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1. Introduction 

Plant diseases and pests can affect a wide range of commercial crops, and result in a 
significant yield loss. It is reported that at least 10% of global food production is lost due to 
plant diseases (Christou and Twyman, 2004; Strange and Scott, 2005). Excessive pesticides 
are used for protecting crops from diseases and pests. This not only increases the cost of 
production, but also raises the danger of toxic residue in agricultural products. Disease and 
pest control could be more efficient if disease and pest patches within fields can be 
identified timely and treated locally. This requires obtaining the information of disease 
infected boundaries in the field as early and accurately as possible. The most common and 
conventional method is manual field survey. The traditional ground-based survey method 
requires high labor cost and produces low efficiency. Thus, it is unfeasible for large area. 
Fortunately, remote sensing technology can provide spatial distribution information of 
diseases and pests over a large area with relatively low cost. The presence of diseases or 
insect feedings on plants or canopy surface causes changes in pigment, chemical 
concentrations, cell structure, nutrient, water uptake, and gas exchange. These changes 
result in differences in color and temperature of the canopy, and affect canopy reflectance 
characteristics, which can be detectable by remote sensing (Raikes and Burpee 1998). 
Therefore, remote sensing provides a harmless, rapid, and cost-effective means of 
identifying and quantifying crop stress from differences in the spectral characteristics of 
canopy surfaces affected by biotic and abiotic stress agents. 

This chapter introduces some successful studies about detecting and discriminating yellow 
rust and aphid (economically important disease and pest in winter wheat in China) using 
field, airborne and satellite remote sensing.  

2. Detecting yellow rust of winter wheat by remote sensing 

Yellow rust (Biotroph Puccinia striiformis), also known as stripe rust, is a fungal disease of 
winter wheat (Triticum aestivum L.). It produces leaf lesions (pustules), which are yellow in 
color and tend to be grouped in patches. Yellow rust often occurs in narrow stripes, 2–3 mm 
wide that run parallel to the leaf veins. Yellow rust is responsible for approximately 73–85% 
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of recorded yield losses, and grain quality is also significantly reduced (Li et al. 1989). 
Consequently, effective monitoring of the incidence and severity of yellow rust in 
susceptible regions is of great importance to guide the spray of pesticides and to provide 
data for the local agricultural insurance services. Fortunately, remote sensing technology 
provides a possible way to detect the incidence and severity of the disease rapidly.  

The interaction of electromagnetic radiation with plants varies with the wavelength of the 
radiation. The same plant leaves may exhibit significant different reflectance depending on 
the level of health and or vigor (Wooley 1971, West et al. 2003, Luo et al., 2010). Healthy and 
vigorously growing plant leaves will generally have 

1. Low reflectance at visible wavelengths owing to strong absorption by photoactive 
pigments (chlorophylls, anthocyanins, carotenoids). 

2. High reflectance in the near infrared because of multiple scattering at the air-cell 
interfaces in the leaf’s internal tissue. 

3. Low reflectance in wide wavebands in the short-wave infrared because of absorption by 
water, proteins, and other carbon constituents. 

The incidence and severity of yellow rust can be monitored according to the differences of 
spectral characteristics between healthy and disease plants. In this chapter, we will report 
several successful studies on the detection and identification of yellow rust in winter wheat 
by remote sensing. 

2.1 Detecting and discriminating yellow rust at canopy level 

Hyperspectral remote sensing is one of the advanced and effective techniques in disease 
monitoring and mapping. However, the difficulty in discriminating a disease from common 
nutrient stresses largely hampers the practical use of this technique. This is because some 
common nutrient stresses such as the shortage or overuse of nitrogen or water could have 
similar variations of biochemical properties and plant morphology, and therefore result in 
similar spectral responses. However, for the remedial procedures for stressed crops, there is 
a significant difference between disease and nutrient stresses. For example, applying 
fungicide to water-stressed crops would lead to a disastrous outcome. Therefore, to 
discriminate yellow rust from common nutrient stresses is of practical importance to crop 
growers or landowners.  

The specific objectives of this study are to: (1) systematically test the sensitivity and 
consistency of several commonly used spectral features to yellow rust disease during major 
growth stages; (2) for those spectral features that are consistently sensitive to yellow rust 
disease, we will further examine their sensitivity to nutrient stresses to determine whether 
there are specifically sensitive to yellow rust disease, but insensitive to water and nitrogen 
stresses. 

2.1.1 Materials and methods 

2.1.1.1 Experimental design and field conditions 

The experiments were conducted at Beijing Xiaotangshan Precision Agriculture 
Experimental Base, in Changping district, Beijing (40º10.6’N, 116º26.3’E) for the growing 
seasons of 2001-2002 and 2002-2003. Table 1 summarizes the soil properties including 
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organic matter, total nitrogen, alkali-hydrolysis nitrogen, available phosphorus and 
available potassium for both growing seasons. Three cultivars of winter wheat used in 2001-
2002 experiment (2002 Exp) were Jingdong8, Jing9428 and Zhongyou9507, while the 
cultivars used in 2002-2003 (2003 Exp) were Xuezao, 98-100 and Jing411. All the cultivars 
applied in both growing seasons included erective, middle and loose with respect to the 
canopy morphology.  

 

Items  
Disease inoculation 

experiment 
Nutrient stress experiment 

Growth period Sep 2002-Jun 2003 Sep 2001-Jun 2002 

Top soil  

nutrient status 

(0-0.3m depth) 

Organic matter 1.42%-1.48% 1.21%-1.32% 

Total nitrogen 0.08%-0.10% 0.092%-0.124% 

Alkali-

hydrolysis 

nitrogen 

58.6-68.0 mg kg-1 68.8-74.0 mg kg-1 

Available 

phosphorus 
20.1-55.4 mg kg-1 25.2-48.3 mg kg-1 

Rapidly 

available 

potassium 

117.6-129.1 mg kg-1 96.6-128.8 mg kg-1 

Cultivars  Xuezao, 98-100, Jing411 
Jingdong8, Jing9428, 

Zhongyou9507 

Treatments  

Normal; YR1: 3mg 100-1 

ml spores solution; YR2: 

9mg 100-1 ml spores 

solution; YR3: 12mg 100-1 

ml spores solution (all 

treatments applied 200 kg 

ha-1 nitrogen and 450 m3 

ha-1 water)  

Normal: 200 kg ha-1 nitrogen, 

450 m3 ha-1 water; 

W-SD: 200 kg ha-1 nitrogen, 

225 m3 ha-1 water; 

W-SED: 200 kg ha-1 nitrogen, 0 

m3 ha-1 water; 

N-E: 350 kg ha-1 nitrogen, 450 

m3 ha-1 water; 

N-D: 0 kg ha-1 nitrogen, 450 m3 

ha-1 water; 

W-SED+N-E: 350 kg ha-1 

nitrogen, 0 m3 ha-1 water; W-

SED+N-D: 0 kg ha-1 nitrogen, 0 

m3 ha-1 water; 

Spectral reflectance 

measurements (on day after 

sowing) 

207, 216, 225, 230, 233 196, 214, 225, 232, 239 

Table 1. Basic information of disease inoculation experiment and nutrient stress experiment 

For 2002 Exp, six stress treatments of water and nitrogen were applied, and the treatments 
were based on local conditions, which usually suffered from yellow rust in the northern part 
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of China. Each treatment was applied on 0.3 ha area, and the treatments were 200 kg ha-1 
nitrogen and 225 m3 ha-1 water (slightly deficient water, W-SD),200 kg ha-1 nitrogen and no 
irrigation (seriously deficient water, W-SED), 350 kg ha-1 nitrogen and 450 m3 ha-1 water 
(excessive nitrogen, N-E), no fertilization and 450 m3 ha-1 water (deficient nitrogen, N-D), 
350 kg ha-1 nitrogen and no irrigation (seriously deficient water and excessive nitrogen, W-
SED+N-E), and no fertilization and no irrigation (seriously deficient water and deficient 
nitrogen, W-SED+N-D). A 0.3 ha reference area (Normal) was applied with the 
recommended rate which received 200 kg ha-1 nitrogen and 450 m3 ha-1 water. Three 
cultivars were evenly distributed in each treatment plot.  

For 2003 Exp, according to the National Plant Protection Standard (Li et al. 1989), three 

levels of concentration of summer spores of yellow rust were applied, and they were 3 mg 

100-1 ml-1 (Yellow rust 1, YR1), 9 mg 100-1 ml-1 (Yellow rust 2, YR2) and 12 mg 100-1 ml-1 

(Yellow rust 3, YR3), with a dosage of 5 ml spores solution per square meter. The reference 

area (Normal) that was not inoculated yet was applied with the recommended amount of 

fungicide to prevent the occasional infection. Each treatment involved 1.2 ha area, with even 

constitution of three cultivars. All plots in 2003 Exp received the recommended rates of 

nitrogen (200 kg ha-1) and water (450 m3 ha-1). 

2.1.1.2 Canopy spectral measurements 

A high spectral resolution spectrometer, ASD FieldSpec Pro spectrometer (Analytical 

Spectral Devices, Boulder, CO, USA) fitted with a 25 field of view fore-optic, was used for 

in-situ measurement of canopy spectral reflectance for both 2002 Exp and 2003 Exp. All 

canopy spectral measurements were taken from a height of 1.3m above ground (the height 

of the wheat is 90±3 cm at maturity). Spectra were acquired in the 350-2,500 nm spectral 

range at a spectral resolution of 3 nm between 350 nm and 1,050 nm, and 10 nm between 

1,050 nm and 2,500 nm. A 40 cm × 40 cm BaSO4 calibration panel was used for calculation of 

reflectance. All irradiance measurements were recorded as an average of 20 scans at an 

optimized integration time. Prior to subsequent preprocessing, all spectral curves were 

resampled with 1 nm interval. All measurements were made under clear blue sky conditions 

between 10:00 and 14:00 (Beijing Local Time). 

The spectral measurements were taken 5 times from 196 days after sowing (DAS) to 239 

DAS for 2002 Exp, which covered the growth stages of stem elongation, booting, anthesis 

and milk development. For 2003 Exp, the spectral measurements were taken 5 times from 

207 DAS to 233 DAS, which covered the growth stages of booting, anthesis and milk 

development. The detailed measurement dates for both experiments were given in Table 1. 

The stem elongation and anthesis stages are essential for the control of yellow rust 

development, whereas the milk development stage is important for yield loss assessment. 

2.1.1.3 Selection of spectral features 

The spectral features that we adopted were related to several commonly used vegetation 

indices (VIs), which were proved to be sensitive to variations of pigments and stresses. 

Furthermore, in order to conduct a thorough investigation of various types of spectral 

features, we also included a number of spectral features that were based on derivative 

transformation and continuum removal transformation (Gong et al. 2002; Pu et al. 

2003;2004). Therefore, the total 38 spectral features are shown in Table 2. 
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Variable Definition Description Literatures 

Derivative transformed spectral variables

Db 
Maximum value 
of 1st derivative 
within blue edge

Blue edge covers 490-530nm. Db is a 
maximum value of 1st order 
derivatives within the blue edge of 35 
bands 

Gong et al., 2002 

┣b Wavelength at Db ┣b is wavelength position at Db Gong et al., 2002 

SDb 
Sum of 1st 
derivative values 
within blue edge

Defined by sum of 1st order derivative 
values of 35 bands within the blue 
edge 

Gong et al., 2002 

Dy 

Maximum value 
of 1st derivative 
within yellow 
edge

Yellow edge covers 550-582nm. Dy is a 
maximum value of 1st order 
derivatives within the yellow edge of 
28 bands 

Gong et al., 2002 

┣y Wavelength at Dy ┣y is wavelength position at Dy Gong et al., 2002 

SDy 

Sum of 1st 
derivative values 
within yellow 
edge

Defined by sum of 1st order derivative 
values of 28 bands within the yellow 
edge 

Gong et al., 2002 

Dr 
Maximum value 
of 1st derivative 
within red edge 

Red edge covers 670-737nm. Dr is a 
maximum value of 1st order 
derivatives within the red edge of 61 
bands 

Gong et al., 2002 

┣r Wavelength at Dr ┣r is wavelength position at Dr Gong et al., 2002 

SDr 
Sum of 1st 
derivative values 
within red edge 

Defined by sum of 1st order derivative 
values of 61 bands within the red edge

Gong et al., 2002 

Continuous removal transformed spectral features

DEP550-750 The depth of the 
feature minimum 
relative to the 
hull 

In the range of 550nm-750nm

Pu et al., 2003;2004 
DEP920-1120 In the range of 920nm-1120nm

DEP1070-
1320 

In the range of 1070nm-1320nm 

WID550-750 The full 
wavelength 
width at half 
DEP (nm) 

In the range of 550nm-750nm

Pu et al., 2003;2004 
WID920-1120 In the range of 920nm-1120nm

WID1070-
1320 

In the range of 1070nm-1320nm 

AREA550-
750 The area of the 

absorption 
feature that is the 
product of DEP 
and WID 

In the range of 550nm-750nm 

Pu et al., 2003;2004 
AREA920-
1120 

In the range of 920nm-1120nm 

AREA1070-
1320 

In the range of 1070nm-1320nm 
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Variable Definition Description Literatures 

VI-based variables

GI Greenness Index R554/R677 
Zarco-Tejada et al., 
2005 

MSR 
Modified Simple 
Ratio 

(R800/R670-1)/(R800/R670+1)1/2 
Chen, 1996; 
Haboudane et al., 
2004 

NDVI 
Normalized 
Difference 
Vegetation Index

(RNIR-RR)/(RNIR+RR), where RNIR

indicates 775-825nm, RR indicates 
650nm-700nm, that include most key 
pigments 

Rouse et al., 1973  

NBNDVI 

Narrow-band 
normalised 
difference 
vegetation index 

(R850-R680)/(R850+R680) 
Thenkabail et al., 
2000 

NRI 
Nitrogen 
reflectance index

(R570-R670)/(R570+R670) Filella et al., 1995 

PRI 
Photochemical
Physiological 
Reflectance Index

(R531-R570)/(R531+R570)  Gamon et al., 1992  

TCARI 

The transformed 
chlorophyll 
Absorption and 
Reflectance Index

3*[( R700- R670)-0.2*( R700- R550)*( R700/ 
R670)] 

Haboudane et al., 
2002 

SIPI 
Structural 
Independent 
Pigment Index 

(R800-R445)/(R800-R680) 
Peñuelas et al., 
1995 

PSRI 
Plant Senescence 
Reflectance Index

(R680-R500)/R750 
Merzlyak et al., 
1999 

PhRI 
The Physiological 
reflectance index

(R550-R531)/(R550+R531) Gamon et al., 1992  

NPCI 

Normalized 
Pigment 
Chlorophyll ratio 
Index 

(R680-R430)/(R680+R430) 
Peñuelas et al., 
1994 

ARI 
Anthocyanin 
Reflectance Index

ARI=(R550)-1-(R700)-1 
Gitelson et al., 
2001 

TVI 
Triangular 
Vegetation Index

0.5[120(R750-R550)-200(R670-R550)] 
Broge and Leblanc, 
2000; Haboudane 
et al., 2004 

CARI 
Chlorophyll 
Absorption Ratio 
Index 

(|(a670+R670+b)|/(a2+1)1/2)x(R700/R670)
a = (R700-R550)/150, b = R550-(a x 550) 

Kim et al., 1994 

www.intechopen.com



 
Crop Disease and Pest Monitoring by Remote Sensing 

 

37 

Variable Definition Description Literatures 

DSWI 
Disease Water 
Stress Index 

(R802+R547)/(R1657+R682) Galvão et al., 2005 

MSI 
Moisture Stress 
Index 

R1600/R819 
Hunt and rock, 
1989; Ceccato et 
al., 2001 

SIWSI 
Shortwave 
Infrared Water 
Stress Index 

(R860-R1640)/(R860+R1640)  
Fensholt and 
Sandholt, 2003 

RVSI 
Red-Edge 
Vegetation Stress 
Index 

[(R712+R752)/2]-R732 
Merton and 
Huntington, 1999 

MCARI 

Modified 
Chlorophyll 
Absorption in 
Reflectance Index

(R701-R671)-0.2(R701-R549)]/(R701/R671) 
Daughry et al., 
2000 

WI Water Index R900/R970 
Peñuelas et al., 
1997 

Table 2. Definitions of spectral features used in this study 

2.1.1.4 Preprocessing and normalization of spectral reflectance data 

Aggregating spectral reflectance data 

As the first step, all spectra were processed with the following transformation to suppress 
possible difference in illumination. The spectral regions with wavelength of 1330-1450 nm, 
1770-2000 nm and 2400-2500 nm were removed due to strong absorption by water vapor. 
We then normalized the spectral curves by dividing the mean band reflectance of the curve 
(Yu et al., 1999). The normalized reflectance for the bandi is given as: 

1

1
( )

n

i
i n

i
i

Ref
Ref

Ref


 


 

where Refi’ is the normalized reflectance for bandi; Refi is the original reflectance of the band; n 
is the total number of bands. Fig. 1(a) shows a plot of unnormalized Refi versus band 
wavelength for six observations (three YR3 curves and three Normal curves) on 233 DAS. Fig. 
1(b) shows the corresponding curves in Fig.1(a) after normalization. The normalization clearly 
separated the diseased spectra from the normal spectra especially over the near infrared region 
(approximately from 770 nm to 1300 nm). The benefit of eliminating spectral difference caused 
by the change of illumination conditions was also mentioned by Yu et al. (1999).  

Normalization of the difference in measuring dates 

As shown in Table 1, although both experiments conducted in five growth stages in 2002 
and 2003, most measurement dates were not consistent, except for 255 DAS. Hence, to 
improve the comparability of two datasets, we adapted the 2002 Exp data to match the dates  
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(a) Original spectra on 233 days after sowing 

 
(b) Normalized spectra on 233 days after sowing 

Fig. 1. Comparison between original spectra and normalized ones 
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of 2003 Exp, by using a linear interpolation method. The reflectance curve of a certain date 
could be obtained based on the spectra from the adjacent data before and after the 
measurement date (using days after sowing as a time scale). Each band of the spectra should 
be processed as: 

( )
current before

current before before after
after before

DAS DAS
Ref Ref Ref Ref

DAS DAS


  


 

where Refcurrent represents the reflectance transformed from the date corresponding to an 
ideal date in 2003 Exp; Refbefore and Refafter represent reflectances, respectively, from DASbefore 
and DASafter; DAScurrent indicates an ideal date in 2003 Exp while DASbefore and DASafter are the 
adjacent dates in 2002 Exp before and after the ideal date in 2003 Exp. 

Fig. 2 provides an example of the progress of the normalization of measurement dates. The 
averaged reflectance at central wavelengths of green band (560 nm) and near-infrared band 
(860 nm) of Landsat-5 TM for normal samples were plotted against the measured dates in 
both 2002 Exp and 2003 Exp. The date normalized reflectance values were marked as 
triangle symbol in the graph. Through this step, the datasets collected in these two years 
could be considered as acquired in the same dates, which thereby facilitated the subsequent 
comparisons and analysis.  

 

Adaptation of average reflectance of normal samples at 560 nm (central wavelengths of green band of 
Landsat-5 TM) and 860 nm (central wavelengths of near-infrared band of Landsat-5 TM) to match the 
dates of 2003 Exp, by using a linear interpolation method 

Fig. 2. An example for normalization of measuring dates 
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Normalization of the difference from cultivars and soil backgrounds 

The canopy spectra of winter wheat were not only supposed to respond to stresses, but 
are also determined and influenced by several other aspects such as cultivars and soil 
properties. Although the both 2002 Exp and 2003 Exp were conducted in the same fields 
that had approximately identical climate and environmental conditions, the difference in 
cultivars and soil properties between 2002 Exp and 2003 Exp should not be ignored (Table 
1). To minimize this discrepancy, we calculated a ratio spectral curve for each of 
measured dates (after the normalization of the measuring dates) by the averaged spectral 
curve from normal samples in 2002 Exp divided by the averaged spectral curve from 
normal samples in 2003 Exp, resulting in a total of five ratio curves corresponding to each 
growth stage (Fig. 3). After that, all the spectral data measured at different growth stages 
were multiplied by the corresponding ratio curves to yield a set of normalized spectra. It 
should be pointed out that the present normalization processing to raw spectral 
measurements will only enhance the comparability between the 2002 Exp and 2003 Exp 
with little change in internal relations among different treatments because all the spectral 
data at one growth stage were processed with the same ratio curve. The ultimate goal of 
all these preprocessing and normalization steps above is to mitigate effects of the 
variation of illumination conditions, measurement dates, cultivars and soil properties 
between the 2002 Exp and 2003 Exp on target spectra. 

2.1.1.5 Spectral features calculation and statistical analysis  

With the spectra normalized using the methods above, we calculated 38 spectral features. 
An analysis of variance (ANOVA) was employed to investigate the spectral differences 
between the normal samples and all forms of stressed samples. Firstly, on different 
measured dates, both the yellow rust disease data and nutrient stressed data were compared 
with the normal data by ANOVA. For those spectral features that were consistently 
sensitive to yellow rust disease, we not only tested their differences between the normal 
treatment and different forms of stresses, but also tested the differences between various 
kinds of nutrient stresses and varying levels of disease stresses with ANOVA. Statistical 
analyses were conducted using SPSS 13.0 procedure. 

2.1.2 Results 

2.1.2.1 Spectra after normalizations 

The spectral ratio curves in Fig 3 reflect the deviations between 2002 Exp and 2003 Exp’s 
reflectance datasets at different wavelength positions. The ratio value close to 1.0 indicates 
no difference in reflectance exists between the two years. Generally, the ratio values ranged 
from 0.7 to 1.3, with an uneven distribution along the wavelength axis (Fig 3). The ratio 
tended to deviate from 1.0 in the regions of 350 - 730 nm, 1450 - 1570 and 2000 - 2400 nm, but 
stayed around 1.0 in the regions of 730 - 1330 nm and 1570 - 1770 nm. To assess the 
improvement in comparability, we examined the difference of normalized datasets of 
normal samples between 2002 Exp and 2003 Exp through an ANOVA with all 38 spectral 
features. The result showed that the differences of all spectral features were insignificant at 
all growth stages (p-value>0.05), with an average p-value (for all measuring dates) of 0.94, 
indicating a relatively high level of similarity between two datasets. Therefore, we 
confirmed that such normalization processes minimized the spectral difference originated  
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Fig. 3. Ratios of spectra for normalization with different years and varieties  

from variation of illumination and different measurement dates, etc., and enabled more 
rational comparisons among different treatments. 

2.1.2.2 Spectral responses to different forms of stresses 

The result of ANOVA between normal samples and different forms of stress samples 
indicated that all spectral features had a response (defined as p-value<0.05) to at least one 
type of stresses at one growth stage, except for the WID1070-1320, which had no response to 
any form of stresses at all growth stages. Total 37 spectral features responded to water 
associated stresses (W-SD, W-SED, W-SED+N-E, W-SED+N-D) at least at one growth stage, 
followed by 35 spectral features to yellow rust disease, whereas only15 spectral features had 
a response to solely nitrogen stress (N-E, N-D). As summarized in Table 3, most spectral 
features were sensitive to yellow rust infection at least at one growth stage, except for ┣b, ┣r 
and WID1070-1320. In addition, most spectral features tended to be more sensitive at later 
growth stages than at the early stages. For example, several features such as DEP920-1120, 
AREA920-1120, Dy, GI, NDVI and Triangular Vegetation Index (TVI) only had a response to 
yellow rust at the last growth stage in our study (233 DAS). However, for the sake of 
diagnosis, the spectral features with a consistent response to yellow rust during the 
important growing period would be much more valuable. Therefore, those spectral features 
that were sensitive to the yellow rust at 4 out of 5 growth stages were selected as candidates 
for disease diagnosis. This yielded four vegetation indices (VIs): PRI, PhRI, NPCI and ARI. 

2.1.2.3 One way ANOVA of four disease sensitive spectral features 

Particularly for the four identified VIs that closely associated with yellow rust disease, a 
throughout one way ANOVA was conducted to compare their differences between the  
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Spectral features 
Days after sowing 

207 216 225 230 233 

DEP550-770 √   √ √ 

AREA550-770 √   √ √ 

WID550-770   √ √ √ 

DEP920-1120     √ 

AREA920-1120     √ 

WID920-1120     √ 

DEP1070-1320     √ 

AREA1070-1320     √ 

Db   √ √  

SDb   √ √ √ 

Dy     √ 

┣y     √ 

SDy     √ 

Dr    √  

SDr    √ √ 

GI     √ 

MSR    √ √ 

NDVI     √ 

NBNDVI    √ √ 

NRI     √ 

PRI  √ √ √ √ 

TCARI   √ √  

SIPI     √ 

PSRI √   √ √ 

PhRI  √ √ √ √ 

NPCI √  √ √ √ 

ARI √  √ √ √ 

TVI     √ 

CARI   √ √ √ 

DSWI     √ 

MSI     √ 

SIWSI     √ 

RVSI   √ √  

MCARI   √ √ √ 

WI     √ 

Table 3. Responses of spectral features to yellow rust 
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normal sample and various kinds of stressed samples. Moreover, their differences among 
each pairs of stress forms were also compared. We conducted this ANOVA based on the 
data on 207 DAS, 225 DAS and 233 DAS respectively, which were essential growth stages 
for carrying out fungicide spraying and yield loss assessing procedures. In addition to the p-
value of ANOVA, we also provided the change direction of spectral features. Positive sign 
indicates the average spectral feature value of diseased or nutrient stressed samples is 
greater than that of normal samples, and negative sign indicates the opposite cases to the 
positive sign. As shown in Table 4, it was observed that for the treatments of N-E and N-D, 
all four VIs failed to show any response at all growth stages. For the results of other 
treatments, the responses of four VIs behaved in a varied pattern at three growth stages.  

For the results on 207 DAS (Table 4a), compared to the normal samples, the NPCI and ARI 
had responses to all three levels of yellow rust treatments (YR 1, YR 2, YR 3), and appeared 
to be more sensitive than PRI and PhRI. For nutrient stresses, the PRI, NPCI and ARI were 
sensitive to W-SED and W-SED+N-E treatments. Among them, NPCI and ARI showed 
stronger responses (p-value<0.01) to W-SD, W-SED, W-SED+N-E and W-SED+N-D 
treatments than the other two VIs. For the comparisons between diseased samples and 
nutrient stressed samples, significant differences between W-SED and W-SED+N-E 
treatments and YR2 and YR3 treatments were identified for PRI, NPCI and ARI. Moreover, 
the change directions of the three VIs for diseased and nutrient stressed samples were 
identical. At this 207 DAS growth stage, PhRI did not show a significant response to any of 
three levels of disease treatments, but responded to W-SD, W-SED and W-SED+N-E 
treatments. It is interesting that the change direction of diseased samples of PhRI was 
contrary to that of the nutrient stressed samples, suggesting a discriminating potential of the 
index. 

For the results on 225 DAS (Table 4b), compared to the normal samples, all four VIs revealed 
a clear response to level 2 and level 3 of yellow rust treatments (YR2, YR3). For nutrient 
stresses, PRI, NPCI and ARI also appeared to be sensitive to W-SD, W-SED, W-SED+N-E 
and W-SED+N-D treatments. However, PhRI was insensitive to all nutrient stresses. In 
addition, when we looked at the difference of those VIs between diseased samples and 
nutrient stressed samples, only PhRI showed clear differences between YR2 and YR3 
treatments and W-SD, W-SED, W-SED+N-E, and W-SED+N-D treatments. Although a 
significant difference between YR3 treatment and W-SED treatment also existed for ARI and 
NPCI, the change directions of both treatments were identical. However, for PhRI, the 
change directions of all levels of disease treatments were different from those of the nutrient 
stress treatments.  

For the results on 233 DAS (Table 4c), with further development of disease symptoms, 
compared to the normal samples, all four indices showed responses to all three levels of 
disease treatments. Comparing to YR1 treatment, the four VIs had shown a stronger 
significant level (p-value<0.01) for YR2, YR3 treatments. For nutrient stresses, PRI, NPCI and 
ARI exhibited clear responses to W-SED, W-SED+N-E and W-SED+N-D treatments as well. 
For comparisons between diseased and nutrient stressed samples, PRI and NPCI appeared 
to be significantly different between YR2 and YR3 treatments and W-SD treatment. 
However, the change directions of both treatments were identical. Unlike the other three VIs, 
PhRI remained insensitive to the nutrient stresses, but was significantly different among all 
levels of disease treatments (YR1, YR2, and YR3) and all forms of nutrient stresses. More  
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(a) 207 DAS 

 
(b) 225 DAS  

 
(c) 233 DAS  

*mean difference is significant at 0.950 confidence level; **mean difference is significant at 0.990 
confidence level;*** mean difference is significant at 0.999 confidence level. (+) means the average 
spectral feature value of diseased or nutrient stressed samples greater than that of normal samples; or 
means the average spectral feature value of nutrient stressed samples greater than that of diseased 
samples; (-) means the opposite cases to the case of (+). The definitions of treatments are as follows: 
“Normal” represents normal samples; “W-SD” represents samples treated with slightly deficient water; 
“W-SED” represents samples treated with seriously deficient water; “N-E” represents samples treated 
with excessive nitrogen; “N-D” represents samples treated with deficient nitrogen; “W-SED+N-E” 
represents samples treated with seriously deficient water and excessive nitrogen; “W-SED+N-D” 
represents samples treated with seriously deficient water and deficient nitrogen  

Table 4. ANOVA for four VIs separately on 207 DAS, 225 DAS and 233 DAS 

importantly for the PhRI, the change directions of diseased samples were opposite to those 
of nutrient stressed samples throughout the entire analysis.  

In summary, all four VIs showed a significant sensitivity to yellow rust disease on 207 DAS, 
225 DAS and 233 DAS. However, most of them also appeared to be sensitive to water 
associated stresses to a varing extent, except for PhRI, which was only sensitive to disease 
yet insensitive to any forms of nutrient stresses on 225 DAS and 233 DAS. More importantly, 
the change directions of PhRI to disease treatments were always opposite to those to the 
nutrient stress treatments at all relevant growth stages. This further confirmed the 
discriminating characteristic of PhRI. 
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2.1.3 Conclusion 

Combining with a dataset of yellow rust disease inoculation and a dataset of various forms 

of nutrient stress treatments, we examined the responses of 38 commonly used spectral 

features at five important growth stages from booting stage to milk development stage 

using a one-way analysis of variance (ANOVA). There were 37 spectral features sensitive to 

water associated stresses, 35 spectral features sensitive to yellow rust disease and only 15 

spectral features sensitive to sole nitrogen stresses in at least one growth stage. It was 

observed that more spectral features appeared to have a response to yellow rust disease at 

later growth stages. A throughout ANOVA was conducted particularly on PRI, PhRI, NPCI 

and ARI, which showed a consistent response to yellow rust disease at 4 out of 5 growth 

stages. However, PRI, NPCI and ARI were also responsible for water associated stresses, 

suggesting a risk of confusion in detecting yellow rust disease. Only PhRI was sensitive to 

yellow rust disease, but insensitive to different forms of nutrient stresses. The discriminative 

response of PhRI could provide a means of identifying and detecting yellow rust disease 

under complicated farmland circumstances. This finding can serve the basis of remote 

sensing system for detecting yellow rust disease.  

2.2 Detecting yellow rust using field and airborne hyperspectral data 

The aim of this study was to evaluate the accuracy of the spectro-optical, photochemical 
reflectance index (PRI) for quantifying the disease index (DI) of yellow rust in wheat using 
in-situ spectral reflectance measurements, and its applicability in the detection of the disease 
using hyperspectral imagery. 

2.2.1 Materials and methods 

2.2.1.1 Experimental design and field conditions 

Experimental design and field conditions was same as 1.1.1. Experimental data from 2002 
Exp were used to establish the statistical models, and the data for 2003 Exp were used to 
validate the models developed.  

2.2.1.2 Inspection of disease severity 

To quantify the severity of the disease of yellow rust, the leaves of plants were grouped into 
one of 9 classifications of disease incidence (x): 0,1, 10, 20, 30, 45, 60, 80 and 100% covered by 
rust. 0% represented no incidence of yellow rust, and 100% was the greatest incidence. The 
disease index (DI) was then calculated using (Li et al. 1989): 

 
(%) 100

x f
DI

n f


 





 

where f is the total number of leaves of each degree of disease severity and n is the degree of 
disease severity observed (in this work, n ranged from 0 to 8). In each plot, 20 individuals 
were randomly selected for check. 

2.2.1.3 Canopy spectral measurements 

The method of canopy spectral measurements and data was same as the part 1.1.1.2 above. 
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2.2.1.4 Airborne hyperspectral imaging 

Airborne hyperspectral images of the trial field were acquired in 2003 using the Pushbroom 

Hyperspectral Imager (PHI) designed by the Chinese Academy of Science (CAS) and flown 

onboard a Yun-5 aircraft (Shijiazhuang Aircraft Manufacturing Company, China). The PHI 

comprises a solid state, area array, and silicon CCD device of 780 × 244 elements. It has a field 

of view of 21o, and is capable of acquiring images of 1 m × 1 m spatial resolution at an altitude 

of 1000 m above ground. The wavelength range is 400–850 nm with a spectral resolution of 5 

nm. Images of the target field were acquired in 2003 at the phenological growth stages of stem 

elongation (April 18, 2003, Zadoks stage 3), anthesis (May 17, 2003, Zadoks stage 5) and milky 

maturity (May 31, 2003, Zadoks stage 8). The inoculated wheat was adequately infected by 

rust on April 18, obviously infected by May 17, and seriously infected by May 31. 

Measurements of DI were made and in situ canopy reflectance spectra were also acquired on 

the same dates. All images were geometrically and radiometrically corrected using an array of 

georeferenced light and dark targets (5 m x 5 m) located at the extremes of the field site. The 

aforementioned field spectrometer was used to calibrate these targets relative to BaSO4. The 

location of each target, as well as field measurements of DI were recorded using a differential 

global positioning system (Trimble Sunnyvale California, USA).  

2.2.1.5 Photochemical reflectance index (PRI) 

Because yellow rust epiphyte reduced foliar physiological activity by destroying foliar 
pigments, the photochemical reflectance index (PRI) was selected as the spectrophotometric 
method of estimating the disease index. PRI was calculated by the formula in Table 2. 

2.2.2 Results 

2.2.2.1 PRI versus DI 

Fig. 4 shows a plot of the measured DI as a function of PRI for all varieties. The data points 
associated with the variety Xuezao dominate in the top-left region of the scatter plot 
(relatively high range of DI), while those associated with the variety 98-100 are located in the 
mid region (mid-range DI) and those associated with Jing 411 dominate the lower right 
region. This distribution trend is consistent with the relative susceptibility of these varieties 
to rust; Xuezao is the least resistant and Jing 411 has the greatest resistance. The regression 
equation of DI using PRI in 2002 Exp was obtained as following (n = 64): 

     2DI % 721.22 2.40         0.14 0.02 0 91PRI PRI ; r .         

An important feature in, the associated regression equation (Fig. 4) was that the spectrally-
derived PRI explained 91% of the variance observed in the disease index. This explanation 
also encompassed the three varieties of wheat as well as the four stages of crop development 
for each variety. In the subsequent validation of the PRI-DI regression equation with the 
2003 Exp data (Fig. 5), the coefficient of determination (R2) between the estimated and 
measured values was 0.97 (n = 80). 

In Fig. 5, the locations of data points associated with individual varieties wew consistent 
with the levels of resistance to rust. Xuezao dominated the top right-hand region of the 

scatter plot (relatively high range of DI), the variety 98-100 had points scattered all along the  
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Fig. 4. Plot of measured disease index (DI) as a function of measured photochemical 
reflectance index(PRI) for all varieties combined in 2002 Exp. Δ: Jing 411; +: Xuezao; □: 98–100 
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Fig. 5. Comparison of measured DI and PRI-estimated DI for 2003 Exp; ‘Δ’ = Jing 411;‘+’ = 

Xuezao; ‘□’ = 98–100 

regression line (predominantly mid-range DI), and Jing 411 was concentrated in the central 

lower-left region (lower range DI).  

2.2.2.2 Application of multi-temporal PHI images for DI estimation 

The DI was estimated on a pixel-by-pixel basis in each of the acquired PHI images using the 
regression equation. To map the degree of yellow rust infection in the trial field, the DI was 
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binned into the following classes; very Serious (DI > 80%), serious (45% < DI ≤ 80%), 
moderate (10% < DI ≤ 45%), slight (1% < DI ≤ 10%) and none (0 < DI ≤ 1%) (Fig. 6). 

 

Fig. 6. Classified DI images derived from PHI airborne images of the trial site in 2003 Exp 

Fig. 7 shows the relationship between the DI calculated from the multi-temporal PHI images 

and the actual measured DI from the 120 sample sites located within the field (R2=0.91). 
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Fig. 7. Comparison of PHI-derived estimates of DI and actual DI values for 2002 Exp. Data 
were extracted from all three imaging times, although the DI values were< 20% for the April 
18 image 
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2.2.3 Conclusion 

The results of this work confirm PRI is a potential candidate for monitoring of yellow rust, 
and could form the basis of an on-the-go sensor and variable-rate spray applicator or remote 
detection and mapping process. 

2.3 Detecting yellow rust in winter wheat by spectral knowledge base 

In most cases, statistical models for monitoring the disease severity of yellow rust are based 
on hyperspectral information. The high cost and limited cover of airborne hyperspectral 
data make it impossible to apply such data for large scale monitoring. Furthermore, the 
established models of disease detection cannot be used for most satellite images because of 
the wide range of wavelengths in multispectral images (Zhang et al., 2011). 

To resolve this dilemma, the study presents a novel approach by constructing a spectral 
knowledge base (SKB) of winter wheat diseases, which takes the airborne images as a 
medium and links the disease severity with band reflectance from moderate resolution 
remotely sensed data, such as environment and disaster reduction small satellite images 
(HJ-CCD) accordingly. To achieve this goal, several algorithms and techniques for data 
conversion and matching are adopted in the proposed system, including minimum noise 
fraction (MNF) transformation and pixel purity index (PPI) function. The performance of 
SKB is evaluated with both simulated data and field measured data. 

2.3.1 materials and methods 

Experimental design and field conditions was same as the part of 1.1.1.1 

2.3.1.1 Inspection of disease severity 

Please refer to the part of 1.2.1.2 above. 

2.3.1.2 Airborne hyperspectral imaging 

Please refer to the part of 1.2.1.4 above about airborne hyperspectral imaging and image 
processing. 

2.3.1.3 Acquisition of moderate resolution satellite images 

In this study, the SKB is designed to fit the charge coupled device (CCD) sensor, which is on 
the environment and disaster reduction small satellites (HJ-1A/B). The basic parameters of 
the CCD sensor (using ‘HJ-CCD’ in the following) are given in Table.5. The four bands of  

 

 Properties of HJ-CCD 

Band 
Wavelength range 

(nm) 
Spatial resolution (m) Swath (km) Revisit time (day) 

Blue 0.430–0.520 

30 360 2 
Green 0.520–0.600 

Red 0.630–0.690 

Near-infrared 0.760–0.900 

Table 5. Properties of the environment and disaster reduction small satellites (HJ-CCD)  

www.intechopen.com



 
Remote Sensing – Applications 

 

50

HJ-CCD covered the visible and near infrared spectral regions. The HJ-CCD sensor has 
spectral and spatial characteristics that are similar to those of Landsat-5 TM, but the HJ-
1A/B satellites have more frequent revisit capability (2 days) than the Landsat-5 satellite (16 
days), which is of great importance for agricultural monitoring. 

2.3.1.4 Construction of the spectral knowledge base 

The SKB in this study can be interpreted as a pool of relationships between spectral 
characteristics and prior knowledge. Here, prior knowledge stands for the degree of severity 
of yellow rust, and the spectral characteristics are the reflectance of the initial four bands of 
the HJ-CCD image. Hence, there are two major steps involved in constructing the SKB. First, 
the relationship between hyperspectral information and severity is obtained with a stable 
empirical reversion model. Then, through the RSR function of the HJ-CCD sensor, the 
hyperspectal data can be transferred to the wide-band reflectance. In this way, a one-to-one 
correspondence between the disease severity of yellow rust and reflectances from the HJ-
CCD sensor is established at the pixel level. The SKB can represent disease severity in two 
ways: the DI (%) value and the class of disease severity. The following sections describe each 
step for establishing the SKB, including data selection, the reversion model, simulation of 
the wide-band reflectance and estimating the degree of severity. A technical flow diagram of 
SKB construction is summarized in Fig. 8. 

 

 
 

Fig. 8. The flow chart for monitoring of DI(%) of winter wheat stripe rust, b1-b4 represented 
the reflectance of the four bands of HJ-CCD images 

As noted above, the SKB in this study comprised PHI pixels. The predicted accuracy 
obtained by the SKB was determined primarily by the amount of prior knowledge, which 
indicated the heterogeneity of disease severity. The design of the yellow rust fungus 
inoculation ensured a considerable variation in disease severity within the experimental 
field, from healthy plants to very diseased plants. In addition, to avoid using pixels on or 
near the ridge in the field that are considered as mixed signals, we chose three rectangular 
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shaped areas that were within the field and comprised 7918 ‘crop-only’ pixels for 
constructing the SKB. 

2.3.1.5 Reversion model 

The reversion model construction was the first step of establishing the SKB. Based on the 
conclusion of the part above, PRI was a suitable vegetation index for monitoring the severity 
of yellow rust disease in winter wheat. Therefore, in this study, PRI was used to establish 
the linkage between the disease severity and the hyperspectral data. Specifically, the yellow 
rust infection would be apparent at anthesis stage, and this should be closely related with 
the subsequent yield loss. Therefore, we chose the PHI image at this stage to form the SKB. 
To obtain a better fitting model, we reanalyzed the PHI-PRI and corresponding DI (%) data 
at the anthesis stage specifically, and obtained a linear regression model. It should be noted 
that the data range of DI must be between 0 and 100%. Any predicted DI results that 
were＞100% or ＜0% were redefined as DI = 100% and DI = 0% to represent very infected 

plants and healthy plants, respectively. 

2.3.1.6 Simulation of the wide band reflectance 

The second step of constructing the SKB is to transform the hyperspectral reflectance of PHI-
pixels to wide band reflectance of HJ-pixels. To achieve this goal, the best approach is the 
inherent relative spectral response (RSR) function of the HJ-CCD sensor. By integrating the 
hyperspectral reflectance of PHI-pixels on the RSR function, the band reflectance of HJ-CCD 
sensor was thus obtained. Besides, although the wavelength range of the fourth band of HJ-
CCD sensor (760 nm-900 nm) was slightly exceeded the maximum wavelength of PHI 
sensor (850 nm), for most ground measured spectra, the reflectance basically kept on steady 
from 760 nm to 900 nm. Hence, the simulating results generated using the incomplete range 
of wavelength (760nm-850nm) should approach to the true value. The integration can be 
shown as follows: 

( )
end

start

b

TM

b

R f x dx   

where RTM is the simulated reflectance of a certain band; bstart and bend indicate the 
beginning and the end wavelength of this band respectively; f(x) indicates the RSR function, 
which is obtained from CRESDA. 

2.3.1.7 Spectral characteristics of different degrees of disease severity 

Another way to define the disease severity of an undefined pixel, apart from the DI (%) 
value, is to quantify disease severity by severity classes. The criterion of severity class 
provided by Huang et al. (2007) was adopted, which corresponded to the major 
physiological alteration of diseased plants. The DI (%) thresholds for each severity class 
were: DI＜1% indicated not infected (NI), 1%＜DI＜10% indicated a low degree of infection 

(LI), 10%＜DI＜45% indicated mid-range infection (MI), 45%＜DI＜80% indicated seriously 

infected (SI) and DI (%)＞80% indicated very seriously infected (VI). The MNF 

transformation and PPI function, which are used for noise reduction and end-member 
identification, were applied here to select the most representative pixels from the PHI 
image, and to form the typical spectrum for each severity class. 
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2.3.1.8 Spectral matching algorithms 

The basic idea of spectral matching is to identify a set of pixels in the SKB that are the closest 
to the undefined pixel in terms of spectral characteristics. Before matching, each pixel 
should be standardized to eliminate systematic variation caused by aerosol conditions or 
other factors as follows: 

min

max min

Rnor

R R

R R





 

where Rnor is the standardized reflectance of a certain band, R is the original reflectance, and 
Rmin and Rmax are the minimum and maximum band reflectance values, respectively, of the 
corresponding pixel. 

Mahalanobis distances (Mah) and Spectral angle (SA) were selected as the distance 
measurement criterion. Both types of distance measurements had been proved to be with 
high efficiency in reflecting the spectral discrepancy (South et al., 2004; Goovaerts et al., 
2005; Becker et al., 2007). The Mah distance can be written as: 

1( ) ( ) ( )T
M R RD x x x x x    x=(x1,x2,x3,x4), xR=(xR1, xR2, xR3, xR4) 

where x1-4 are the reflectance of the pixel under test in band1 to band4, respectively; xR1-4 are 
the simulated reflectance of a specific pixel in SKB. ∑ is the covariance matrix between x and 
xR.SA can be calculated by the following formula: 
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To determine the DI (%) or class of disease severity of an undefined pixel, we have to 
calculate the Mah and spectral angle from this pixel to each pixel or class in the SKB. A 
longer distance or larger angle indicates that the pixel deviated from the undefined pixel, 
whereas a shorter distance or smaller angle indicates that it is similar to the undefined pixel. 
By selecting the most similar pixel, the severity class of an undefined pixel can be 
determined. To determine the DI (%) of a certain pixel, the weighted average method was 
used. According to the distance criteria above, the five most similar pixels were selected 
from the SKB. For each band of these pixels (here we used the hyperspectral bands extracted 
from the PHI image), the reflectance was processed according to the following equation:  
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where RE is the estimated reflectance of a certain pixel through k-NN estimation; Ri is the 
reflectance of the ith nearest pixel according to the ranking order of the distance; di is the 
distance between the pixel under test to the ith nearest pixel. 
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2.3.1.9 Verification 

To verify the performance of SKB in identifying and monitoring the severity of yellow rust 

diseases, two datasets were used: the simulated data and the field-measured data with 

corresponding satellite images. 

1. Verification of SKB using simulated data 
The simulated data comprised 50 randomly selected pixels in the same experimental field, 
but outside the three regions selected for constructing the SKB. The hyperspectral 
information of each pixel was used to create the reference DI (%) and severity class with 
the empirical model and the corresponding threshold for each severity class. To test the 
performance of SKB in terms of DI (%) value, we estimated the DI value with both 
distance criteria described above. The samples were split into two: the pixels with a 
reference DI between 1 and 100%, i.e. the ‘diseased’ pixels, and those with a reference 
DI＜1%, i.e. ‘healthy’ pixels. For the diseased pixels, the estimated DIs were compared 

with the reference DI by Pearson correlation analysis and the normalized root mean 
square error (NRMSE). For the healthy pixels, we used ‘yes or no’ to determine whether 
the estimated value indicated infection or not, which also provided an accuracy ratio. The 
estimation of severity class was verified by overall accuracy and the kappa coefficient. 

2. Verification of SKB using field surveyed data 
The field surveyed data sets included the ground investigation of disease severity and the 
corresponding HJ-CCD images. Between June 1–3, 2009, when the winter wheat was at the 
anthesis stage, we conducted a survey in the southeast of GanSu Province. The climate of 
the area surveyed is characterized by high humidity and rainfall, and yellow rust disease 
occurs almost every year. This area has similar environmental conditions and cultivation 
customs to those where we constructing the SKB in Beijing, and this makes it an 
appropriate place for model verification. With the aid of the local Department of Plant 
Protection, 26 plots were randomly selected and surveyed in the area (Fig. 9). To relate the 
surveyed value to the pixel value of the HJ-CCD image, we defined the plot as a uniformly 
planted winter wheat region with an area no less than 30 m in radius. The geographical 
coordinates of each plot were measured by GPS at the centre of the plot. Disease severity 
was measured as described above. We repeated the measurement in five evenly-
distributed sections in each plot, and 20 individual plants were included in each 
measurement. The HJ-CCD images (ID: 122516, 122518) acquired on June 2, 2009 
completely covered the surveyed area. The raw data from the HJ-CCD imagery was 
calibrated based on the corresponding coefficients provided by CRESDA. The calibrated 
data were atmospherically corrected with the algorithm provided by Liang et al. (2001), 
which estimated the spatial distribution of atmospheric aerosols and retrieved surface 
reflectance under general atmospheric and surface conditions. The images were also 
geometrically corrected against historical reference images with the same geographical 
coordinates. The images were rectified with a root mean square error of less than 0.5 pixels. 
The spectrum of the each plot was extracted from the image according to the GPS records. 
The estimated accuracy in this step followed the same process as the simulated data. 

2.3.2 Results 

There were 7918 pixels included in the process of constructing the SKB. The linear 
regression model between DI (%) and PRI at anthesis stage could be illustrated as follows: 
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Fig. 9. The field surveyed area in Gansu Province. The base image is the HJ-CCD image 
acquired on June 2, 2009 

(%) 538.98 2.0983DI PRI     (R2=0.88) 

The pairs of DI (%) and PRI were plotted in Fig.4, which showed a significant correlation (R2 
= 0.88). Based on the model, there were 85 pixels with a DI of 100% and 3991 pixels with a 
DI between 1%and 100%, indicating 51.5%pixels infected to a varied degree of severity, 
whereas the other 48.5% pixels (DI = 0%) were healthy plants. In the experimental field, the 
variation in the degree of severity of yellow rust from totally healthy plants to very infected 
plants provided the essential diversity or heterogeneity of infection, which then enabled 
establishment of the SKB. The MNF transformation resulted in 9 leading eigenvectors with 
eigenvalues greater than 4.0 (Fig. 10), and these were used for further analysis. 

2.3.2.1 Performance of SKB for simulated data 

In the simulated dataset, there were six healthy pixels and 44 diseases affected ones. When 
estimating DI (%), one pixel with no infection was estimated as infected by the Mah distance 
criterion, whereas with the SA criterion two were mislabeled. Fig.11 shows the scatter of the 
disease affected pixels plotted in relation to reference DI and estimated DI; the average 
reference DI is 36%. The reference DIs and estimated DIs were strongly and linearly 
correlated for both the Mah distance (R2 = 0.90) and SA (R2 = 0.84) criteria. Further, the 
NRMSE of Mah distance and SA were 0.20 and 0.24, respectively, indicating that the SKB 
can estimate DIs accurately from the simulated multi-band reflectance.  
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Fig. 10. MNF eigenvalues variation trend 

 

Fig. 11. Estimated DI(%) using simulated data 

Table 6 gives the reference class of disease severity and the estimated class in the form of an 
error matrix. The overall accuracy with Mah distance and the SA criterion were 0.80 and 
0.76, respectively, whereas the kappa coefficients were 0.71 and 0.65, respectively. However, 
we noticed that all the misclassified pixels were assigned to no more than one class adjacent 
to the reference class. Therefore, for simulated data, the classification accuracy was 
satisfactory in determining the severity class of yellow rust by SKB.  

2.3.2.2 Performance of SKB for field surveyed data 

Apart from the verification against simulated data, more importantly, the field surveyed 
data can be also used to assess the performance of the SKB. The field investigation showed 
that eight out of 26 plots were infected with DI ranged from 4 to 90%, whereas the other 18 
plots were not affected by yellow rust. The estimation by DI (%) successfully identified the 
eight infected plots when the Mah distance criterion was used, whereas the SA criterion  
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 Reference

  None Low range 
Mid 

range 
Serious 

Very 
serious 

Total 

Estimation 
(Mah) 

None 6 0 0 0 0 6 

Low range 0 5 2 0 0 7 

Mid range 0 1 20 2 0 23 

Serious 0 0 1 10 1 12 

Very 
serious

0 0 0 1 1 2 

Total 6 6 23 13 2 50 

Estimation 
(SA) 

None 5 1 0 0 0 6 

Low range 1 4 1 0 0 6 

Mid range 0 1 20 2 0 23 

Serious 0 0 2 9 1 12 

Very 
serious

0 0 0 2 1 3 

Total 6 6 23 13 2 50 

Table 6. Error matrix for simulated data 

resulted in one misestimated plot. Figure 7 shows the scatter of the eight data plotted in 
relation to reference DI and estimated DI for both distance criteria. There was a significant 
linear trend in graphs based on both the Mah distance and SA criteria. The R2 of Mah distance 
and SA were 0.80 and 0.67, respectively, whereas the NRMSE were as high as 0.46 and 0.55. In 
real circumstances, approximately 50% error in the estimated disease index is unsatisfactory. 
On the other hand, however, most of the uninfected plots were correctly identified according 
to DI (%) estimates (i.e. a DI<1%). For both the Mah distance and SA criteria, 15 out of 18 non-
infected plots had been identified correctly, resulting in an accuracy of 77.8%. The results for 
estimating disease severity by severity class were even more encouraging. The overall 
accuracy for the Mah distance and SA criteria were 0.77 and 0.73, respectively, whereas the 
kappa coefficients are 0.58 and 0.49, respectively. Table 3 gives the error matrix for both 
criteria. The misclassified pixels were also assigned exclusively to the adjacent class.  

In general, the above results demonstrate that the proposed SKB scheme has great potential for 
detecting the incidence and severity of yellow rust through multispectral images. As shown 
from several previous studies, the image processing method of MNF transformation was 
efficient in extracting the principle information from the images related to wheat disease 
infection (Zhang et al. 2003; Franke and Menz 2007). For the present study, we found that 
coupling MNF transformation with the PPI function was an appropriate way of extracting the 
principle information on yellow rust disease. To estimate disease severity by DI (%), the 
proposed SKB has achieved a satisfactory accuracy for simulated data. However, the estimated 
accuracy for field surveyed data was unsatisfactory, implying that the method tends to 
underestimate or overestimate the disease severity in practice. Nevertheless, to estimate disease 
severity through disease severity class has achieved a satisfactory accuracy for both simulated 
data and field surveyed data. Therefore, the disease severity class seems to be more robust in 
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determining the disease severity. This might be because it is more rough estimation than DI (%). 
It is understandable that for the same sample, the less precise the criterion, the greater accuracy 
it would achieve. Moreover, the 5-class disease severity quantification is enough to guide field 
applications. We suggest that DI (%) should be used for detecting the disease severity of yellow 
rust by SKB. For the distance criteria used in the process of matching with SKB, the Mah 
distance criterion might be more appropriate because it performed better than SA in all the 
analyses conducted in this study (Figs. 11, 12, Tables 6, 7). Some previous studies have already 
emphasized the potential of hyperspectral imagery (Bravo et al. 2003; Moshou et al. 2004; 
Huang et al. 2007) and the high-resolution of multispectral imagery (Franke and Menz 2007) for 
detecting yellow rust disease. The development of SKB in the present study can be viewed as a 
scaling up method, which has extended the capability of detecting yellow rust disease from 
hyper- spectral imagery to the moderate resolution of multispectral imagery. However, it 
should be noted that the task of monitoring the occurrence and degrees of infection of crop 
diseases is far more complex than the cases described in this study. The spectral characteristics 
of yellow rust infection might appear similar to other sources of stress. In addition, the impact 
of phenology, cultivation methods, fragmentation of farmlands and other environmental 
conditions would also increase the difficulty and uncertainty of the estimation process. 
Therefore, the SKB developed in this study should correspond to the situation at the anthesis 
stage exclusively, and is only suitable for those regions with similar environmental 
characteristics and cultivation methods. For other regions with significantly different 
environmental characteristics, this purposed SKB may not work well. The possible solution to 
these problems may include incorporating suitable priors, which would require integration 
strategies and understanding of the mechanisms underlying some fundamental processes. 
Further research is required to address the problems mentioned above. 

 

Fig. 12. Estimated DI(%) using field measurements 

2.3.3 Conclusion 

The low spatial resolution and few spectral bands have limited the application of moderate 

resolution satellite images for monitoring yellow rust disease. The spectral knowledge base 

developed enabled disease incidence and severity to be detected by moderate resolution 

satellite images. The SKB supported two ways of estimating disease severity: the disease 
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  Reference 

  None Low range Mid range Serious Very serious Total 

Estimation 
(Mah) 

None 16 0 0 0 0 16 

Low range 2 2 1 0 0 5 

Mid range 0 1 3 0 0 4 

Serious 0 0 0 0 1 1 

Very serious 0 0 0 0 0 0 

Total 18 3 4 0 1 26 

Estimation 
(SA) 

None 15 0 0 0 0 15 

Low range 3 2 1 0 0 6 

Mid range 0 1 3 0 0 4 

Serious 0 0 0 0 1 1 

Very serious 0 0 0 0 0 0 

Total 18 3 4 0 1 26 

Table 7. Error matrix for ground measured data 

index and disease severity class. Both methods of estimation achieved a satisfactory level of 
accuracy for simulated data. For field surveyed data, estimation by DI (%) resulted in an 
unsatisfactory level of accuracy, whereas it was satisfactory for severity class. The Mah 
criterion performed better than spectral angle in all analyses. Therefore, the former should 
be considered as the more appropriate distance criterion. 

Generally, the purposed SKB has a great potential in extending the capability of detecting 
yellow rust to multispectral remote sensing data, especially when the region of interest has 
similar environmental conditions to where the SKB was developed. The uncertainties 
caused by environmental differences should be further investigated in future studies. 

2.4 Detecting yellow rust of winter wheat using land surface temperature (LST) 

The air temperature and humidity are the most direct and important indicators of 
occurrence of yellow rust fungal. Generally, weather stations can provide the dynamic 
pattern of meteorological data for site sampled, yet not able to include the information of 
spatial heterogeneity. Fortunately, remote sensing technology has great potential for 
providing spatially continuous observations of some variables over large areas (Luo et al., 
2010). The aim of the study was to study preliminarily on the relationship between the 
occurrence of wheat yellow rust and land surface temperature (LST) derived from 
moderate-resolution imaging spectroradiometer (MODIS) in order to predict and monitor 
incidence of the yellow rust on large scale. 

2.4.1 Materials and methods 

2.4.1.1 Survey area and field investigations acquisition 

Field experiments of winter wheat were conducted during the growing seasons (form April 
to June) of winter wheat in 2008 and 2009. The investigation locations included Longnan 
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district, Tianshui district, Dingxi district and Pingliang district in GanSu province and 
Qingyang district in ShanXi province as well as Linxia district in Ningxia Hui Autonomous 
Region (Fig.1), where the climates are semiarid and subhumid. Survey areas are located 
between latitude 32º40’N to 35º39’N and longitude 103º10’E to 107º40’E, and the mean 

altitude is over 2000 meter. The climate condition of surveyed area is characterized by high 
humidity and rainfall, and yellow rust disease almost occurs every year. It is reported that 
Longnan district is an important overwintering and oversummering area of yellow rust 
fungal (Zeng, 2003). 

With the aid of the local Department of Plant Protection, 151 plots, including 68 plots from 

April to June in 2008, and 83 plots from April to June in 2009, were randomly selected and 

surveyed in the areas. The geographical coordinates of each plot were measured by GPS 

navigator at the middlemost of the plot. In addition, the disease severity was inspected. 

2.4.1.2 MODIS land surface temperature (LST) products (MOD11) 

Product description 

MODIS Land Surface Temperature and Emissivity (LST/E) products (named starting with 

MOD11) provide per-pixel temperature and emissivity values. Temperatures are extracted 

in Kelvin with a view-angle dependent algorithm applied to direct observations. This 

method yields the error less than 1 K for materials with known emissivity. The view angle 

information is included in each LST/E product. 

MOD11 acquisition and processing 

24 MOD11A2 imagesうMODIS/Terra land surface temperature/emissivity 8-day L3 global 

1km SIN grid v005えwere acquired for free from Web (http://edc.usgs.gov/#/Find_Data) 

from April to July in 2008 and 2009, which covered completely the survey area, and 4 scenes 
images were acquired in every  month. The raw data of MOD11A2 imagery were processed 
and transformed by MRT tool, and LST products were extracted from MODII A2 images. 
Then the survey area was cut by ENVI from LST images. Followed by that step, 4 scenes 8-
day LST images of every month were all averaged, and 6 average LST images, including 
April, May, June in 2008 and 2009, were obtained. Finally, LST of 151 investigation points 
were respectively extracted from 6 average LST images. 

2.4.2 Result 

2.4.2.1 Determining LST threshold of infected points  

The spatial resolution of MODIS temperature products is 1 km, while the DI of every 
investigation point only stands for the incidence of 30 m in semi diameter plots. Therefore, 
the scale of MODIS temperature products seemed not satisfied the investigation points for 
proper relationship between them. However, spatial variability of LST is slim, and the law 
still exists. A series of results could be found by establishing a two-dimensional spatial 
coordinate based on DI and LST, in which all investigation points were displayed (Fig 13). 
Firstly, the DI ranged from 0% to 100%, and most of infected points ranged from 0% to 60%. 
The LST values were between 292K and 310K with most of infected points distributed in the 
range from 298K to 306K. In addition, the points in the region of less than 298K were not 
infected by yellow rust basically; DI were less than 1% expect for one point (296.29K, 16%), 
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which was thought as abnormal point. In addition, the LST values of all investigation points 
were less than 306K expect for one point (310.09K, 24%), which was abnormal because its 
LST was far away from LST values of others. 

 

Fig. 13. The distribution of the investigation points 

Therefore, without considering other factors, It is concluded that yellow rust can occur 
when LST is in the region from 298K to 306K. 

2.4.2.2 Yellow rust incidence analysis based on LST 

According to the results illustrated above, the advanced analysis was performed for 
incidence and possible area of yellow rust. The points in different LST range were done 
statistical analysis with all points’ numbers and the infected points’ number, and finally, the 
incidences were obtained by the number of the infected points dividing the number of all 
points in the different LST range (Table.8). The result showed that all investigation points in 
the region of less than 298K were not infected by yellow rust, except for the abnormal point 
(296.29K, 16%). On the other hand, in the LST region of more than 306K, there was only one 
point, which was viewed as abnormal point (310.085K, 24%). Thereby, it is quite possible 
that yellow rust fungus can not survive in the region of more than 306K. The conclusion was 
consistent with the above result (Fig. 13). 

 

LST (K) 
LST≥2

96 
LST≥2

97 
LST≥ 
298 

LST≥ 
299 

LST≥ 
300 

LST≥ 
301 

LST≥ 
302 

LST≥ 
303 

LST≥ 
304 

LST≥ 
305 

LST≥ 
306 

Total 
number 

126 112 99 79 61 34 25 16 12 8 1 

Number of 
infected 
points 

49 48 47 42 39 27 25 16 12 8 1 

Incidence (%) 38.89 42.86 47.47 53.16 63.93 79.41 100 100 100 100 100 

Table 8. Statistic analysis in different LST range 
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Furthermore, there was an increasing trend of incidences with the rising of LST in the region 
from 296K to 302K. The incidence of yellow rust reached up to 100% when the LST was 
graeter than 302K (Fig. 14). 

 

Fig. 14. The incidence of yellow rust in different LST range 

2.4.2.3 Dividing yellow rust suitable occurrence region based on LST 

According to Table 8 and Fig. 14, the survey areas could be divided into yellow rust 
unsuitable area (NSA), of which LST ranged from 298K to 306K, and yellow rust suitable 

area (SA), of which the LST was less than 298K and more than 306K. Moreover, the SA was 
divided into 3 levels according to the infected of yellow rust incidence and LST, and the LST 

thresholds for each level were: 298K ≤ LST ≤ 299K the low suitable area (LSA), on which the 
yellow rust occurs with very low possibility (incidence < 60%), 299K ≤ LST ≤ 301K the 

medium suitable area (MSA), which had moderate possibility for the occurrence of yellow 
rust (60% <incidence < 100%), and 302K ≤ LST ≤ 306K high suitable area (HSA), of which the 

environment was highly favorable to yellow rust (incidence=100%). 

2.4.2.4 Verification 

Total 26 points (from May 2008) were applied for the verification the method of estimating the 
incidence of yellow rust. It should be noted that those points were not used for the defining of 
the LST thresholds. (Fig. 15). These 26 points were constituted by 18 infected points and 8 non-
infected points. Results showed the infected points were all in different suitable areas of wheat 
yellow rust, while the non-infected points were all in the unsuitable area. Thus the infected 
situation of yellow rust of these 26 points was consistent with forecast results. Geographically, 
it seemed that the yellow rust was prone to be prevalent in the northeast of Pingliang, 
southwest of Qingyang, northeast of Dingxi, the center part of Tianshui, and the west of 
Longnan, because they all were located in MSA and HAS. This result was consistent with the 
previous study (Xiao, et al, 2007). To prevent yellow rust from prevalence, more efforts should 
be placed on the farmlands located in the MSA, HAS and LSA.  

2.4.3 Conclusions  

Plant disease is governed by a number of factors, and the habitat factors play a major role in 
the development and propagation of fungal pathogens (Sutton et al., 1984; Hélène et al.,  
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Fig. 15. Forecast map of yellow rust and distribution of measured points in May, 2008 based 
on LST 

2002; Cooke et al., 2006). The yellow rust is no exception. The weather station can only offer 
points data, and remote sensing, however, can be a promising means for acquiring spatially 
continuous observations over large area. It has not been reported, if any, that the LST 
derived from remote sensing data is used to forecast the development of yellow rust. 

The study tried to present a method that could forecast the suitable areas of wheat yellow 
rust by MODIS temperature products in a large scale. And it was proved that LST derived 
from remote sensing data had potential for predicting the occurrence and development of 
wheat yellow rust in a large area. From our results, it is clear that preventive measures of 
yellow rust can been made over large scale area accordingly with different real-time 
prediction methods based on LST derived from remote sensing data.  

3. Detecting and discriminating winter wheat aphid by remote sensing 

Wheat aphid, Sitobion avenae (Fabricius), is one of the most destructive pests in agricultural 
systems, especially in temperate climates of the northern and southern hemispheres. Wheat 
aphid appears annually in the wheat planting area of China, causing great economic 
damage to plant crops as a result of their direct feeding activities. In high enough densities, 
wheat aphids can remove plant nutrients, and potentially reduce the number of heads, the 
number of grains per head, and overall seed weight. The damage is especially high when 
wheat aphid occurs in the flowering and filling stage of wheat. It is reported that average 
densities over 20 aphids per plant can cause substantial losses of yield and quality of wheat 
(Basky & Fónagy, 2003). There are also indirect damages including excretion of honeydew 
from aphids and as a vector of viruses, most notably two strains of the Luteovirus Barley 
Yellow Dwarf Virus (BYDV-MAV and BYDV-PAV) (Susan et al, 1992). To prevent the 
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occurrence and prevalence of aphid, large amounts of insecticides are used, causing 
environment pollution. Therefore, large-scale, real-time prediction and monitoring of wheat 
aphid incidence and damage degree using remote sensing technology are extremely 
important. 

3.1 Detecting winter wheat aphid using hyperspectral data 

The study aimed to identify spectral characteristics of wheat leaf and canopy infected by 
aphid and find the sensitive bands to aphid at canopy level in filling stage of wheat, and to 
establish an aphid damage hyperspectral index (ADHI) based on those sensitive bands for 
detecting aphid damage levels in wheat canopy level in filling stage of wheat. 

3.1.1 Materials and methods 

3.1.1.1 Field experiments and field inventory 

The field experiment plot was located at Xiaotangshan Precision Agriculture Experiment 
Base, Changping distract, Beijing (40º10.6’N, 116º26.3’E). The experimental field was about 
250 m in length and 80 m in width. The winter wheat was planted in the study area from 
Oct 3, 2009, and harvested from June 25, 2010. Field inventory was conducted on June 7, 
2010 when wheat was in the filling stage. Twenty five ground investigations including 
different aphid damage levels were selected. Aphid damage level was surveyed according 
to the investigation rule. 

3.1.1.2 Canopy spectral measurements 

Please refer to 1.1.1.2 part above. 

3.1.2 Results 

3.1.2.1 Leaf spectral characteristics of wheat infested by aphid 

Representative reflectance measured from wheat aphid-infested and uninfested wheat 
leaves are shown in Fig. 16. It was evident that the spectral response of the wheat leaf was 
significantly affected by wheat aphid feeding (Fig. 16). The reflectance of wheat leaf infested 
by aphid was higher in the visible spectrum and short-wave infrared region and lower in 
near-infrared region than that of uninfested leaf. A significant increase in the reflectance 
from the wheat aphid-infested leaf in the visible region (400-700 nm) was observed, 
evidently due to reduction of photosynthetic pigment concentrations in particular 
chlorophylls caused by wheat aphid feeding (Richardson et al., 2004). 

3.1.2.2 Canopy spectral characteristics of wheat infested by aphid 

Compared with the canopy spectra of the healthy wheat, the canopy reflectance of aphid-
infested wheat was gradually decreased in the range from 350 nm to 1750 nm, especially in the 
near infrared region (Fig. 17). Previous researches indicated that wheat had higher reflectance 
at visible wavelengths than the healthy vigorously growing wheat because the photoactive 
pigments (chlorophylls, anthocyanins, carotenoids) were destroyed. In this study, aphid 
occurred in the filling stage of wheat and the honeydew excreted by aphid absorbed dust or 
others from surrounding environment and contaminated (darkened) the leaf surface. As a 
result, the absorption at light slight wavelengths became stronger instead of weaker. 
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Fig. 16. The spectral reflectance of winter wheat leaf uninfested and infested by aphid 
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Fig. 17. The spectral reflectance of healthy wheat and wheat infested by various aphid 
damage levels. (Healthy: the average spectra of healthy wheat samples; Slight: the average 
spectra of aphid damage level 1and 2; Moderate: he average spectra of aphid damage level 
3and 4; Severe: the average spectra of aphid damage level 5 and 6). 

3.1.2.3 Aphid damage hyperspectral index for detecting aphid damage degree 

Sensitive band selection of aphid infestation based on canopy reflectance 

The sensitive bands were selected out by relevance analysis between reflectance and aphid 
damage levels. The reflectance ranges were from 400 nm to 690 nm, from 700 to 1300 nm 
and from 1500 to 1800 nm. The most sensitive bands to aphid were 551 nm (R2=0.741) in 
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visible light, 823 nm (R2=0.865) in near infrared (NIR) and 1654 nm in short-wave infrared 
(SWIR) (R2=0.668), respectively (Fig. 18). 

 

Fig. 18. Correlation coefficient between reflectance and aphid damage levels 

Aphid damage hyperspectral index (ADHI) was established based on the most sensitive 
bands from hyperspectral data in the visible light region, NIR and SWIR and weight 
coefficient calculated according to rate of change of reflectance between healthy wheat and 
aphid-infected wheat, respectively. 

R551     -R551 R823    - R823
ADHI  0.32  0.51  

R551 R823

R1654    - R1654
0.17  

R1654

infested infested

infested

normal normal

normal normal

normal

normal

   

 

 

where R551normal，R823normal and R1654normal are reflectance in 551 nm, 823 nm and 1654 nm 

of healthy wheat; R551infested , R823 infested , R1654 infested are reflectance in 551 nm, 823 nm and 
1654 nm of aphid-infected wheat; 0.32, 0.51 and 0.17 are weight coefficients calculated by the 
contribution to change rates.  

Further more, the correlation analysis was conducted between ADHI and aphid damage 
level from 25 investigation points (Fig. 19). It was concluded that ADHI exhibited high 
relationship with aphid damage levels (R2=0.839). Therefore, ADHI was an important index 
to estimate aphid damage level in winter wheat.  

3.1.3 Conclusions 

Hyperspectral remote sensing has gone through rapid development over the past two 
decades and there is a trend toward the use of hyperspectral image in the application of 
remote sensing for precision farming. The study analyzed the spectral characteristics of 
wheat infested by aphid and selected the sensitive bands to aphid damage level. Then, an 
ADHI was developed using the most sensitive bands in visible light region, NIR and SWIR.  
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Fig. 19. The correlation between ADHI and aphid damage level 

It was concluded that ADHI was a sensitive index to aphid damage levels, and could be 
used to retrieve aphid damage levels in the filling stage of wheat.  

Crop growth is very dynamic processes and monitoring the condition of agricultural corps 
is a complex issue. It is possible that wheat damage symptoms caused by aphids and its 
response of canopy reflectance are different in different wheat growth stages. This study 
revealed that the reflectance of wheat infested by aphid was lower than healthy wheat in 
filling stage probably because of honeydew excreted by aphid. This was not consistent with 
previously published results in early detection of aphid infestation. Therefore, whether the 
ADHI can effectively retrieve aphid damage levels in other wheat growth stages remains as 
a task of future studies. 

3.2 Detecting winter wheat aphid incidence using Landsat 5 TM 

Wheat aphid occurrence and damage degrees are related to many factors including 
temperature, humidity, precipitation, field management, enemies, etc.. Most of the present 
studies on aphid prediction have been conducted based on meteorological data acquired 
from weather stations, and aphid density was monitored using the spectral characteristics of 
wheat infested by aphid. However, it is rare to investigate the relationship between 
environmental parameters, vegetable information derived from satellite images and aphid 
damage degrees. The aim of the present study is to investigate the relationships of aphid 
occurrence and damage degree to LST, NDWI, and MNDWI, which are related to vegetation 
water content derived from multi-temporal Landsat 5 TM. Another goal of the current 
research is to distinguish the degrees of aphid damage using 2-dimension feature spaces 
established by LST-NDWI and LST-MNDWI. 

3.2.1 Materials and methods 

3.2.1.1 Study areas 

The study areas are selected in Shunyi district (116°28'—116°58' E，40°00'—40°18' N) and 

Tongzhou district (116° 32'—116°56' E, 39°36' —40°02' N,) of Beijing, China (Fig.20-a). The  
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Fig. 20. The study area and the spatial distribution of sample plots 

study areas have flat topography, with elevation ranging from 20 m to 40 m. The study areas 
have semi-humid warm temperate climate with yearly precipitation of 625 mm and mean 
temperature of 11.5°C in the Shunyi district and yearly precipitation 620 mm and mean 
temperature of 11.3°C in the Tongzhou district. Both districts are considered main winter 
wheat planting areas in Beijing, and aphid infestations occur in both areas almost every 
year. 

a) b)
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3.2.1.2 Field inventory and data pre-processing 

Field inventory was conducted during the growing seasons of winter wheat in 2010. The 

winter wheat in the study areas were planted between September 25 and October 7, 2009, 

and harvested between June 19 and June 25, 2010. Based on the combination of 

representative sampling and random sampling scheme, 70 sample plots with size of 0.09 ha 

(30 m × 30 m) each were collected as in Fig 1-a. These sample plots had different site 

conditions, plant densities, and management conditions. Aphid density surveys were 

carried out respectively on May 4 and May 6 for jointing stage, May 20 and May 21 for the 

heading stage, and June 3 and June 4 for the filling stage. The geographical coordinates of 

each plot were measured by global positioning system (GPS) ( GeoExplorer 3000 GPS, with 

the error within 1m) at the middlemost of the plot. 

Each sample covered with an area of 1 m2. Then, 10 tillers in each sample plot were 

randomly selected, and the number of aphids was counted. The aphid densities were then 

estimated as follows: total aphids /10 tillers.  

The survey results were divided into three aphid damage degrees according to the aphid 

density investigated for facilitating the study. They were S0: non-infested by aphid and no 

damage to wheat, S1: aphid abundance/per tiller was about 3-10 and damage degree to 

wheat was slight, and S3: aphid abundance/per tiller was more than 20 and damage degree 

to wheat was severe. 

3.2.1.3 Satellite image acquisition and pre-processing 

Three Landsat-5 Thematic Mapper (TM) images (path 123/row 32) and three MOD 02 1 

KM-Level 1B Calibrated Radiances Production (MOD 02) were acquired on May 4, May 20 

and June 5, 2010, respectively. And all images were more than 90% cloud-free. 

The Landsat-5 TM images were spectrally corrected to reflectance using the Landsat TM 

calibration tool and FLAASH (Fast line-of-sight Atmospherics Analysis of Spectral 

Hypercubes) was used to correct the image for atmospheric effects in ENVI 4.5. The 

Landsat-5 TM images were geometrically corrected versus a reference IKONOS image 

(equivalent scale map 1:10000) of the same area, available from a previous study. The 

resulting root mean square error (RMSE) did not exceed 0.3 pixels, which was adequate for 

the purposes of the present study. 

3.2.1.4 Derivation of LST, NDWI and MNDWI from Landsat 5 TM 

NDWI and MNDWI are both sensitive to changes in liquid water content of vegetation 

canopies (Hunt and Rock, 1989). In the current research, both NDWI and MNDWI were 

used to determine the threshold of aphid occurrence and the aphid damage degree. The 

indices are of the general form, as shown in the following:  

+
NIR SWIR

NIR SWIR

R R
NDWI

R R


  

-

+
GREEN SWIR

GREEN SWIR

R R
MNDWI

R R
   

where RGREEN ,RNIR and RSWIR are the reflectance in the green band, near-infrared band and 

short wave infrared band, respectively. For Landsat TM/ETM+, RGREEN ,RNIR and RSWIR 

correspond to band2, band4 and band5, respectively. 

www.intechopen.com



 
Crop Disease and Pest Monitoring by Remote Sensing 

 

69 

LST is the radioactive skin temperature of the land surface, which plays an important role in 
farm and ecological environment. The present paper aims to discuss the relationship 
between LST and aphid occurrence and spread. LST was derived from the thermal infrared 
band (10.4-12.5┤m) data of Landsat-5 TM using generalized single-channel algorithm 
developed by Jiménez-Muñoz and Sobrino (Jiménez-Muñoz and Sobrino, 2004). Surface 
emissivity (ε) and atmospheric water vapor content (w) were important parameters in the 
generalized single-channel algorithm. In the study, w was derived from the reflectance of 
band2 and band19 of MOD02, (Kaufman and Gao, 1992), and ε was calculated by vegetation 
coverage (Carlson and Ripley, 1997).  

The NDWI, MNDWI and LST of all sample points were calculated and extracted from the 
Landsat images.  

3.2.1.5 Subset image selection and wheat extraction  

We resized the subset areas with size of 7.2 km2 (3 km × 2.4 km) from the study area image 
located in Tongzhou district and covered with 20 evenly distributed sample points, and the 
aphid densities of the sample points were surveyed on May 6, May 20 and June 4, 2010, 
respectively. The survey results showed that the aphid damage degree of all sample points 
were S0 on May 6, 18 points for S1 and 2 points for S0 on May 20, and 16 points for S2 and 4 
points for S0 on June 4, respectively. The subset areas were small enough and 20 sample 
points evenly distributed, According to the survey result, the aphid damage degree of the 
sample plots was basically same. Thus, the change of the aphid damage degree of wheat 
pixels in the wheat plots was slim or even basically the same as the sample plots. The wheat 
area of subset image selection area was extracted using classification of decision tree in 
ENVI 4.5 (Fig 20-b). The LST, NDWI and MNDWI of 2000 wheat pixels were extracted. 

3.2.1.6 Methods of accuracy assessment 

One basic accuracy assessment currently being used is overall accuracy, which is calculated by 
dividing the correctly classified pixels by the total number of the pixels checked. The Kappa 
coefficient is a measure of the overall agreement of a matrix introduced to the remote sensing 
community in early 1983. It has since become a widely used measure for classification 
accuracy. In contrast to overall accuracy, the Kappa coefficient takes non-diagonal elements 
into account (Rosenfield and Fitzpatrick-Lins, 1986), and it is calculated by the formula: 
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where r is the number of rows and columns in the error matrix; N is the total number of 
observations; Xii is the observation in row i and column i; Xi+ is the marginal total of row I; 
X+i is the marginal total of column i. 

3.2.2 Results 

3.2.2.1 2-dimensional feature space based on LST-VI 

The minimum value, maximum value, mean values and standard deviations of LST, NDWI 
and MNDWI with aphid damage degrees of wheat pixels in subset image selection were 
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listed in Table 9 and Table 10. And 2-dimensional feature space coordinates were 
established with LST as the abscissa and NDWI and MNDWI as the vertical axis, 
respectively (Figs. 2, 3). LST ranged from 287.5879 to 313.3448, NDWI ranged from 0.0226 to 
0.5591 and MNDWI ranged from -0.3402 to -0.1077, respectively. 

It is clear that LST was increasing from S0 to S1 to S2. LST was an important driving factor 

for aphid occurrence and could distinguish wheat non-infected from infested by aphids (Fig. 

21 and Table 9). The general trend of NDWI increased firstly and reduced afterward, 

whereas MNDWI reduced firstly and increased afterward from S0 to S1 to S2.  

 

Aphid 
Damage 
Degree 

LST NDWI MNDWI 

Minimum 
value 

Maximum
value 

Minimum 
value 

Maximum
value 

Minimum 
value 

Maximum 
value 

S0 287.5879 296.2498 0.0226 0.4405 -0.3402 -0.1077 

S1 297.8084 306.0133 0.2083 0.5591 -0.6506 -0.3326 

S2 300.5391 313.3448 0.0473 0.4542 -0.4117 -0.1159 

Table 9. Minimum and maximum values of LST, NDWI and MNDWI in S0, S1 and S2 

 

Aphid 
Damage 
Degree 

LST NDWI MNDWI 

Mean value
Standard 
deviation 

Mean 
value 

Standard 
deviation 

Mean value 
Standard 
deviation 

S0 290.8578 1.4740 0.3029 0.0574 -0.2293 0.0296 

S1 299.9236 1.0834 0.3998 0.0587 -0.4940 0.0362 

S2 303.9424 1.7121 0.2979 0.0458 -0.2672 0.0402 

Table 10. Mean value and standard derivation of LST, NDWI and MNDWI in S0, S1 and S2 

 

Fig. 21. The distribution of S0, S1 and S2 in the LST-NDWI (left) and LST-MNDWI (right) 
feature space 
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3.2.2.2 Discriminating aphid damage degrees using LST and MNDWI 

In the 2-dimensional feature space coordinate system that was composed by LST and 
MNDWI, the S0 samples mainly scattered on the left part of the coordinate system, whereas 
S1 and S2 samples were distributed on the right part. As shown in Fig. 22, when LST was 
lower than the certain value, aphid did not occur, suggesting that LST served as a key factor 
of aphid occurrence and the MNDWI was sensitive to aphid damage degree. 

Furthermore, LST0 and MNDWI0, which were the cutoff value of threshold values of LST 
and MNDWI of S0, S1 and S2, were determined by mean values and standard deviations. 
LST0 and MNDWI0 were calculated by formula as follows:  

LST0 =LST_M1－2×LST_SD1  

MNDWI0= (M_M1+3×M_SD1)+ [(M_M1+ 3×M_SD1)-(M_M2-3×M_SD2)]/2  

where LST_M1 and LST_SD1 are the mean value and standard deviation of LST for S1; 
M_M1and M_SD1 are the mean value and standard deviation of MNDWI for S1; and M_M2 
and M_SD2 are the mean value and standard deviation of MNDWI for S2. 

According to Table 3, LST0 = 297.7568 and MNDWI0 = -0.3866. Wheat was not infested by 
aphid when LST< 297.7568, and aphid damage degree was S1 when LST≥297.7568K and -
0.6506≤MDNWI ≤-0.3866 and S2 when LST≥297.7568K and -0.3866 ≤MDNWI ≤-0.1077 (Fig. 
22). 

 

Fig. 22. Discriminating aphid damage degrees using LST and MNDWI 

3.2.2.3 Verification 

All survey samples, except 20 samples in the subset selection image were used to test the 
aphid prediction accuracy of 2-dimensional feature space based on LST and MNDWI (Fig. 
23). 

The discrimination accuracy was assessed using overall accuracy and kappa coefficient 
(Table 11). The results showed that the overall accuracy was 84%, and the Kappa accuracy 
was 75.67%.  
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Fig. 23. Distribution of test sample plots in LST-MNDWI feature space 

 

 S0 S1 S2 Total 

S0 17 0 0 17 

S1 2 14 0 16 

S2 4 2 11 19 

Total 23 16 11 50 

Kappa coefficient = 0.7567 

Table 11. Error matrices of the verification samples 

3.2.3 Conclusions 

This study successfully investigated the relationship between aphid damage degrees and 
several spectral features, such as NDWI, MNDWI and LST, through 2-dimensional feature 
space method. The results indicated that LST was the key factor in predicting the occurrence 
of aphid, and MNDWI was more sensitive to aphid damage degree than NDWI. In the 2-
dimension feather space composed by LST and MNDWI, the result showed that S0, S1 and 
S2 were divided into three regions; S0 was distributed on the left of the space, and S1 and S2 
on the right. Further, LST0 and MNDWI0 were calculated according the mean and 
derivation of S1, S2 as the cutoff value of threshold value to discriminate S0, S1 and S0. 
Through the verification of discrimination threshold value, it confirmed that the overall 
accuracy of discrimination was 84% and Kappa coefficient was 0.7567, suggesting that LST 
and MNDWI were of great potential in discriminating and monitoring the aphid damage 
degree over a large area, only using thermal infrared band and multi-spectral satellite 
images. 
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