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1. Introduction

As the dimension of devices reduces to nano-scale regime, the spin-dependent transport (SDT)
and spin effects in quantum dot (QD) based systems become significant. These QD based
systems have attracted much interest, and can potentially be utilized for spintronic device
applications. In this chapter, we consider nano-scale spintronic devices consisting of a QD
with a double barrier tunnel junction (QD-DTJ)(schematically shown in Fig. 1). The DT]J
couples the QD to two adjacent leads which can be ferromagnetic (FM) or non-magnetic (NM).

)
| , Vy
electrode quantum dot electrode

Semiconductor QD
¥ Insulator () Metal

Fig. 1. QD-DT]J system consists of a QD coupling to two electrodes via double tunnel
junctions. V}, is the bias voltage, under which the electrons tunnel through the QD one by
one.

In a QD-DT] system, the electron tunneling is affected by the quantized energy levels
of the QD, and can thus be referred to as single electron tunneling. The single
electron tunneling process becomes spin-dependent when the leads or the QD is a spin
polarizer, where the density of states (DOS) for spin-up and spin-down electrons are
different. The interplay of SDT with quantum and/or single electron charging effects
makes the QD-DT]J systems interesting. In such QD-DT]J systems, it is possible to observe
several quantum spin phenomena, such as spin blockade (Shaji etal. (2008)), Coulomb
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426 Fingerprints in the Optical and Transport Properties of Quantum Dots

blockade (CB) (Bruus & Flensberg (2004)), cotunneling (Weymann & Barna$ (2007)), tunnel
magnetoresistance (TMR) (Rudzifiski & Barnas (2001)), spin transfer torque (Mu et al. (2006))
and Kondo effect (Katsura (2007); Lobo et al. (2006); Potok et al. (2007)). The complex spin
and charge transport properties of QD-DT] systems have attracted extensive theoretical
(Bao et al. (2008); Braig & Brouwer (2005); Jauho et al. (1994); Kuo & Chang (2007); Ma et al.
(2008); Meir & Wingreen (1992); Meir et al. (1991; 1993); Mu et al. (2006); Qi etal. (2008);
Qu & Vasilopoulos (2006); Souza et al. (2004); Zhang et al. (2002); Zhu & Balatsky (2002))
and experimental ((Deshmukh & Ralph, 2002; Hamaya et al., 2007; Pasupathy et al., 2004;
Potok et al., 2007)) investigations recently. These studies may ultimately lead to the utilization
of such devices in diverse applications such as single spin detector (Wabnig & Lovett (2009))
and STM microscopy (Manassen et al. (2001)).

The theoretical study of the SDT through these DTJ systems are mainly based on two
approaches, namely the master equation (ME) approach and the Keldysh nonequilibrium
Green'’s function (NEGF) approach. For coherent transport across QD-DT]J devices, quantum
transport methods are applied, such as the linear response (Kubo) method applicable for small
bias voltage, and its generalization, the NEGF method for arbitrary bias voltage. Since the
objective of the study in this Chapter is for device application over a wide voltage range,
we focus on the latter. The NEGF method has been employed to analyze various transport
properties of QD-DT] systems, such as TMR, tunneling current (Weymann & Barnas (2007))
and conductance. These analyses were conducted based on the Anderson model (Meir et al.
(1993); Qi et al. (2008)), for collinear or noncollinear (Mu et al. (2006); Sergueev et al. (2002);
Weymann & Barna$ (2007)) configurations of the magnetization of the two FM leads, or in
the presence of spin-flip scattering in the QD (Lin & D.-5.Chuu (2005); Souza et al. (2004);
Zhang et al. (2002)).

In this Chapter, based on the NEGF approach, we study the SDT through two QD-DT]
systems. In Section. 2, the electronic SDT through a single energy-level QD-DT] is theoretically
studied, where the two FM leads enable the electron transport spin-dependent. In the study,
we systematically incorporate the effect of the spin-flip (SF) within the QD and the SF during
tunneling the junction between the QD and each lead, and consider possible asymmetry
between the coupling strengths of the two tunnel junctions. Based on the theoretical model,
we first investigate the effects of both types of SF events on the tunneling current and TMR;
subsequently, we analyze the effect of coupling asymmetry on the QD’s electron occupancies
and the charge and spin currents through the system (Ma et al. (2010)).

In Section. 3, we studied the SDT through a QD-DTJ system with finite Zeeman splitting (ZS5)
in the QD, where the two leads which sandwich the QD are NM. The spin-dependence of the
electron transport is induced by the ZS caused by the FM gate attached to the QD. A fully
polarized tunneling current is expected through this QD-DT] system. The charge and spin
currents are to be analyzed for the QD-DT] systems with or without ZS.

2. Single energy level QD

The QD-DT]J device under consideration is shown in Fig. 2. It consists of two FM leads
and a central QD in which a single energy level is involved in the electron tunneling
process. The SDT through the QD-DT]J is to be theoretically modeled via the Keldysh NEGF
approach (Caroli et al. (1971); Meir & Wingreen (1992)). In the transport model, the limit of
small correlation energy is assumed, in the case where the energy due to electron-electron
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Coherent Spin Dependent Transport in QD-DTJ Systems 427

interaction in the QD is much smaller than the thermal energy or the separation between the
discrete energy levels in the QD (Fransson & Zhu (2008)).

2.1 Theory

For the QD-DT]J device shown in Fig. 2, the full Hamiltonian consists of the lead Hamiltonian
H,, the QD Hamiltonian Hj;, and the tunneling Hamiltonian H;. The explicit form of the
Hamiltonian is given by

H=) Hy+H;+H, @)
o
where

Hy = Zelxkﬂalkg’alxkﬂ'/ (2)
ko
e e

t t

Hp = Z (t“kU,Ua:;aﬂék(T + t:cka,aalkaaff) + 2 (t(XkO’,ﬁ’aFalka’ + tZka,ﬁaakgaE> . 4)

wko ako

In the above, €, is the single energy level in the QD, €, denotes the coupling energy of the
spin-flip within quantum dot (SF-QD) from spin-c to spin-7 state, t,y, ¢ (t4k¢ &) i the coupling
between electrons of the same (opposite) spin states in the lead and the QD. &« = {L, R} is the
lead index for the left and right leads, ¢ = {1, ]} stands for up- and down-spin, and k is the
momentum, €, represents the energy in the leads. The operators 4], (a,) and a; (a,) are the
creation (annihilation) operators for the electrons in the leads and the QD, respectively.

2.1.1 Tunneling current and tunnel magnetoresistance

The tunneling current through the QD-DT]J system can be expressed as the rate of change of
the occupation number N = ¥, a}a, in the QD,
. ie
I:eN:EqH,N]). (5)
Without loss of generality, we can calculate the tunneling current in Eq. (5) by considering the
tunneling current I} through the left junction between the left lead and the QD. Evaluating
the commutator in Eq. (5) in terms of creation and annihilation operators gives
ie
I=1, = 7 Z (tha,U/wzkaaa/) - tzkg,a'<a§'aLka>> : (6)
Lko o’

In Eq. (6), one may replace the creation and annihilation operators by the lesser Green’s
functions, which are defined as G35, (t) = i(a}, a,(t)) and Gl o (t) = ilal,apke(t))
(Meir & Wingreen (1992)). Eq. (6) then takes the form of
e *
Iy = B Lkz <th(7,U'G;/,Lk(r(t) - thU’,(T/GL<k0’,0’/(t)> : @)
0,0’

After performing a Fourier transform on Eq. (7), Gy, (€) can be expressed in form
of the left lead’s and QD’s Green’s functions, under the assumption of non-interacting
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Right lead
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Current I B= trko.6 Lo,

e~ €q0 —€ VY (1+p?)

Left lead QD Right lead
(b)

Fig.2. (a) Schematic diagram of the QD-DT] structure consisting of a QD sandwiched by
two FM leads; (b) the schematic energy diagram for the system in (a). In (a), the arrows in the
leads indicate magnetization directions, which can either be in parallel (solid) or antiparallel
(dashed) configuration, V}, denotes the bias between the two leads, A characterizes the
strength of the SF-QD, t; x4 | describes the SF-T] from the up-spin state in left lead and the
down-spin state in the QD, 14 4+ shows the coupling between the same electron spin states
in left lead and QD, and B = tgy, +/t1 ks o epresents the coupling asymmetry between the
left and right tunneling junctions. In (b), #1 and pr are the chemical potentials of left and
right leads respectively, and €; (€4y) denotes the single energy level of the QD with or
without bias voltage.
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leads. Taking into account the contour-ordered integration over the time loop, the
corresponding Dyson’s equations for GLkU’ »(€) can then be obtained (Mahan (1990)),

ie, Gi,p(€) = Lo tha,U”[nga,Llca( )G q(€) = gfka,Lka(e)Gfr",af( €)] and G, (e) =
Z_U” tiko,a” [gka,LkU’(€>G(§'”,0'/(€) B gth(T,Lk(T( )G;”U’< )] where G = Q(t)G> + 9( >G< and
G = 0(— )G> + 6(t)G< are the time-ordered and anti-time-ordered Green’s functions

respectively, G (t) = —i (a,a,(t)), and the g’s are the corresponding unperturbed Green'’s
functions of the feads, whose lesser Green’s function and greater Green’s function are in form

of gfko Lka( €) = i2nfrs(€)d(e — €Ly) and gEkU,Lkg’(e) = —i27[1 — frs(€)]6(e — €Ly), where
fro(e) = (1+exp(554)) ! is the Fermi-Dirac function, j; is the chemical potential, e is
the energy for electrons with spin ¢ in the left lead, kp is the Boltzmann constant and T is the

temperature of the device. With this, the current in Eq. (7) can be expressed in terms of the
Green’s functions wholly of the leads and the QD, i.e.,

Z / 27T {thtT o’ 2 thU’ o [nga Lka’( )G(tf”,a’(e) - gtha,Lka(€>Ga<”(7/ (6)]
LkO’ 1/ 00

_tzka,(f’ Z th(T,tT” [gtha,chr(e)G(f”,a/ (e) - gEkU,LkU(e)G(tf”,a’ (e)] } (8)
U—//
By applying the identities G' + GIl=G<+G”>and G> - G<=G"'— G" to Eq. (8), we obtain
after some algebra (Mahan (1990)):
ie © de
I =+ ey S tikoole=e T ko prle=e A fu(€)[Gyr pnl€) — Ggr pul€)] + Ggi yu(€) . (9)

h Lko,o’'” —

We now introduce the density of states for the electrons in the FM leads, denoted by pu.(€).
For the electrons in the left FM lead, the density of states is prs(€) =[1+ (—=1)7 pr] pro(e),
while for the electrons in the right FM lead, it is pry (€)= [1 +(=1)"*7 pR] pro(€), where o =

{0,1} for spin-up/down electrons, a = {0,1} for parallel/antiparallel alignment of the two
FM leads’ magnetization, 0,0 = (0u+ + 4] ) /2, and p, is the polarization of the lead «. For
the summation over k in Eq.(9), one may apply the continuous limit approximation } 7 x,} —

Y{1o} J de pro(€). The current then can be expressed as

I = /de tr {fu(€)Ty [G'(€) — G(e)] + T,G< (&)}, (10)
v={Lco}

where I, and G("%<)(¢) are (2 x 2) coupling and Green’s function matrices, given by

t e)|? t €ty o€
rw(e) :anw(e) < | LU,O'( )’ ‘ Laa( ) LU,<7< )’) , (11)
‘tLa o’( )tLO’,O’(e>| |tL0’,(7<€)tL0’,(_T(€)’
Gy (e) G (e)
G <)(e) = ’ . (12)
G (e) Gl (e)
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In Eq.(11), try,.(tre7) applies for the case of spin-o electron tunneling to the spin-c

(0) state with (without) spin-flip. In low-bias approximation, I'is(€)=27pLs(€)[t], ,/(€)
troov(€)| is taken to be constant (zero) within (beyond) the energy range close to the
lead’s electrochemical potential where most of the transport occurs, ie., € € [py —
D, py + D], where D is constant (Bruus & Flensberg (2004)). Based on the kinetic equation
(Meir & Wingreen (1992)), the lesser Green’s function GU, ,(€) can be written as G o on(€) =

iGL, 1 (€)GEs () [T fiol€) + Trofre(€)], where G, o, (£) = —i(t) ({ar," agn(£)}) and the
advanced Green’s function G ,(€) = [G], ;(€)]*. I'ac is the aforementioned coupling strength,

~1
and fyr = (1 —kexp('g i ‘*”)) is the Fermi-Dirac function of lead «, with p,, being the

chemical potential of that lead. When a bias voltage of V}, is between the two leads, the leads’
electrochemical potentials are, respectively, given by yu;, = 0 and g, = —eVj.

Considering that the current from the left lead to the QD is equal to the current from the QD
to the right lead, one may calculate the current in a symmetric form, i.e., I = % The final
form for the total current is then given by

= O % [[delfiole)  frole)] (G TG T, ) 13)

In this QD-DT] system, there exists the tunnel magnetoresistance (TMR) effect, which is
caused by the difference between the resistance in parallel and antiparallel configurations
of the two FM leads” magnetization. The TMR is given by

RAP_RP IP—IAP
TMR = ——5— = —7p— (14)

where I (I47) is the tunneling current in parallel (antiparallel) configuration of the two leads’
magnetization.

During the course of analyses, we would also consider the state of the QD, which is
characterized by its occupancy. The QD’s occupancy with electrons of spin-o can be obtained
by considering the lesser Green’s function of the QD, i.e.,

(ng) = %Im/deG;U(G). (15)

2.1.2 Retarded Green’s function

To calculate the tunneling current in Eq. (13), one has to obtain the explicit expression
for the retarded Green’s functions G/ ,(e) of the QD. This can be done by means of the
(equation-of-motion) EOM method. By definition, the general form of a retarded Green’s
function is given by G} .(t) = —if(t)({as(t), al,}). In the EOM method, the analytical
expression for G, ,(t) is obtained by firstly differentiating G|, ,,(t) with respect to time. This
yields

901G, (1) = Ot — )30 — i6(t — ') ({idyac (£), a2 })

= 5(t — )00 — i6(t — ') {{~[H,ac],al, }). (16)
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Based on Eq. (16), for the QD-DT]J system with Hamiltonian in Eq. (1), one may obtain a
closed set of equations involving G/ ,(e) after Fourier transform,

1= (e+if—e€wo)Gso— ), toGlo—€roGhy, (17)
v={a,k,0'}
0= <€ + 117 — €(7¢7)Gg,(7 — Z ty/ﬁ'G:;,o- << €U¢7GZ;/U, (18)
v={a,k,0'}
0=(e+in—e)G,— ), ty /Ghs 5o Where v = {a,k,c}, (19)
o'={c,0}
0= (e+in—e)G,— Y. t G, wherev={aka}. (20)
o'={c,0}

By solving the equation array of Egs. (17) to (20), one reaches the explicit expressions for the
retarded Green'’s functions (those in Eq. 12) of the QD:

1

o - | @

H (GU_"O" + Zg/o'./<€) + Zg/g/(€)>
) _ o'={o,0}
€+ 1Y — €gg — Zga(e) - Zga@) B €-|-177 —enn — 37 (6) _y (e)
oo oo oo

1

o, = , @

H (6 +in — €5, — Zg—,(/:,(é‘) - 23/5/(€)>
o'={c,0}

—egr — Zgp(€) — Zgp(e) +

€0+ X7,(€) + E75(w)

Fako o O
oa _ ako,o’” pko,o!! % o ko,o! “ako,o :
where the self energy X7, () = Yiup T (€)= Liaky T with
a0, 0" e {1,1}.

2.2 Results and discussion

Based on the electron transport model developed in Sec. 2.1, one may analyze the SDT
properties, such as the spectral functions, the tunneling charge current, spin current, the TMR
and the electron occupancies of the QD. The SDT model enables one to investigate the effects
of the SF-QD and SF-TJ events and the effect of the coupling asymmetry (CA) on the SDT
properties as well.

To focus on the above effects, one may assume that, i) proportional and spin independent
lead-QD coupling across the two junctions, i.e., tyt1=tak), | =takooc=ta, and tr=Ptp=t; ii)
junction and spin independent strength of SF-T]J, i.e., gt | =tak| 1=tako,=Va, and vr=pov = v;
and iii) spin independence of SF-QD, i.e., €+,=€+=A, iv) the chemical potential of the left

and right leads are y;=0, yr = —eV}; and v) spin independence of the energy level of the
QD, i.e., €go=€55=€4= €40 — €V}, %, where € is the QD’s energy level without bias voltage.

Based on the assumptions i)-v) and Eq. (22), one can readily deduce the spin symmetry of
the off-diagonal Green’s functions, i.e, G} | = G|, = G; 5. For simplicity, in the following
discussion, the form of G/, , is used to replace the form of G/, , for retarded Green'’s function.
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2.2.1 Spin-flip effects

Firstly, one may evaluate the four elements of the retarded Green’s function (GF) matrix [given
in Eq. (12)], G%T, G% 1 GiT and Gi IE Based on Egs. (21) and (22), one may obtain the respective
spectral functions, —ZImG%, —ZImG1( % —ZImGzT, and —ZImGi I Spectral functions provide
information about the nature of the QD’s electronic states which are involved in the tunneling
process, regardless whether the states are occupied or not. The spectral functions can be

considered as a generalized density of states.

If one neglects the SF-QD or SF-T] events in the QD-DTJ system, there is no mixing of
the spin-up and spin-down electron transport channels. In such QD-DTJ system, the two
off-diagonal Green'’s functions, G/,(c = {1,l}) become zero [this can be confirmed by
considering Eq. (22)], and so are their respective spectral functions. Thus, we focus on
the spectral functions corresponding to the diagonal components of the retarded GF matrix.
Those spectral functions are analyzed as a function of energy under both parallel and
antiparallel configuration of the two FM leads” magnetization, in Figs. 3(a) to (d). A broad
peak is observed corresponding to the QD’s energy level (¢ = €;). The broad peak can be
referred to as “QD resonance". The broadening of the QD resonance is caused by the finite
coupling between the QD and the leads, since the QD resonance is a J function for an isolated
QD with no coupling to leads. The width of the QD resonance reflects the strength of coupling
between QD and leads; the stronger the coupling is, the broader the energy spread is, hence,
a wider peak.

Under zero-bias [shown in Figs. 3 (a) and (b)], one may note three distinct features of the
spectral functions:

1. A second resonance peak which corresponds to the leads’ potentials, yi; = ur = 0eV. The
peak can be referred to as the “lead resonance".

2. The lead resonance for the spin-up spectral function (—2ImG?,) has a broader and lower
profile compared to that of the spin-down spectral function, when the QD-DT]J system is in
the parallel configuration. This indicates that the excitation at the lead energy has a larger
energy spread for spin-up carriers due to the polarization of the lead.

3. The spin-up and spin-down spectral functions are identical in the antiparallel alignment,
due to the spin symmetry of the system in antiparallel configuration.

The spectral functions under an finite bias voltage (V}, = 0.2 eV) are shown in Figs. 3 (c) and
(d). It is observed that,

1. the lead resonance splits into two peaks at the respective left lead and right lead potentials,
€e=pur =0and e = yg = —eV}, = —0.2eV.

2. In the parallel configuration, the lead resonance of the spin-down electrons is higher
(lower) than that of the spin-up electrons at yy (ug). This is due to the spin-dependence of
the electron tunneling between leads and QD.

3. The antiparallel alignment of leads” magnetization gives rise to similar magnitude of

the two lead resonances for both spin-up and down spectral functions, due to the spin
symmetry of the two spin channels.

Next, one may investigate the SF-T] effects on the electron transport through the QD-DT]
system, where the SF-TJ strength v # 0. Figure 4 shows the effect of SF-T] on the spectral
function of diagonal GFs. With the SF-TJ effects, both the QD resonance and the lead
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Fig. 3. Spectral functions for spin-up (solid line) and spin-down (dashed line) retarded
Green’s functions, as a function of electrons’ energy, in parallel and antiparallel case. Other
parameters are t=0.5 eV, v=0, €59 = 0.3eV, pg = O.7(eV)*1, pr=prr=07,A=0,=1,T=
0.3K.

resonance at € = (0 are enhanced while the lead resonance at € = —eVj, is suppressed. This
indicates that the increasing SF-T] helps the tunneling to proceed primarily in the vicinity of
the QD’s energy level, resulting in an effective decrease in the coupling between the same spin
states in leads and QD.

Based on the SDT model, one may analyze the effects of the SF-QD events (denoted by A)
on the spectral functions of the diagonal retarded GFs( G% and Gi i) of the QD-DT] system,
for both parallel and antiparallel alignments, as shown in Figure 5. At the QD energy level
€4 = 0.2 eV, the presence of the SF-QD causes a symmetric split of the QD resonance, resulting
in the suppression of tunneling via the lead resonances. The splitting of the QD resonance
indicates that the two effective energy levels within the QD are involved in the tunneling
process. This split translates to an additional step in the I — V characteristics, which will be
discussed later in Fig. 7.

Considering the off-diagonal GF’s (G/;), the spectral functions are ploted in Figure 6, for both
parallel and antiparallel alignment, under varying SF-TJ strengths (v) and SF-QD strengths
(A). As shown in Figs. 6(a)-(d), without SE-T] or SF-QD effects, the off-diagonal spectral
functions vanish (the solid lines), i.e., the transport proceeds independently in the spin-up
and spin-down channels. The presence of either the SF-T] (v > 0) or the SF-QD (A # 0)
enhances the magnitudes of the off-diagonal spectral functions monotonically, indicating
stronger mixing of the tunneling transport through the two spin channels.
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Fig. 4. Spectral functions for the diagonal retarded Green’s functions, as a function of
electrons’ energy, with varied SF-T] strength (v) between leads and QD, in (a)-(b) parallel and
(c)-(d) antiparallel alignment of two leads” magnetization, where A = 0 eV, V;,=0.2 V. Other
parameters are the same with those in Fig. 3.

The individual effects from SF-T] or SF-QD on the tunneling current and the TMR are then
investigated, as shown in Figs. 7.

The I — V}, characteristics in Figs. 7(a)-(b) and Figs. (d)-(e) show a step at the threshold voltage
Vin, which is required to overcome the Coulomb blockade (CB). The threshold voltage is given
by Vi, = 2€49. Considering the bias voltage regions, one may find the following features of
the I — V}, characteristics,

1. Within the sub-threshold bias range (V < Vj;,), the current is still finite due to thermally
assisted tunneling at finite temperature.

2. The sub-threshold current is particularly large in the parallel configuration, due to the
stronger lead-QD coupling and hence a greater energy broadening of the QD’s level.

3. Overall, the parallel current exceeds the antiparallel current for the entire voltage range
considered, due to the nonzero spin polarization of the FM lead.

4. Beyond the threshold voltage (i.e. V}, > V},), the tunneling current saturates since only a
single QD level is assumed to participate in the tunneling transport.

In the presence of SF-TJ, the tunneling currents in the parallel and antiparallel configurations
are found to be significantly enhanced for bias voltage exceeding the threshold (V}, > V};,), as
shown in Figs. 7(a) and (b). The enhancement in current stems from the overall stronger
coupling between the lead and the QD. Additionally, the degree of enhancement of the
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Fig. 5. Spectral function as a function of electrons’ energy, with varied SF-QD strength (1), in
(a)-(b) parallel and (c)-(d) antiparallel cases, where v = 0 eV. Other parameters are the same
with those in Fig. 3.

tunneling current is more pronounced for the parallel alignment of the FM leads. This results

in an enhancement of the TMR for the voltage range above the threshold, as shown in Fig.
7(c).

When SF-QD events are present in the system, two new features show up in the I — Vj,
characteristics, in Figs. 7 (d) and (e). First, the current step at the threshold bias V}, splits into
two, at Vj, = V}j, £ A, respectively. The presence of the additional step is due to the splitting
in the QD resonances observed in the spectral functions of Fig. 5. Secondly, the presence of
SF-QD suppresses the current saturation value at large bias voltage (i.e., V}, > Vj, + A). The
decrease is more pronounced in the antiparallel configuration, resulting in the enhancement
of the TMR with the increasing SF-QD probability, as shown in Fig. 7(f).

When both SF processes (Fig. 8) exist in the QD-DTJ system, the two types of SF have
competing effects on the tunneling current at large bias voltage exceeding the threshold.
The SE-TJ (SF-QD) tends to enhance (suppress) the tunneling current within the bias voltage
region exceeding the threshold voltage. This competitive effect is shown for the overall I-V,
characteristics in Figs. 8 (a)-(b). Evidently, the effect caused by one SF mechanism is mitigated
by the other for both parallel and antiparallel alignments. However, both SF mechanism
contribute to the asymmetry of tunneling current between the parallel and antiparallel cases,
leading to an additive effect on the TMR for voltage bias region beyond the threshold voltage,
as shown in Fig. 8 (c). The competitive effect on current and collaborative effect on TMR make
it possible to attain simultaneously a high TMR and tunneling current density.
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Fig. 6. (a),(b): Off-diagonal spectral functions as a function of energy, for varying SF-T]
strength (v) between leads and QD, in the absence of SF-QD (i.e., A = 0
eV).(c),(d):Off-diagonal Spectral functions as a function of electrons” energy, with varied
SF-QD strength (A), in parallel (left) and antiparallel (right) case, where v=0 eV. Other
parameters are the same with those in Fig. 3.

2.2.2 Coupling asymmetry effects

Recent experimental studies (Hamaya et al. (2009; 2007)) of QD-DT] structures revealed that
the SDT characteristics are strongly dependent on the coupling asymmetry (CA) between the
two junctions. Such asymmetry is inherent in the sandwich structure, given the exponential
dependence of the coupling strength on the tunnel barrier width.

One may study the effect of the junction CA on the overall spin and charge current
characteristics of the QD-DT] system. The degree of the CA is characterized by the ratio of
the right and left junction coupling parameter. The CA is denoted by f and B = triy o/ t1io 0
The spin-up (spin-down) components of the tunneling current can be represented as I+ (1),
based on which the spin current is defined to be the difference between the two components,
Is = I — I}. In the following, one may focus on the parallel alignment of the magnetization
of the two leads of the QD-DT] system, since the magnitude of the spin current is the greatest
in this case (see Mu et al. (2006)).

For simplicity but without loss of generality, one may assume p to be spin-independent, i.e,
B = trit+/tLirr = trky, 1/ tik), | = tRko,o/ tLko o INSec. 2.1, the coupling strength is defined as
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Fig.7. Current as a function of bias voltage, with varying SF-T] strength (v) between the lead
and the dot, in (a) parallel and (b) antiparallel cases, or with varying SF-QD strength (1) in
(d) parallel and (e) antiparallel cases. (c)/(f): Tunnel magnetoresistance (TMR ) as a function
of bias voltage under increasing SF-T]/SF-QD strength, respectively. In plots (a)-(c), A=0 eV,
and in plots (d)-(f), v=0, while other parameters are the same with those in Fig. 3.

Tao =27pac|tyry o takeol =[1+ (=1)7Pal 270000l ty1y o tako ol = [L + (=1)7 pa] Tao. If assuming
identical intrinsic electron density of states and identical polarization of the two leads, i.e.,

Px0 = L0, Pa = p, one may obtain that 8 = \/Trs/T 1, = v/Tro/T Lo-

We consider the I-V characteristics for the charge current and spin current, shown in Fig.
9 for two different CA values. These two values were chosen so that f; = 1/, meaning
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Fig.9. (a) Charge current I as a function of bias voltage V}, and (b) spin current (Is) as a
function of bias voltage V}, with two different coupling asymmetry S, in the parallel
alignment of the leads” magnetization. The coupling asymmetry is denoted by p =tg,
/tikeo=VIRe/T1o, WhereT'1, = (1 £ pp)I'1o and Try = (1 & pr)I'Ro. Other parameters are
I =0.012eVand Trg = I x B12 for By case, T = 0.006 eV and Trg = I'1o x B2 for
case, €59 = 0.3eV, pp = pr = 0.7, T = 100 K, v=0 eV, A=0 eV.
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coupling asymmetry S, in the parallel alignment of the leadsaf magnetization. Other
parameters are the same with those Fig. 9.

that the left (right) junction in B; system is the right (left) junction for B, system. It is found
that when the coupling strength of the right junction is four times as strong as that of the
left junction, i.e., B = 2, both the magnitude of the charge and spin currents beyond the
threshold voltage are the same as those for the reverse case (8 = 0.5). This is due to the fact
that the total resistance of the two QD-DT]J system is maintained regardless of the coupling
asymmetry reversal. However, the CA affects the threshold voltage V};. This is due to the
different shifts of the QD energy level under positive and negative bias voltage, i.e., Vy;, = 2¢y,

2
where ey = €9 — PEW eVy. The CA effect on the charge current I-V characteristics is consistent
with the experimental results observed by K. Hamaya et al. for an asymmetric Co/InAs/Co

QD-DT]J system (Fig. 2(a) of Ref. Hamaya et al. (2007)).

Next, one may investigate the CA effect on the QD occupancies, which are obtained by
integrating the spectral function in Eq. (15). The QD occupancies for both spin-up and
spin-down electrons are shown in Fig. 10. The occupancies for spin-up and spin-down
electrons in the QD actually coincide since the QD-DTJ system is operated in the parallel
configuration of the leads” magnetization. Moreover, as f is increased from 0.5 to 2, the QD
occupancies of both spin orientations decrease. This decrease is reasonable since as I'y is
decreased with respect to I'g, the coupling which allows the electron to tunnel to the QD from
the source (left lead) is reduced, while the coupling which allows the electron to tunnel out
of the QD to the drain (right lead) is enhanced. In this circumstance, electrons start to have a
higher occupancy in the QD for B < 1 case, where I'r, > I'g.

2.3 Summary

In summary, the SDT through a QD-DT]J system is theoretically studied. In the SDT model
described in Sec.2.1, well-separated QD levels are assumed such that only a single energy
level are involved in the SDT process, and the correlation between different energy levels is
then neglected. The spectral functions, QD electron occupancies, tunneling charge current,
spin current as well as TMR are evaluated based on the Keldysh NEGF formulism and EOM
method, with consideration of the effects of the SF-T] events, SF-QD events, and the CA
between the two tunnel junctions on the SDT of the system.
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3. @D with Zeeman splitting

In the last section, the SDT is studied for the QD-DTJ system where the spin dependence
of the electron transport is caused by the spin polarization in the FM leads. In this section,
one may analyze the SDT through the QD-DT] system where the leads sandwiching the
QD are non-magnetic (NM), and a FM gate is applied above the QD. The electron transport
through this QD-DT] system is spin-dependent due to the Zeeman splitting (ZS) generated in
the QD. In this QD-DT]J system, one may expect a fully polarized current to tunnel through
(Recher et al. (2000)). A fully spin-polarized current is important for detecting or generating
single spin states (Prinz (1995; 1998)), and thus is of great importance in the realization of
quantum computing (Hanson et al. (2007); Kroutvar et al. (2004); Loss & DiVincenzo (1998);
Moodera et al. (2007); Petta et al. (2005); Wabnig & Lovett (2009)).

The QD-DT]J system is schematically shown in Fig. 11. The magnetic field generated by the
FM gate is assumed to be spatially localized such that it gives rise to a ZS of the discrete energy
levels of the QD, but negligible ZS in the energy levels of the NM electrodes. When the bias
voltage Vj, between the two NM electrodes, and the size of the ZS in the QD are appropriately
tuned, a fully polarized spin current is observed in this QD-DT] system. The polarization of
the current depends on the magnetization direction of the FM gate. Here, the down (up)-spin
electrons have spins which are aligned parallel (antiparallel) to the mag