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1. Introduction 

1.1 Policy context 

There is a strong need for accurate and spatially referenced information regarding policy 
making and model linkage. This need has been expressed by land users, and policy and 
decision makers in order to estimate spatially and locally the impacts of European policy 
(like the Common Agricultural Policy) and/or global changes on economic agents and 
consequently on natural resources (Cantelaube et al., 2012). 

The proposal for a framework Directive (COM (2006) 232) (EC, 2006) sets out common 
principles for protecting soils across the EU. Within this common framework, the EU 
Member States will be in a position to decide how best to protect soil and how use it in a 
sustainable way on their own territory. In this policy document, European Commission 
identifies 8 soil threats: soil erosion, soil organic carbon decline, salinisation, landslides, soil 
compaction, biodiversity and soil contamination. The policy document explains why EU 
action is needed to ensure a high level of soil protection, and what kind of measures must be 
taken. As the soil threats have been described in the proposed Soil Thematic Strategy for Soil 
Protection (COM (2006) 231), there is a need to address them and relative issues at various 
scales; from local/province scale, to regional/national scale, and at the end to 
continental/global scale. The modeling platform should be constructed in such a way that 
knowledge and information can be passed along the spatial scales causing the minimum 
loss of information.  Particular interest will be given to outputs from the aggregation model 
such as organic carbon decline, soil erosion and soil.  

The INSPIRE Directive (INSPIRE, 2007) aims at making relevant geographic information 

available and structurally interoperable for the purpose of formulation, implementation, 

monitoring and evaluation of Community policy-making related to the environment. To 

that end, data specifications for various themes are to be developed. The Soil theme is listed 

in Annex III of the INSPIRE Directive. 

Soil organic data are requested for models relating to climate change. The role of soil in this 
debate, in particular peat, as a store of carbon and its role in managing terrestrial fluxes of 
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carbon dioxide (CO2), has become prominent. Soil contains about twice as much organic 
carbon as aboveground vegetation. Soil organic carbon stocks in the EU-27 are estimated to 
be around 75 billion tonnes of carbon (Jones et al., 2005).  

Soil data and information are highly relevant for the development, implementation and 

assessment of a number of EU policy areas: agriculture, soil protection, bio-energy, water 

protection, nature protection, development policy, health and sustainable development. All 

those policy areas request soil data in various scales depending on the application. 

Regarding research purposes, according to the data logs in European Soil Data Centre 

(Panagos et al., 2012), the users deploy ESDAC data mainly (but not exclusively) for 

modeling purposes (35%). Most of the modelling exercises request the input data to be 

transferred in a specific scale in order to fit the modeling purposes. Most of the modeling is 

performed in small scales covering few square kilometres; however, during the last years 

the modeling exercises performed in national or European level is increasing due to high 

demand for environmental indicators performance. 

1.2 Multi-scale European Soil Information System (MEUSIS) 

Implementation of the INSPIRE directive should emerge the development of a Multi-scale 

European Soil Information System (MEUSIS), from the data producer up to the final user, 

responding to the various needs at different scales. In order to achieve this, a common 

standard for the collection of harmonized soil information will have to be implemented. As 

a response to this requirement, MEUSIS is proposed as a harmonized hierarchical Grid 

(Raster) data system which constitutes an ideal framework for the building of a nested 

system of soil data. This reference grid is based on implementing rules facilitating data 

interoperability. 

The final result of these developments should be the operation of a harmonized soil 

information system for Europe streamlining the flow of information from the data producer 

at a local scale to the data users at the more general Regional, National, European and 

Global scales. Such a system should facilitate the derivation of data needed for the regular 

reporting about the state of European soils by European Commission authorities. 

However, soil geography, soil qualities and soil degradation processes are highly variable in 

Europe. Soil data sets from different countries have been often created using different 

nomenclatures and measuring techniques, which is at the origin of current difficulties with 

comparability of soil data. The availability of soil data is also extremely variable in Europe. 

Individual Member States have taken different initiatives on soil protection aimed at those 

soil degradation processes they considered to be a priority. 

Traditionally, the European Soil Database has been distributed in vector format. More 

recently, interest was expressed for deriving a raster version of this database. In the specific 

case of MEUSIS, the advantages of the raster approach are listed below: 

 Easy to identify the data per location. Each cell has an ID and its geographic location is 

determined by its position in the matrix cell.  

 It is fairly easy to store data and to perform data analysis.  
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 It is easy to integrate data from different data sources or different data types. As a result 
soil data could be processed by other environmental indicators and can be imported in 
data models such as climate change ones. 

 The pixel approach would make it easier for data to be updated. 

 The structure is suitable to perform upscaling (bottom-up) from local to regional, 
national and European level. 

The main disadvantage of the raster approach is that this technique is less precise in 

representing the real world, which means that it is not suitable for representing soil 

coverage complexity and it might not be always easy to persuade the general public about 

the potential usability of this technique. In Figure 1 portray an example on how pixel cells of 

1km2 size may be represented in a higher resolution grid or raster of 10 km2. 

 

Fig. 1. Grid Example in 2 different resolutions 

2. Upscaling  

Upscaling of environmental indicators applied in regional analyses is sensitive to scale 

issues of the input Data (Bechini et al., 2011). Environmental assessments are frequently 

carried out with indicators (Viglizzo et al., 2006) and simulation models (Saffih- Hdadi and 

Mary, 2008). The environmental indicators have an increasing importance and are easily 

understandable by the general public. Those quantitative expressions measure the condition 

of a particular environmental attribute in relation to thresholds set by scientific community. 

However, decision makers use the environmental indicators to communicate with the 

general public.  
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When dealing with areas of different sizes and with information available at different scales, 
policy makers and decision makers need to either upscale their evaluations and simulations 
from small to large scale or downscale from large to small scale (Stein et al., 2001). 
Environmental indicators are dependent upon data availability and also upon the scale for 
which policy statements are required. As these may not match, changes in scales may be 
necessary. Moreover, change is scale may requested in research and modeling where the 
indicator is used as input parameter in a model. It has been recognised that the quality of 
indicators relies on the scale which they represent. The quality of the state of the 
environment at a local scale, for example, requires different information compared to the 
state of the environment at national scale. 

From the one hand, ecologists criticize upscaling approaches insisting that it ecological 
knowledge is difficult to scale up (Ehleringer and Field, 1993). They support that 
environmental systems are organized hierarchically with multiple processes taking place 
across scales. When moving from a finer scale to a coarser one in this nested hierarchy, new 
processes may be encountered which is difficult to be translated in research results. The 
environmental systems are not non linear ones and no scaling rules can be imposed to 
express such a behaviour. Environmental systems are spatially heterogeneous due to spatial 
variations in climatic and soil conditions. As you can see from the references, this was 
mostly the trend in the 80’s-90’s while in the recent years there are many applications of 
upscaling in many environmental fields. 

Scale for environmental indicators has barely been addressed in the literature. Scale issues 
are considered to be of importance (Bierkens et al., 2000) and advantages have been reported 
in hydrology (Feddes, 1995) and soil science (Hoosbeek and Bouma, 1998; McBratney, 1998). 
Upscaling is the process of aggregating information collected at a fine scale towards a 
coarser scale (Van Bodegom et al., 2002). Downscaling is the process of detailing information 
collected at a coarse scale towards a finer scale. 

Scale is defined as the spatial resolution of the data. Scales, defined in terms of resolution 
and procedures, are presented to translate data from one scale to another: upscaling to 
change from high resolution data towards a low resolution, and downscaling for the inverse 
process. Environmental assessments at a small scale commonly rely on measured input, 
whereas assessments at a large scale are mainly based on estimated inputs that cannot be 
measured or outputs of modeling exercises. 

Policy makers request to know also the uncertainty of environmental assessments in order 
to better interpret the results and proceed with the most suitable decision. The 
quantification of uncertainty implies the confidence level of indicators which can be 
measured with statistical measurement such as standard deviation.  

Upscaling in complexity means that data quality degrades with decreasing complexity, 
because information is generalised and uncertainty increases. In literature, upscaling is 
defined as the process that replaces a heterogeneous domain with a homogeneous one in 
such a manner that both domains produce the same response under some upscaled 
boundary conditions (Rubin, 1993). The difficulty in upscaling stems from the inherent 
spatial variability of soil properties and their often nonlinear dependence on state variables. 
In 2004, Harter and Hopmans have distinguished four different scales: pore scale, local 
(macroscopic), field and regional (watershed). In this study the upscaled processes are 
performed between 3 scales: local, regional and national. 
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The scaling methods are applied before the geostatistical analysis in order to avoid dealing 
with multiple, spatially variable but correlated physical quantities. Environmental 
modelling requires the input spatial data to be in the same scale and upscaling/downscaling 
processes assist in transferring the input data in the requested scale. Geostatistics is used to 
make predictions of attributes at un-sampled locations from sparse auxiliary data. Upscaling 
is also used in disciplines or applications where there may be too much data which need to 
reduced to manageable proportions.  

Based on King’s approach for explicit upscaling in space (King, 1991), we will try to 
integrate the heterogeneity that accompanies the change in model extent by averaging 
across heterogeneity in the soil organic carbon data and calculating mean values for the 
model’s arguments.  

3. Material and methods 

3.1 Indicators – Organic carbon  

An environmental indicator is defined as a measure to evaluate or describe an 

environmental system. The indicator should be measurable and the threshold values 

attached to it would facilitate its presentation to the public. The indicators require to a 

scientific background and a sound method of evaluation (Gaunt et al., 1997). One of the 

main characteristics for the definition of an environmental indicator is the application in 

space and time. In this context, the indicator can be aggregated to a more coarse scale in 

order to serve decision making. Here, comes the contribution of statistics in comparing the 

indicators by using specific figures such as mean, median, mode, standard deviation, 

sample variance, quartile, ranges, etc.  

Soil research and policy makers in the soil field needs statistics to support and confirm the 

impressions and interpretations of investigations in the field. The use of mathematics and 

statistics becomes more and more popular among soil scientists. The terms such as 

geostatistics become popular in the soil science community while new software tools 

facilitate such data processing with the help of more powerful computers.  

However, Minasny and McBratney argued that better prediction of soil properties can be 

achieved more with gathering higher quality data than using sophisticated geostatistical 

methods and tools. However, it should be underlined the high cost and the time consuming 

for laboratory analysis of field data; that is why research in developing methods for the 

creation of soil maps from sparse soil data is becoming increasingly important. In the last 20 

years, the development of prediction methods using cheap auxiliary data to spatially extend 

sparse and expensive soil information has become a focus of research in digital soil mapping 

(Minasny and McBratney, 2007). Examples of secondary information, named covariates, 

include remote sensing images, elevation data, land cover and crop yield data. 

In order to describe the upscaling methodology, a data field such as the Organic Carbon 
(OC) content in the surface horizon 0-30 cm of the Slovakia Soil Database will be used. The 
Organic Carbon is a quantitative attribute measured as tones per hectare according to the 
following equation: 

OC(t/ha)  = Cox * BD* d 
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Where, 
Cox (%) is the average content of organic carbon for topsoil/subsoil, 
BD (g/cm3) is the average soil bulk density for topsoil/subsoil,  
d (cm) is the volume of topsoil/subsoil 

Soil organic carbon is an important soil component as it influences soil structure and 
aggregation, soil moisture conditions, soil nutrient status and soil biota, and hence 
influences ecosystem functioning (Lal, 2004). 

3.2 Changes in scale 

Spatial scale refers to the representativeness of the singe measurements (or observations) for 
larger mapping units. The level of variation is different depending on the scale; few 
measurements at a coarse scale in a large area have a different variation from few 
measurements in a fine scale or many measurements in a large scale. Upscaling is the 
process of changing scale from fine to coarser one and it is performed with procedures such 
as averaging or block kriging. Use of confidence levels and ranges appears useful in 
upscaling. The use of GIS advanced systems is useful to visualise the affects of upscaled 
result and contribute better t communication with public and decision makers. 

3.3 Aggregation technique and cell factor 

Scale factors in general are defined as conversion factors that relate the characteristics of one 
system to the corresponding characteristics of another system (Tillotson and Nielsen, 1984). 
Aggregating functions in the upscaling methodology and spatial data process will be done 
using ArcGIS software. As a GIS technique, spatial join is proposed since spatial data from 
one layer can be aggregated and added to objects of the other layer, which is often referred 
to as the destination layer. Aggregation is accomplished via a cell fit criterion since many 
data cells from one source layer would fit in one cell in the destination layer. The modeller 
must decide how existing attributes will be summarized during aggregation (e.g., averages, 
sums, median, and mode). Aggregation of raster data always involves a cell size increase 
and a decrease in resolution. This is accomplished by multiplying the cell size of the input 
raster by a cell factor, which must be an integer greater than 1. For instance, a cell factor of 2 
implies that the cell size of the output raster would be 2 times greater than cell size of input 
raster (e.g., an input resolution of 5km multiplied by 2 equals an output resolution of 10km). 
The cell factor also determines how many input cells are used to derive a value for each 
output cell. For example, a cell factor of 2 requires 2 × 2 or 4(22) input cells. The cell factor 
also determines how many input cells are used to derive a value for each output cell the 
following equation:  

Output Cell Size = Input Cell Size x Cell Factor 

In the proposed upscaling methodology, the value of each output cell is calculated as the 
mean or median of the input cells that fall within the output cell. In our study the scale 
factors will be 2, 5 and 10. 

4. Methodology application of MEUSIS in Slovakia 

The present chapter uses the results of a case study implemented in Slovakia in 2006 and the 
resulting Slovakia Soil Database. Due to financial resources, it is impossible to make such an 
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assessment on a larger scale and one of the EU-27 member states has been selected in order 
to perform the testing phase. In 2005-2006 period, the SSCRI, using its expertise to identify 
the appropriate local data sources, compiled the Slovakian Soil Database on three scales 
following MEUSIS requirements and, eventually, provided structured metadata as a 
complement part of the data. The data are considered relatively new in the soil science 
domain if you think that the European Soil Database contains national data which have been 
collected in the ‘70s and imported in digital format in the ‘80s.  

Due to their specificity in terms of soil geography (variability in soil organic carbon content) 
and their data availability, the selected pilot areas in Slovakia have contributed to the 
analysis of the feasibility of such an innovative approach. In MEUSIS, all geographical 
information (Attributes and Geometry components) are represented by the grid of regular 
spatial elements (pixels). The representation of various spatial resolution details follows the 
INSPIRE recommendations. In addition, three spatial resolution levels of geographical 
information have been defined for MEUSIS:  

 10 km2 (10km x 10km) coarse resolution grid, corresponding to data collection in 
national level 

 5 km2 (5km x 5km) medium resolution grid, corresponding to data collection in regional 
level 

 1 km2 (1km x 1km), fine resolution grid  corresponding to data collection in local level 

 

Fig. 2. Demonstration of upscaling 

4.1 Upscaling from 5km
2 

grid towards the 10km
2 

grid 

According to the aggregation technique described above, 4 cells of 5km x 5km size are 
requested in order to upscale their value to one single cell of 10 km x 10 km. The 
aggregation of the 5km x 5km grid cells is performed using both the MEAN value of the 4 
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cells and the MEDIAN value of the 4 cells producing 2 output datasets of 129 cells sized at10 
km2 each. In the cases near the borders, less than 4 cells are aggregated in order “produce” a 
cell of a coarser resolution at 10km2.  

The aggregation of 4 data cells using the Median function has an interesting drawback since 

if there are 3 cells out of 4 (cases near the borders of the input data) with 0 value, then the 

Median value of the 4 data cells is taking 0 value while the Mean value is different than 0. In 

order not to take into account those “extreme” cases which may alter our analysis, we will 

exclude the 5 cells. That implies that the 2 upscaled dataset plus the original one enclose 124 

cells. 

The present analysis may be applied also in order to identify cases where the data provider 
has previously performed the “tricky” operation well-known as downscaling. The proposed 
methodology can serve also as a first data quality check in order to find out  if the data 
providers have contributed with their original data or they have manipulated their data by 
downscaling their coarser resolution data to finer resolution ones.  

In figure 3, the scatter diagram reports the original 10km2 values on the Y axis and the 
Upscaled (MEAN, MEDIAN) data on the Y axis. It is obvious that there is a noticeable linear 
relationship between the 2 upscaled datasets and the original data as there is a major 
concentration of data values near a line.  

Comparison of Original Data with Upscaled Ones 

(MEAN, MEDIAN)
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Fig. 3. Scatter Diagram of the Original data and Upscaled MEAN data 

In the past, there were many theoretical references to an ideal MEUSIS as a nested system of 
hierarchical grids while in this analysis, we describe the results of the applied upscaling 
methodology in the Slovakian MEUSIS using both GIS operations and Statistical Analysis 
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(Descriptors, Scatter Diagram). Table 1 presents the core statistical indicators (Kavussanos, 
2005) assessing the results of upscaling application.  

 

Description of statistic 
Original Data 

10km2 
Upscaled data using 

MEAN 
Upscaled data using 

MEDIAN 

Mean 52,96 53,76 52,29 

Median 53 53 51,5 

Mode 47 53 48 

Standard Deviation 13,51 10,94 10,73 

Sample Variance 182,61 119,58 115,18 

Coefficient of Kurtosis 1,26 -0,03 1,30 

Coefficient of Skewness -0,65 0,25 -0,51 

Range 74 57 60 

Minimum 14 31 14 

Maximum 88 88 74 

P25 (First Quartile) 47 47 46 

P75 (Third Quartile) 63 62 62 

Count (Cells) 124 124 124 

Confidence interval (95%) 2,40 1,94 1,91 

Correlation Coefficient(r)  0,767 0,740 

Table 1. Descriptive Statistics of the Upscaling Process from 5km2 towards 10km2 

The results of upscaling process which have used the MEAN value (named as Upscaled 

MEAN data) and the ones which have used the MEAN value (named as Upscaled MEDIAN 

data) will be compared against the Original data 10km2 (supplied by the data provider) 

which is the criterion called to validate both processes. Find below the following remarks: 

 The Means in both upscaled datasets are very close to the original data mean. Two are 

the possible explanations to this outcome:  

 Either the data sources for both the 10 km2 Original and the 5 km2 Original data  are 

the same; this means that the original 5 km2 numeric values, have previously been 

downscaled from  the 10 km2  Original ones. In practice, a newly introduced 

advantage of upscaling process is the detection of such data patterns. According to 

the data pattern, this is not the case in our datasets since the detailed data of 5 km2 

have a high variability inside the border of the 10km2. 

 Or the use of the above mentioned upscaling method is producing satisfactory 

results.  

 The Median values of both aggregated datasets are very close to the Median value of 

the original data. The Mode of upscaled MEDIAN data is very close to the mode of the 

original ones. Being almost the same, mean, median and mode of the upscaled MEAN 

data suggests symmetry in the distribution and once again confirm the theory that 

many naturally-occurring phenomena can be approximated by normal distributions 

(Dikmen, 2003). 

Taking into account the three above mentioned measures of central tendency (Mean, 

Median, and Mode), we conclude that there are no extreme values that can affect the 
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distributions of the three datasets. There is a small-medium variability regarding the 

Organic Carbon Content in the scale of 5km2 and as a consequence the upscaling process 

gives positive results either using the MEAN or the MEDIAN. 

 Range and Quartile indicators show that there is quite medium variability in the 

original data which becomes smoother in the upscaled datasets.  

 The original data have a relative higher Standard Deviation than the two upscaled 

datasets and it is evident that the two aggregated datasets show a “smooth” variability 

as they have reduced the dispersion of the data.  

 Data Distribution: Regarding the prediction of intervals, it is it has been observed that 

the distribution of both upscaled data tends to be a normal distribution and as a 

consequence we may use the Standard Normal Distribution. With a probability of 95%, 

the range of possible values for the parameter Organic Carbon content 0-30cm will vary 

according to the equation; 

( 1.96 1.96 ) 0.95P          

All the above mentioned measures of dispersion show that upscaling process has a tendency 

for more smother data comparing with the original values. 

 The frequency distributions in all three datasets are platykurtic (Coefficient of 

Kurtosis) and have a negative Skewness (except the original data with a symmetric 

distribution) 

 Correlation Coefficient or Pearson Correlation Coefficient (r) is a measure of the 

strength of the linear relationship between two variables. It is not our objective to prove 

that there is a dependency between the 2 datasets; instead a possible high value of 

Coefficient indicates how good predictions we can make if we try to upscale the 

detailed data. The original 10km2 data are used to validate how good forecasts can be 

given by the aggregated values. The value 0,767 determines a quite strong relationship 

between the upscaled MEAN data and the original ones (It is also obvious from the 

Scatter Diagram in Figure 3). 

4.2 Upscaling from 1km
2
grid towards the 10km

2 
grid 

In order to update one cell of 10km x 10km, it is requested 100 cells of 1km x 1km. The data 

provider has collected data for 4.409 cells of 1km2 which may be upscaled to 59 cells of 

10km2. In the cases near the borders, less than 100 cells are aggregated in order “produce” a 

cell of a coarser resolution at 10km. In Figure 4, the existing data covers only 14 1km2 cells 

and the majority of the cells (11 out of 14) have 0 values. As a result the Mean is estimated 

with a value around 9 but the median will have a 0 value. In order not to take into account 

those “extreme” cases which may alter our analysis, we will exclude the 4 cells which have 

given results like the one shown above.  

After implementing the upscaling process, the output datasets (Upscaled MEAN data, 

Upscaled MEDIAN data) have 55 common cells with the Original 10km2 data. In the 

following paragraphs a more in depth statistical analysis will follow in order to assess the 

results of upscaling application.  
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Fig. 4. The extreme case of MEDIAN upscale 

Proceeding with the statistical analysis, some statistical descriptors are compared in the 

table 2 and the following remarks came out: 

 Evaluating the Mean of the 3 datasets, we observe a slightly significant difference 

between the 2 Means of the upscaled data and the Mean of the original data. More than 

10 tones per hectare difference may be explained as the upscaled data tend to have 

lower values than the original ones due to high dispersion of original data.  

 Regarding the Median and the Mode, there is even a larger difference between the 2 

upscaled datasets and the original data since the upscaling process has the trend to 

“produce” lower values. 

Comparing the Upscaling results using the MEAN function with those using the MEDIAN 

function, we notice that the first ones tend to be better. The statistical indicators of the 

Upscaled MEAN data are closer to the Original data indicators. The upscaled MEDIAN data 

show a smoother dispersion and they show a big “concentration” around their mean.  

 The Range of the Original data is higher than the one of the Upscaled MEAN data and 
much higher than the Upscaled MEDIAN data. The same comment is also referring to 
the P25 and P75 Quartiles.  

 The Standard Deviation of the Upscaled MEAN data and the Original data are almost 
the same, while the standard deviation of the Upscaled MEDIAN data is much lower. 
The upscaled MEDIAN data show a very smooth variability while the other two 
datasets have almost the same variability.  

www.intechopen.com



 
Modern Information Systems 

 

12

 The Correlation Coefficient has a value of 0,49 between the Upscaled MEAN data and 
the Original data which express a medium-strong relationship (neither too strong, nor 
weak) between the 2 data distributions. Instead, this coefficient is smaller for the 
relationship between the Upscaled MEDIAN data and the Original ones which express 
a medium relationship between the 2 data distributions.  

The results produced in the case of 1km2 upscaling are considered satisfactory as the 

aggregation process that takes place aggregates 100 values to one. Scientists may argue that 

the upscale process may function well since averaging 100 values may “produce” a better 

result in an area of 10km2 than picking up (survey) one random value in this large area 

(Original Data). At the end, comparing the upscaling results from 1km2 with the ones from 

the 5km2, we conclude that they are not as good as the latter ones. This remark can be 

explained since it is more probable to have good estimates when you upscale 4 cells than 

when you upscale 100 cells.  

 

Description of statistic Original Data 
Upscaled data using 

MEAN 

Upscaled data using 

MEDIAN 

Mean 54,13 42,71 43,13 

Median 56 40 44 

Mode 50 29 30 

Standard Deviation 15,43 16,00 10,56 

Sample Variance 238,22 256,14 111,52 

Coefficient of Kurtosis 1,29 1,11 0,20 

Coefficient of Skewness -0,77 0,98 0,06 

Range 76 73 56 

Minimum 12 16 16 

Maximum 88 89 72 

P25 (First Quartile) 47 33 35 

P75 (Third Quartile) 65 52 50 

Count (Cells) 55 55 55 

Confidence Interval (95%) 4,17 4,33 2,85 

Correlation Coefficient(r)  0,490 0,401 

Table 2. Descriptive Statistics of the Upscaling Process from 1km2 towards 10km2 

4.3 Upscaling from 1km
2
grid towards the 5km

2 
grid 

In this case, the hierarchical grid system requests 25 cells of 1km2 in order to update 1 cell of 

5km2. In the Slovakia Soil Database there are available 4.409 cells of 1km2 and the upscaling 

process had as an output 207 cells of 5km2. In this case, it was more evident the problem of 

the 0-value MEDIAN cells described above (with the Figure 4). In order not to alter the 

comparison results, the 20 cells with 0-value have been excluded and the outputs of 187 

upscaled cells of 5km2 will be compared in table 3.  

Proceeding with the statistical analysis, some statistical descriptors are compared in the 

table 3 and the following remarks came out: 
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 The Mean values of the upscaled datasets are very close but still quite “distant” from 
the Mean value of the Original data. Around 8-9 tones per hectare difference may be 
explained as the upscaled data tend to have lower values than the original ones due to 
high dispersion of original data. Of course, the variability is less than the previous 
upscaling exercise since 25 cells is aggregated comparing with the 100 cells in the 
previous chapter.  

 The Standard Deviation of the Upscaled MEAN data and the Original data are almost 
the same, while the Standard Deviation of the Upscaled MEDIAN data is much lower. 
The same “pattern” has been noticed in the previous upscaling exercise. 

 The Correlation Coefficient has a value of 0,62 between the Upscaled MEAN data and 
the Original data which express a quite-strong relationship between the 2 data 
distributions. This indicator is used only to forecast how good can be possible 
predictions of the original data based on the upscaling processes. 

Comparing the Upscaling results using the MEAN function with those using the 
MEDIAN function, we study that the first ones tend to follow the data pattern of the 
original data. Instead, the upscaled MEDIAN data show a smoother variability since they 
are more concentrated around their mean value. The statistical indicators, in the case of 
1km2 upscaling towards 5km2, can be considered somehow in between the other 2 
exercises with closer trend towards the results of the 1km2 to 10km2 upscaling. This 
remark can be explained since statistically it is more probable to have worst estimates 
when you upscale 25 cells than when you upscale 4 cells and better estimates than 
upscaling 100 cells.  

 

Description of statistic Original Data 
Upscaled data using 

MEAN 

Upscaled data using 

MEDIAN 

Mean 54,98 46,21 45,75 

Median 57 40 45 

Mode 55 38 36 

Standard Deviation 21,42 22,69 12,65 

Sample Variance 458,82 514,97 160,12 

Coefficient of Kurtosis 5,11 10,24 1,07 

Coefficient of Skewness -0,01 2,75 0,52 

Range 161 154 84 

Minimum 0 15 15 

Maximum 161 169 99 

P25 (First Quartile) 49 34 36 

P75 (Third Quartile) 65 51 53 

Count (Cells) 207 187 187 

Confidence Interval (95%) 2,94 3,27 1,83 

Correlation Coefficient(r)  0,62 0,54 

Table 3. Descriptive Statistics of the Upscaling Process from 1km2 towards 5km2 
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5. Cross-comparison and conclusions on the 3 upscaling exercises 

Major objective of this chapter is to analyse further the statistical indicators that have been 

described above, find out some more “interesting” relationships between various factors 

and compare the 3 upscaling exercises.  

5.1 The “non-perfect squares” coverage effect 

It has been observed in all three upscaling exercises that some squares have aggregated less 
input detailed data than required according to the Cell factor definition in the Technical 
Implementation. This observation is noticed in the borders of the data area. The concept of 
“non-perfect squares” is defined for those upscaled data cells where less than required data 
cells are aggregated.  

In table 4, the Ration of Real to Expected squares can be defined as the percentage (%) of 

more cells that have been “produced” in the upscaling process due to the “non-Perfect 

Square” fact. In the first case there are 8,6% more cells than the expected ones, in the 1km2 

towards 5km2 there are 17,4% more cells and in the 1km2 towards 10km2 upscaling there are 

33,8% more cells. It is obvious that the Ratio of real to expected squares has a very strong 

positive relationship to the Cell Factor since it is increasing as the Cell Factor increases. 

Performing a regression analysis, the following outputs are found:  

Ration = 1,02 + 0,031 * Cell Factor With coefficient of Determination: R2 = 0,9990 

 

Upscaling Exercise 
Cell 

Factor 

Nr. of 

Input 

Cells 

Expected squares 

(in case of perfect 

matching) 

Real upscaled 

squares 

Ratio of 

Real to 

expected 

5km towards 10km 2 475 118,75 129 1,086 

1km towards 5km 5 4409 176,36 207 1,174 

1km towards 10km 10 4409 44,09 59 1,338 

Table 4. Analysis of “Non-Perfect Square”  

The results are interesting allowing the modelers to identify how many more cells will have 

if they use an alternative Cell Factor. Even if this analysis may take different values in 

another country, the relationship between Cell Factor and additional cells will be always 

positive according to the “Non-Perfect Square” concept. 

5.2 The role Correlation Coefficient (r) in predictions 

Another interesting analysis can be considered the relationship between the Correlation 

Coefficient (r) in each of the 3 upscaling exercises with the Cell factor. In practice, this 

coefficient indicates how good can be the predictions given by the upscaling process 

validating them with the Original data.  

In table 5, it is obvious that there is a negative relationship between the Correlation 

Coefficient (how good the predictions of upscaling can be) with the Cell Factor. As Cell 

Factor increases then the upscaling process will predict less precisely the real values.  

www.intechopen.com



Use of Descriptive Statistical Indicators 
for Aggregating Environmental Data in Multi-Scale European Databases 

 

15 

 

Upscaling Exercise Cell Factor Correlation Coefficient 

5km towards 10km 2 0,767 

1km towards 5km 5 0,62 

1km towards 10km 10 0,49 
 

Table 5. Relation of Correlation Coefficient to Cell Factor 

5.3 Lost of variation and dispersion variance 

Commonly variation is lost when data are upscaled. This is modelled by the mean of the 

dispersion variance (Dungan et al, 2002) which quantifies the amount of lost variance 

between the 2 scales. Upscaling has a clear effect on spatial variability and this could be an 

advantage and disadvantage. In general for environmental data, if the interest focuses on 

observing extreme values in space, then upscaling is disadvantageous as the coarser scale 

variation tends to be smoother. But in case policy making involves recognition of general 

pattern then smoothing may be considered advantageous. We conclude that the latter is the 

case where soil organic carbon belongs to. The data variability or variance is smoothening 

since the upscaled values become smaller compared to the real finer scale data and this fact 

has been observed in all three upscaling exercises. 

For comparison of the variability between the different sources, the coefficient of variation 

(Post el al, 2008) or the variances may be used. Alternatively, in the table 3, there is a 

comparison of the Variances, Ranges, Cell Factor, and Number of output cells between the 3 

upscaling exercises. It is well known and it is proven in present case that variability is 

affected by the sample size and the extreme scores. The sample size is the number of output 

cells. It is supposed that variance should decrease as the number of output cells increases. 

This is not the case in the upscaled results because the most important factor is the Range 

which determines the variance. The high variability is due to the extreme values and as a 

consequence of the high ranges. This is proven in the orange part of the Table 3 and the 

trend of the variability in any of the 3 datasets (and upscaled exercises) is strongly affected 

by the trend of the Range in any direction of the table. 

 

Upscaling 

Exercise 

Origina

l data 

Upscaled MEAN 

data 

Upscaled 

MEDIAN 
data 

Cell 

Factor 

No of Output 

cells 

 Variance (Range)  

5 km2 towards 

10 km2 

182,61 

(74) 

119,58 

(57) 

115,18 

(60) 
2 124 

1 km2 towards 

10 km2 

238,22 

(76) 

256,14 

(73) 

111,52 

(56) 
5 55 

1 km2 towards 

5 km2 

458,82 

(161) 

514,97 

(154) 

160,12 

(84) 
10 187 

Table 6. Cross Comparison of Variance, Range, Cell Factor and No of Cells in Upscaling. 
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The dispersion of variance quantifies the amount of lost variance lost between scales. It is 

obvious from the table 3 that the median decreases the variance in upscaling.  

5.4 Smoothing effect 

Variation is lost when upscaling is performed. In case policy makers are interested in 

extremes values then upscaling has a disadvantage as either low or high values are 

smoothened. The smoothing effect is visible in figure 5 where the upscaled values have a 

smooth appearance. Instead the original 1km2 values allow the policy maker to identify the 

extreme cases. 

 
 

 
 

Fig. 5. The smooth effect in upscaling for the region Trnava in Slovakia 
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In case the policy maker is interested in the general pattern of the environmental 

indicator, then the upscaling proved to be advantageous. The advantage/disadvantage of 

upscaling depends also on the study area. In case the policy maker is interested in a small 

local region/province then the upscaled results may not be sufficient for his decision; 

instead in a larger scale (national), the identification of a pattern is much better succeeded 

with upscaled results than the raw data. Most of upscaled data are in the range between 

51-70 t/ha C in the left part of the figure 5. In the majority of the cases, policy making is 

not based on the single observations but on general pattern. Instead a spatial study 

focusing in a specific area is disadvantageous using upscaled data. Comparison in time is 

better performed for the upscaled results since it allows the user to identify changes in 

block of cells. 

Another reason for upscaling data is to ensure confidentiality during dissemination of data. 

This may be achieved by aggregated to various coarser scales than the size of data 

collection. European laws are quite strict in personal data treatment and land information 

data are quite sensitive and may affect the price of parcels. Suppose that you own an 

agricultural land parcel inside the1km2 grid cell sample size and that information related to 

the sensitive environmental data (Organic carbon content, pH – Acidity, Heavy metal 

content, salinity…etc) about this cell are published. The parcel price is immediately affected 

by such publication and then the personal data protection authorities intervene and don’t 

permit this kind of sensitive information dissemination. Instead, the process of data 

aggregation and the upscale of various environmental parameters in coarser scale make 

feasible the publication of low resolution land thematic maps without taking the risk of 

personal data violation. This implies that such a map must guarantee that individual entities 

(soil data) cannot be identified by users of the data. Aggregation is the traditional means for 

ensuring such confidentiality. 

6. Spatial prediction and digital soil mapping 

Digital Soil mapping (DSM) is the geostatistical procedure based on a number of 

predictive approaches involving environmental covariates, prior soil information in point 

and map form, (McBratney et al., 2003) and field and laboratory observational methods 

coupled with spatial and non-spatial soil inference systems (Carre et al., 2007). It allows 

for the prediction of soil properties or classes using soil information and environmental 

covariates of soil. 

High-resolution and continuous maps are an essential prerequisite for precision agriculture 
and many environmental studies. Traditional, sample-based mapping is costly and time 
consuming, and the data collected are available only for discrete points in any landscape. 
Thus, sample-based soil mapping is not reasonably applicable for large areas like countries. 
Due to these limitations, Digital Soil Mapping (DSM) techniques can be used to map soil 
properties (Yigini et al., 2011).  

As an example of the application of geostatistical techniques to produce continuous map of 

soil properties can be seen in the study conducted in Slovakia (Yigini et al., 2011). The 

authors studied to interpolation of point data to produce continuous map of soil organic 

carbon content in Slovakia. The regression kriging technique was applied and Corine Land 
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Cover 2006 data, SRTM 90m, European Soil Database (ESDB), climate, land management 

data were used as covariates. As a result, the soil organic carbon map was produced in 

raster format at a spatial resolution of 100 meters (Figure 6).  

Digital Soil Mapping (DSM) can be defined as the creation and population of spatial soil 

information systems by numerical models inferring the spatial and temporal variations of 

soil types and soil properties from soil observation and knowledge and from related 

environmental variables (A.E. Hartemink et al., 2008). For soil mapping purposes, 

geostatistical techniques can be used to predict the value of the soil property at an unvisited 

or unsampled location by using auxiliary data (Figure 6). Most used interpolation methods 

are listed below; 

 

 
 

Fig. 6. Soil Properties can be mapped using geostatistical techniques 

1. Inverse distance weighting (IDW) 

Inverse Distance Weighted (IDW) is a technique of interpolation to estimate cell values by 

averaging the values of sample data points in the neighbourhood of each processing cell. 

2. Regularized spline with tension (RST) 

Regularized Spline with Tension (RST) is an accurate, flexible and efficient method for 

multivariate interpolation of scattered data (Hofierka et al., 2002) 

3. Ordinary kriging (OK) 

Ordinary Kriging is a geostatistical method used for regionalization of point data in space. 

Because it is similar to multiple linear regressions and interpolates values based on point 

estimates, it is the most general, widely used of the Kriging methods (Ahmed and Ibrahim, 

2011) 

4. Ordinary co-kriging (OCK) 

Co-kriging allows samples of an auxiliary variable (also called the covariable), besides the 

target value of interest, to be used when predicting the target value at unsampled locations. 

The co-variable may be measured at the same points as the target (co-located samples), at 

other points, or both. The most common application of co-kriging is when the co-variable is 

cheaper to measure, and so has been more densely sampled, than the target variable 

(Rossiter, 2007) 
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5. Regression Kriging (RK) 

Regression kriging is a spatial prediction technique which adds the regression value of 

exhaustive variables and the kriging value of residuals together (Sun et al., 2010). 

7. Conclusions 

On the basis of this study, the following conclusions can be drawn: 

 The multi-scale  nested grids approach can be proposed as a solution in many cases 

where the data owner does not allow the distribution/publication of detailed data 

but is willing to distribute degraded data (in coarser resolution). The aggregation 

methodology can be considered a valuable one which contributes to the 

degradation (without losing the real values) of very detailed data and may allow 

the scientific community to access valuable information without having any 

copyright problems.  

 For a number of reasons upscaling can be useful in soil science domain: respect of 

privacy and data ownership, easy adaptation to model requirements, update of spatial 

databases in various scales and simplification of thematic maps. 

 Upscaling methodology has proven to be good enough for identification of “data 

patterns”. The upscaling process can easily identify if soil data have been downscaled 

before a possible aggregation for reporting reasons. 

 Upscaling has a serious drawback in case the source dataset in the finer scale has high 

spatial variability. This has been shown in the upscaling process from 1km2 towards the 

10km2. The descriptive statistics show the smooth effect that upscaling may cause in 

high variability cases. Upscaling involves recognition of general pattern in data 

distribution and this can be considered an advantage for environmental indicators. In 

any case the upscaled output doesn’t represent the real world but it is a smooth 

approximation. The upscaling from local scale to upper scales involves trade-offs and 

compromises. 

 Despite the limitations, the scale transfer method presented here was well-suited to 

the data and satisfied the overall objective of mapping soil indicators in coarser scale 

giving appropriate responses to policy makers. Moreover, a series of newly 

introduced concepts/indicators such as “Non-Perfect Square” Coverage, Correlation 

Coefficient for predictions and Lost of Variation can be introduced for further 

research and evaluation. 

 Digital Soil Mapping (DSM) offers new opportunities for the prediction of 

environmental indicators in various scales.  
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