenic enzymes, namely: (i) sterol -8-isomerase, (ii) sterol -24-reductase, (iii) 
sterol -14-reductase, and the administration of such compound to humans and laboratory 
animals results in a drastic reduction in cholesterol and a marked accumulation of certain 
sterol intermediates in serum [Cho et al., 1998].  

Despite tamoxifen long use in clinical practice, its teratogenic potential remains 
inconclusive. Furthermore, while the evidence of effects of tamoxifen in humans in utero is 
minimal, animal studies have shown evidence of teratogenicity (abnormalities of genital 
tract and irregulary ossified ribs in rat pups) and delayed vaginal opening in female 
offspring of guinea pigs [Barthelmes & Gateley, 2004; Berger & Clericuzio, 2008]. According 
to a review of seven papers refering tamoxifen prenatal exposure there was (i) one case of 
ambious genitalia after 20 weeks exposure to a diary dose of 20 mg (ii) one case of 
Goldenhar’s syndrome after 26 weeks exposure to 20 mg/day (with simultaneous exposure 
to other teratogenig drugs during the first 6 weeks) [Barthelmes & Gateley, 2004]. Later, one 
case of Pierre Robin sequence (small mandible, cleft palate and glossoptosis) associated with 
first trimestre fetal exposure was also published in a pregnancy with gestational diabetes 
[Berger & Clericuzio, 2008].  

If we put together the fact that (i) this drug was initialy developed as a contraceptive agent 
[Barthelmes & Gateley, 2004], (ii) it inhibits several enzymes of cholesterol biosynthesis 
pathway, (iii) in most cases the exposure to tamoxifen occurs very early – sometimes even 
before women are aware of the pregnancy - and (iv) no adverse effects were observed in 85 
cases in which tamoxifen was taken as preventive drug of breast cancer (without association 
to other potentially teratogenic compounds exposure), we are lead to the conclusion that 
tamoxifen has a „all-or-none“ effect. In other words, exposure to tamoxifen may cause 
affected embryos that are lost very early (even before women are aware of the pregnancy) or 
fetal survival without any malformation.  

All in all, one should highlight the role of the medical appointements on the evaluation of 
the interation of drugs with the developing fetus. Ideally, pregnancies should be prepared in 
advance and, at that time, the potencially teratogenic drugs should be replaced by less 
harmfull medicines or, if possible, discontinued. After conception and when evaluating a 
fetus with malformations on the ultrasound, doctors should bear in mind the role of 
teratogenic drugs that can produce phenocopies of genetically determined disorders. 

8. Conclusion  

During the last two decades inborn errors of cholesterol biosynthesis have emerged as a 
group of metabolic disorders that should be included in the differential diagnosis of 
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intrauterine growth restriction and abnormal embryogenesis as well as in the investigation 
of the etiology of low levels of maternal estriol in the second trimester of pregnancy. 

Patients with these metabolic diseases present with complex malformation syndromes 
involving different organs and systems. As metabolic pathways are biological interactive 
networks, one specific blockage activates new routes for detoxication of accumulated 
products followed by excretion. For example, it was noticed that urine from pregnant 
women at risk for SLOS revealed abnormal steroids derived from 7-dehydrocholesterol. One 
can assume this as a general rule, and postulate that, in defective cholesterol biosynthesis 
accumulated sterols are metabolized originating “new” steroids. If quantification of 
abnormal steroids in maternal urine (which is non invasive and easy to perform) becomes 
widely available, one can envision a future in which prenatal diagnosis of inborn errors of 
cholesterol biosynthesis is extended to most fetuses with developmental abnormalities.  

Furthermore it is possible that, as it is being developed in other fields of medical genetics, 
high throughput technologies might also be used in the setting of metabolic disorders: for 
example, a microarray chip with oligonucleotide probes targeted to all the genes involved in 
metabolic pathways and the application of a next generation sequencing platform to 
perform sequencing analysis of those genes. This would allow for the identification of both 
copy number variants and point mutations of the genes implicated in the inborn errors of 
cholesterol biosynthesis pathway, thus promoting a global and thorough approach to these 
diseases, a better phenotype-genotype correlation and a more accurate knowledge of the 
spectrum of these disorders.  
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