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1. Introduction  

In the quantum field theory with the vacuum being the ground state the Green functions are 
the vacuum expectation values of the chronological, retarded or advanced products of the 
field operators (Bjoken & Drell, 1964; Itzykson & Zuber, 1985; Peskin & Schroeder, 1995). 
They are the generalized functions of the real time variables ti (and also other spatial 
coordinates). For the application of the Green function technique to the study of the time-
independent phenomena in equilibrium many-body systems at a finite temperature, the 
Matsubara imaginary time Green functions were introduced and widely used (Abrikosov et 
al., 1975; Bruuns & Flensberg, 2004; Haken, 1976). They are the mean values over a statistical 
ensemble at a finite temperature of the chronological products of the imaginary time-
dependent operators. Both these types of Green functions are inadequate for the application 
to the study of the time-dependent phenomena in the many-body systems with a finite 
density and at a finite temperature, in particular the non-equilibrium systems. For the 
application to the study of the time-dependent dynamical processes in non-equilibrium 
many-body systems Keldysh (Keldysh, 1965) has introduced a more general class of time-
dependent Green functions at finite temperature and density. They are the mean values of 
the time-ordered products of quantum operators in the Heisenberg picture over statistical 
ensembles of many-body systems with finite densities and at finite temperatures (which 
may be non-vanishing). The simplest example is the two-point Green function 

 
{ [ ( ) (0)]}

( ) [ ( ) (0)]
{ }

H

ab H

Tr e T a t b
G t i T a t b i

Tr e




    , (1.1) 

where a(t) and b(t) are two quantum operators in the Heisenberg picture, H is the total 
Hamiltonian of the system, ǃ and T are the Boltzmann constant and the temperature. 

Having shown that the Green functions at finite density and temperature of the form (1.1) can 
be analytically continued with respect to the time variable t to become the functions of a 
complex variable z analytical in the stripe –ǃ < Im z < 0 parallel to the real axis, Keldysh 
(Keldysh, 1965) has proposed to consider these functions as the quantum statistical averages of 
the linear combinations of the products of ordered operators depending on complex variables 
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as complex times. For the definition of the ordering of the complex variables z, z’ it was 
proposed to use some contour C in above-mentioned stripe with some initial point t0 on the 
real axis and the final point 0

t i   such that all the complex numbers z, z’… belong to this 
contour. Then the “chronological” ordering TC of the complex times z, z’ … is defined as the 
ordering along the contour C. The complex time-dependent operators a(z), b(z) and ( ), ( )a z b z , 
for example, are defined in the analogy with the operators in the Heisenberg picture 

 

( ) (0) ,

( ) (0) ,

( ) (0) ,

( ) (0) .

iHz iHz

iHz iHz

iHz iHz

iHz iHz

a z e a e

b z e b e

a z e a e

b z e b e





 

 









 (1.2) 

As the generalization of formula (1.1) one defines the two-point Green function of two 
operators a(z) and b(z’), for example, depending on two complex times ,z z C , as follows: 

 
{ [ ( ) ( )]}

( ) [ ( ) ( )] ,
{ }

H

C

ab C C H

Tr e T a z b z
G z z i T a z b z i

Tr e






       (1.3) 

TC denoting the “chronological” ordering along the contour C. The Green functions of the 
form (1.3), usually called the Keldysh complex time-dependent Green functions at finite 
density and temperature, some time also simply called non-equilibrium Green functions, are 
widely used in quantum statistical physics and many-body theories (Chou et al., 1985; 
Kapusta, 1989; Le Bellac, 1996). 

In practice we need to know the Green functions at the real values of the time variables. For 

the convenience we chose the contour C to consists of four parts 
1 2 3

,C C C C C     C1 

being the part of the straight line over and infinitely close to the real axis from some point 

0
t io  to infinity io  , C2 being the part of the straight line under and infinitely close to 

the real axis from infinity io   to the point 
0

t io , C3 and C being the segments 

0 0
[ , ]t t i   and [ , ]io io      parallel to the axis Oy (figure 1).  

The contributions of the segment [ , ]io io      to all physical observables are negligibly 

small, because of its vanishing length. Therefore this segment plays no role, and the contour 

C can be considered to consist of only three parts C1, C2 and C3. Then the function 

( )
ab C

G z z  with the complex time variables z and z’ on the contour C effectively becomes a 

set of nine functions of two variables, each of which has the values on one among three 

segments C1, C2 and C3. When both variables z and z’ belong to the line C1, the function (1.3) 

is the quantum statistical average of the usual chronological product of two quantum 

operators a(t) and b(t’) in the Heisenberg picture over a statistical ensemble of a many-body 

system at finite density and temperature, and can be denoted by 11
( )

ab
G t t . When both 

variables z and z’ belong to the line C3, the function (1.3) is reduced to the Matsubara 

imaginary time Green function and can be denoted 
33

( )
ab

G i i     . 

In the study of stationary physical processes one often uses the complex time Green functions 

of the form (1.3) in the limit 
0

t  . Because the interaction must satisfy the “adiabatic 

hypothesis” and therefore vanishes at this limit, the segment C3 also gives no contribution to 

the stationary physical processes. In this case the contour C can be considered to consist of 
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only two segments C1 and C2, and the complex time Green function (1.3) effectively becomes a 

set of four functions of real variables 
11

( )
ab

G t t , 
12

( )
ab

G t t , 
21

( )
ab

G t t , 
22

( )
ab

G t t .  

 

Fig. 1. Contour C consists of four parts 
1 2 3

C C C C C    . 

The electrons transport through a single-level quantum dot (QD) connected with two 
conducting leads has been the subject for theoretical and experimental studies in many 
works since the early days of nanophysics (Choi et al., 2004; Costi et al., 1994; Craco & Kang, 
1999; Fujii & Ueda, 2003; Hershfield et al., 1991; Inoshita et al., 1993; Izumida et al., 1997, 
1998, 2001; Konig & Gefen, 2005; Meir et al., 1991, 1993; Ng, 1993; Nguyen Van Hieu & 
Nguyen Bich Ha, 2005, 2006; Nguyen Van Hieu et al., 2006a, 2006b; Pustilnik & Glasman, 
2004; Sakai et al., 1999; Swirkowicz et al., 2003, 2006; Takagi & Saso, 1999a, 1999b; Torio et 
al., 2002; Wingreen & Meir, 1994; Yeyati et al., 1993). Two observable physical quantities, 
which can be measured in experiments on electron transport, are the electron current 
through the QD and the time-averaged value of the electron number in the QD. Both can be 
expressed in terms of the single-electron Green functions. In the pioneering theoretical 
works (Meir et al., 1991, 1993) on the electron transport through a single-level QD, the 
differential equations for the non-equilibrium Green functions were derived with the use of 
the Heisenberg equations of motion for the electron destruction and creation operators. Due 
to the presence of the strong Coulomb interaction between electrons in the QD, the 
differential equations for the single-electron Green functions contain multi-electron Green 
functions, and all the coupled equations for these Green functions form an infinite system of 
differential equations. In order to have a finite closed system of equations, one can assume 
some approximation to decouple the infinite system of equations. Moreover, since the 
electron transport is a non-equilibrium process, one should work with the Keldysh 
formalism of non-equilibrium complex time Green functions. 

As the simplest explanation of the calculation methods for establishing the differential 
equations of non-equilibrium Green functions and deriving their exact solutions, in Section 
2 we present the theory of non-equilibrium Green functions of free electron in a single-level 
quantum system. In Section 3 we study non-equilibrium Green functions of interacting 
electron in an isolated single-level QD. The elaborated calculation methods are then applied 
in Section 4 to the study of non-equilibrium Green functions of electrons in a single-level QD 

t0+io 

t1  io 

C1 t1+io 

C2 t0  io 

z

C3 

t0  i 

t1  

1 2 3
C C C C C   

C 
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connected with two conducting leads. Due to the electron tunneling between QD and 
conducting leads there does not exist a closed finite system of differential equations for 
some finite number of Green functions. In order to truncate the infinite system of differential 
equations for the infinite number of Green functions we can apply some suitable 
approximation. In Section 5 the mean-field approximation was used to truncate the infinite 
system of differential equations for the Green functions. As the result we establish a closed 
system of Dyson equations for a finite number of Green functions. This system of 
differential equations can be exactly solved. The asymptotic analytical expressions of these 
Green functions at the resonances, Kondo and Fano resonances, are derived in Section 6. 
Section 7 is the Conclusion. 

2. Non-equilibrium Green function of free electrons in a single-level quantum 
system 

For the demonstration of the calculation methods to derive the differential equations and the 

expressions of the non-equilibrium Green functions let us consider a simplest quantum 

system – that of free electrons at a single energy level E. Denote by c  and c
  the 

destruction and creation operators of the electron with the spin projection ,    in the 

Schrödinger picture and by H0 the Hamiltonian of this system. We have  

 
0

H E c c 


  . (2.1) 

The non-equilibrium Green function of electron system with Hamiltonian (2.1) is defined as 
follows:  

 
0

0

{ [ ( ) ( )]}
( ) [ ( ) ( )] ,

{ }

H
E C

C C H

Tr e T c z c z
S z z i T c z c z i

Tr e


 

   




  


       (2.2)  

where  

 
0 0

0 0

( ) ,

( ) .

iH z iH z

iH z iH z

c z e c e

c z e c e

 

 



 



 
  (2.3)  

Note that at the real values t of the time variable we have ( ) ( ) ( ) .c t c t c t 
     Complex 

time-dependent operators ( )c z  and ( )c z  satisfy Heisenberg quantum equation of motion  

 
0

0

( )
[ , ( )] ,

( )
[ , ( )] .

dc z
i H c z

dz
dc z

i H c z
dz







 

 
 (2.4)  

From the canonical anti-commutation relations  

 
 
   

, ,

, , 0

c c

c c c c


   

 
    

 

 
 (2.5) 

it follows that 
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( )
( ) ,

( )
( ) .

dc z
i Ec z

dz
dc z

i Ec z
dz









 

 (2.6) 

Green function ( )E

C
S z z

  with both variables z and z’ ranging over contour C is a set of 
nine functions ( )E

ij
S z z

 with the variable z(z’) ranging over the segment Ci(Cj). All they 
have the form 

 
( ) ( ) ,

( ) ( ) .

E E

C C

E E

ij ij

S z z S z z

S z z S z z

  

  

    
    

 (2.7)  

First consider three cases when both variables z and z’ belong to one and the same segment 

Ci, i = 1, 2, 3. For 
1,

, , , , ,z z C z t io z t io        TC is the usual chronological ordering T of 

the real times t and t’:  

[ ( ) ( )] ( ) ( ) ( ) ( ) ( ) ( ).T c t c t t t c t c t t t c t c t  
       
           

Using one of equations (2.6) and one of anti-commutation relations (2.5), we derive the 

differential equation for 
11 11

( ) ( )E ES z z S t t  
     and obtain  

 
11

( ) ( ).Ed
i E S t t t t
dt

         
 (2.8.1)  

For 
2 ,

, , , , ,z z C z t io z t io        TC is the anti-chronological ordering T-1 reverse to the 

usual chronological ordering T of the real times t and t’:  

1[ ( ) ( )] ( ) ( ) ( ) ( ) ( ) ( ).T c t c t t t c t c t t t c t c t   
       
           

In this case we have the differential equation  

 
22

( ) ( ).Ed
i E S t t t t
dt

         
 (2.8.2)  

For 
3 , 0 0

, , , , ,z z C z t i z t i          TC becomes the usual chronological ordering T of the 

real values τ and τ’ in the imaginary times iτ and iτ’, 0 ,      , and we have  

 
33 33

( ) ( ) ( ),E E ES z z S i i i    
            S  (2.9)  

where ( )E


  S is the Matsubara imaginary time-dependent two-point Green function in 

statistical physics  

  ( ) ( ) ( ) ( ) ,E E T      
              S S  (2.10)  

where  

 
0 0

0 0

( ) ,

( )

H H

H H

e c e

e c e

 
 

 
 

 

 








 (2.11) 
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and  

  ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ).T         
                           (2.12) 

The Heisenberg quantum equation of motion for imaginary time-dependent operators (2.11) 
has the form 

 
0

0

( )
[ , ( )],

( )
[ , ( )] .

d
H

d
d

H
d







 
  


 

  


 (2.13)  

From the anti-commutation relations (2.5) it follows that  

 

( )
( ),

( )
( ) ,

d
E

d
d

E
d







 
   


 

  


 (2.14)  

and therefore  

 ( ) ( ).Ed
E

d

             
S  (2.15)  

In the analogy with relations (2.9) we set  

 
33

( ) ( )E ES i i i         S  (2.16)  

and rewrite equation (2.15) in the form similar to equations (2.8.1) and (2.8.2):  

 
33

( ) ( ).
( )

Ed
i E S i i i
d i

 
             

 (2.17)  

Now consider six other cases when two variables z and z’ belong to different segments Ci 

and Cj with i ≠ j. For 
1

z t io C    and 
2

z t io C     the values of z always precede those of 

z’ with respect to the ordering along the contour C and therefore  

[ ( ) ( )] ( ) ( ).
C

T c t io c t io c t io c t io    
        

Similarly, for 
1

z t io C    or 
2

z t io C   and 
0 3

z t i C     we have 

0 0
[ ( ) ( )] ( ) ( ).

C
T c t io c t i c t i c t io             

On the contrary, for 
2

z t io C    and 
1

z t io C     the values of z’ always precede those 

of z with respect to the ordering along the contour C and therefore 

[ ( ) ( )] ( ) ( ).
C

T c t io c t io c t io c t io    
       

Similarly, for 
0 3

z t i C    and 
1

z t io C     or 
2

z t io C     we have  
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0 0
[ ( ) ( )] ( ) ( ).

C
T c t i c t io c t i c t io    

         

In all six later cases the differential equations for corresponding functions ( )E

ij
S z z , i j , 

are six homogeneous ones:  

 

12 21

0 13 0 23

0 31 0 32

( ) ( )

( ) ( )

( ) ( ) 0.
( ) ( )

E E

E E

E E

d d
i E S t t i E S t t
dt dt

d d
i E S t t i i E S t t i
dt dt

d d
i E S t i t i E S t i t
d i d i

              
                  
   

                   

 (2.18) 

By introducing a new notation  

 

for

for

for

for

1

2

3

( ) , ,

( ) , ,
( )

( ) , ,

0 , ,

C

i j

t t z z C

t t z z C
z z

i z z C

z C z C i j

   
             
   

 (2.19) 

we rewrite equations (2.8.1), (2.8.2), (2.17) and (2.18) in the unified form 

 ( ) ( ) .E

C C

d
i E S z z z z
dz

         
  (2.20) 

From above presented reasonnings and relations determining nine functions ( )E

ij
S z z , and 

formula (2.1) for total Hamiltonian, it is straightforward to derive explicit expressions of 

these functions. They depend on the average electron number with a definite spin projection 

 
0

01

H

H

e
n n c c

e



   




   


  (2.21) 

We obtain following results: 

 ( )

11
( ) [ ( ) ] ,iE t tES z z i t t n e          (2.22.1)  

 ( )

22
( ) [ ( ) ] ,iE t tES z z i t t n e           (2.22.2) 

 ( )

33
( ) [ ( ) ] ,EES z z i n e             (2.22.3) 

 ( )

12
( ) ,iE t tES z z ine      (2.22.4)  

 ( )

21
( ) (1 ) ,iE t tES z z i n e        (2.22.5)  

 0( )
13 23( ) ( ) ,iE t tE E ES z z S z z ine e        (2.22.6)  

 0( )
31 32( ) ( ) (1 ) .iE t tE E ES z z S z z i n e e           (2.22.7) 
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They satisfy above presented differential equations (2.8.1), (2.8.2), (2.17) and (2.18), 
respectively.  

For concluding this Section we consider the Fourier transformation of the functions 

( )E

ij
S z z :  

 ( )1
( ) ( ) , , 1,2,

2
i t tE E

ij ij
S z z d e S i j      

 
  (2.23.1)  

 0( )
3 3

1
( ) ( ) , 1,2,

2
i t t iE E

i iS z z d e S i  


       (2.23.2) 

 0( )
3 3

1
( ) ( ) , 1,2,

2
i t t iE E

i iS z z d e S i  


       (2.23.3)  

 ( )

33

1
( ) ,iE ES z z i e S 




  


  (2.23.4)  

(2 1) , 0, 1, 2,...


       


 

From the expressions (2.22.1)-(2.22.7) of the functions ( )E

ij
S z z  it follows that  

 
11

1
( ) 2 ( )

1 1
( ),

1

E

E

E

S i n E
E io

e
P i E

E e





     
 


    

 


 (2.24.1)  

 
22

1
( ) 2 ( )

1 1
( ),

1

E

E

E

S i n E
E io

e
P i E

E e





      
 


     

 


 (2.24.2)  

where P means the principal value, 

 
12

( ) 2 ( ),ES i n E       (2.24.3)  

 21
( ) 2 (1 ) ( ),ES i n E         (2.24.4)  

 3( ) 2 ( ), 1,2,E

i
S i n E i       (2.24.5)   

 
3

( ) 2 (1 ) ( ), 1,2,E

i
S i n E i          (2.24.6)  

 
1ES

i E




 
 

   (2.24.7)  
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The explicit expressions of Green functions of free electrons presented in this Section are 
often used in the theoretical studies of non-equilibrium processes by means of the 
perturbation theory. 

3. Non-equilibrium Green functions of electrons in isolated single-level 
quantum dot 

The calculation methods and reasonnings presented in the preceding Section are now 
applied to the study of the Keldysh non-equilibrium Green functions of interacting electrons 
in the simplest nanosystem – the isolated single-level quantum dot (QD) with total 
Hamiltonian 

 ,H E c c UN N
   



    (3.1) 

where U is the value of a potential energy, ,    denotes the spin projection (if    then 
   and vice versa) and 

 N c c    (3.2) 

is the number of electrons with the spin projection σ. The second term in Hamiltonian (3.1) 
is the potential energy of the Coulomb electron-electron interaction (two electrons with 
different spin projections in one and the same energy level). The interacting nanosystem 
with total Hamiltonian (3.1) is an exactly solvable model. There are four exactly determined 
eigenstates and eigenvalues of H: the vacuum with vanishing energy, two degenerate 
single-electron states with two different spin projections and the same energy E, and a two-
electron state with total energy 2E+U. The Keldysh complex time-dependent two-point 

Green function of two operators ( )c z and ( )c z is defined as follows 

 
{ [ ( ) ( )]}

( ) [ ( ) ( )]
{ }

H

C

C C H

Tr e T c z c z
G z z i T c z c z i

Tr e


 

    


        (3.3) 

with total Hamiltonian (3.1). They have the form 

 ( ) ( ) .
C C

G z z G z z  
       (3.4) 

As in the preceding Section, we choose the contour C to consist of three segments C1, C2 and 

C3. Then ( )
C

G z z  becomes the set of nine functions ( )
ij

G z z , , 1,2,3i j  . The calculations 

of these functions are straightforward, as they have been done in the preceding Section for 

free electrons at a single energy level. We obtain following results: 

 




( ) ( )( )

11

( ) (2 ) ( )( )

( ) ( )[ ]

( )[ ] ,

iE t t i E U t tE

iE t t E U i E U t tE

i
G z z t t e e e

Z

t t e e e e

     

       

     

  
  (3.5.1) 

 




( ) ( )( )

22

( ) (2 ) ( )( )

( ) ( )[ ]

( )[ ] ,

iE t t i E U t tE

iE t t E U i E U t tE

i
G z z t t e e e

Z

t t e e e e

     

       

     

  
 (3.5.2) 
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 


33

( )

( ) ( )( )

( ) ( ),

1
( ) [ ( ) ( ) ]

[ ( ) ( ) ] ,

EE

E U E UE

G z z i

e e
Z

e e e

 

    

     

      

     

G

G  (3.5.3) 

  ( ) ( 2 ) ( )( )

12
( ) ,iE t t E U i E U t tEi

G z z e e e e
Z

            (3.5.4) 

  ( ) ( )( )

21
( ) ,iE t t i E U t tEi

G z z e e e
Z

          (3.5.5) 

  0 0

13 23

( ) ( )( )(2 ) ( )

( ) ( )

,iE t t i E U t tE U E UE E

G z z G z z

i
e e e e e e

Z
         

   

 
  (3.5.6) 

and 

  0 0

31 32

( ) ( )( )( )

( ) ( )

.iE t t i E U t tE UE E

G z z G z z

i
e e e e e

Z
        

   

  
  (3.5.7) 

In the study of non-equlibrium dynamical processes by means of the perturbation theory 

one often needs to use the Fourier transformation of four functions ( )
ij

G z z  with ,i j =1,2: 

 ( )1
( ) ( ) ( ) .

2
i t t

ij ij ij
G z z G t t d e G        

 
   (3.6) 

We have following exact expressions of their Fourier transforms: 

 

(2 )

11

( ) ( )

1 1
( )

1 1
1 1 ( )

1
1 1 ( ) ,

E UE E

E E

E U E UE E

e e e
G

Z E io E io E U io E U io

e P i e E
Z E

e e P i e e E U
E U

  

 

    

     
          

             
                



  (3.7.1) 

 



(2 )

22

( ) ( )

1 1
( )

1 1
1 1 ( )

1
1 1 ( ) ,

E UE E

E E

E U E UE E

e e e
G

Z E io E io E U io E U io

e P i e E
Z E

e e P i e e E U
E U

  

 

    

      
          
             

              



 (3.7.2) 

  12

2
( ) ( ) ( ) ,Ei

G E e E U
Z


         (3.7.3) 
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  (2 )

21

2
( ) ( ) ( )E UEi

G e E e E U
Z

 
          (3.7.4)  

with 

 (2 )1 2 .E UEZ e e      

Now we derive the system of differential equations for two-point Green functions 

( )
ij

G t t
 . Consider first the function with i = j = 1: 

 
11

( ) [ ( ) ( )]G t t i T c t c t   
    . (3.8) 

We have  

 11
( ) ( )

( ) ( )
dG t t dc t

i t t i T i c t
dt dt

 
  

          
 (3.9)  

From the Heisenberg quantum equation of motion  

 
( )

[ , ( )]
dc t

i H c t
dt


   (3.10) 

with total Hamiltonian (3.1) it follows that  

 ( )
( ) ( ).

dc t
i Ec t UN c t

dt


     (3.11) 

Substituting this expression of 
( )dc t

i
dt
  into the r.h.s. of equation (3.9), we obtain  

 
11

( ) ( ) ( ) ,
d

i E G t t t t UH t t
dt

    

             
 (3.12) 

where 

 
11

( ) [ ( ) ( )]

( ) [ ( ) ( )] ( ) [ ( ) ( )] .

H t t i T N c t c t

i t t N c t c t i t t c t N c t

    

      

    

        
 (3.13) 

Thus the differential equation for 
11

( )G t t
 contains a new Green function 

11
( )H t t

 . In 

order to derive the differential equation for this new Green function it is necessary to 

calculate the time derivatives of both sides of equation (3.13). Note that N-σ commutes with 

H and therefore does not depend on t. Moreover, it has following property 

2 .N N   

Multiplying both sides of relation (3.11) with N  and using these two above-mentioned 
properties of N , we obtain  

    ( ) ( ) ( )
d

i N c t E U N c t
dt

      . (3.14) 
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Differentiating both sides of equation (3.13) and using relation (3.14), we derive following 

differential equation for the new Green function 
11

( )H t t
 : 

 ( ) ( ) ( ).
d

i E U H t t n t t
dt

  

           
  (3.15)  

Thus both 
11

( )G t t
  and 

11
( )H t t

  have the common form  

 11 11

11 11

( ) ( ) ,

( ) ( ) ,

G t t G t t

H t t H t t

  

  

    
    

  (3.16) 

where 
11

( )G t t  and 
11

( )H t t  must satisfy differential equations  

 
11 11

( ) ( ) ( ) ,
d

i E G t t t t UH t t
dt

            
  (3.17) 

 
11

( ) ( ) ( ).
d

i E U H t t n t t
dt

          
  (3.18) 

In preceding Section we have shown that  

11
( ) ( )Ed

i E S t t t t
dt

         
 

(equation (2.8.1)). Therefore  

 
11

( ) ( ) ( ).E Ud
i E U S t t t t
dt

          
  (3.19) 

Equations (3.18) and (3.19) show that 
11

1
( )H t t

n
  satisfies the same inhomogeneous 

differential equation as ( )E US t t   does. It follows that  

 11 11
( ) ( ) ,E UH t t nS t t      (3.20) 

and the differential equation for 11
( )G t t  becomes 

 
11 11

( ) ( ) ( ) .E Ud
i E G t t t t nS t t
dt

            
  (3.21) 

Similarly, it can be shown that the Green function 

  22
( ) ( ) ( ) ( ) ( ) ( ) ( )G t t i t t c t c t t t c t c t      

              (3.22) 

has the form  

 
22 22

( ) ( ) ,G t t G t t  
       (3.23) 
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and 
22

( )G t t satisfies differential equation  

 
22 22

( ) ( ) ( )E Ud
i E G t t t t nUS t t
dt

            
  (3.24)  

etc. In general, Keldysh complex time Green function  

 ( ) [ ( ) ( )
C C

G z z i T c z c z  
      (3.25) 

has the form 

 ( ) ( ) ,
C C

G z z G z z  
       (3.26) 

and ( )
C

G z z  satisfies differential equation  

 ( ) ( ) ( ) .E U

C C C

d
i E G z z z z nUS z z
dt

            
  (3.27) 

4. Non-equilibrium Green functions of electrons in single-level quantum dot 
connected with two conducting leads 

Consider the single-electron transistor (SET) consisting of a single-level quantum dot (QD) 
connected with two conducting leads through two potential barriers. The electron transport 
through this SET was investigated experimentally and studied theoretically in many works 
(Choi et al., 2004; Costi et al., 1994; Craco & Kang, 1999; Fujii & Ueda, 2003; Hershfield et al., 
1991; Inoshita et al., 1993; Izumida et al., 1997, 1998, 2001; Meir et al., 1991, 1993; Ng, 1993; 
Pustilnik & Glasman, 2004; Sakai et al., 1999; Swirkowicz et al., 2003, 2006; Takagi & Saso, 
1999a, 1999b; Torio et al., 2002; Wingreen & Meir, 1994; Yeyati et al., 1993). It was assumed 
that the electron system in this SET has following total Hamiltonian  

 
 

 
k

k
k k k k k kk k k k k k k k( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) .

a b

a a b b

H E c c UN N E a a E b b

V a c V c a V b c V c b

  
      

 

     
       



   

   

 


  (4.1) 

In order to define the complex time-dependent Green functions we introduce the complex 
time-dependent quantum operators  

 ( ) , ( ) ,iHz iHz iHz iHzc z e c e c z e c e  
        

 k k k k( , ) ( ) , ( , ) ( ) ,iHz iHz iHz iHza z e a e a z e a e  
       (4.2) 

 k k k k( , ) ( ) , ( , ) ( ) .iHz iHz iHz iHzb z e b e b z e b e  
       

The Keldysh non-equilibrium Green functions of electrons are defined as follows: 

 ( ) ( ) [ ( ) ( ) ,cc cc

C C C
G z z G z z i T c z c z     

          (4.3) 

 ( ) ( ) [ ( ) ( ) ( ) ,cc cc

C C C
H z z H z z i T N z c z c z      

         (4.4) 
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 ( ; ) ( ; ) [ ( ; ) ( )] ,ac ac

C C C
G z z G z z i T a z c z     

       k k k  (4.5) 

 ( ; ) ( ; ) [ ( ) ( ; ) ( )] ,ac ac

C C C
H z z H z z i T N z a z c z      

       k k k  (4.6) 

  
( ; ) ( ; )

[ ( ; ) ( ) ( ) ( )] ,

accc accc

C C

C

G z z G z z

i T a z c z c z c z

  

   

    
 

k k

k
  (4.7) 

 
( ; ) ( ; )

[ ( ) ( ) ( ; ) ( )] ,

ccac ccac

C C

C

G z z G z z

i T c z c z a z c z

  

   

    
 

k k

k
  (4.8) 

 
( ; ) ( ; )

[ ( ; ) ( ; ) ( ) ( )] ,

aacc aacc

C C

C

G z z G z z

i T a z a z c z c z

  

   

    
 

k,l k,l

k l
  (4.9) 

 
( ; ) ( ; )

[ ( ; ) ( ) ( ; ) ( )] ,

acac acac

C C

C

G z z G z z

i T a z c z a z c z

  

   

    
 

k,l k,l

k l
  (4.10) 

and similarly for the others ( ; ) ,bc

C
G z z

k  ( ; ) ,bc

C
H z z

k  ( ; ) ,bccc

C
G z z

k  ( ; ) ,ccbc

C
G z z

k  

( ; ) ,abcc

C
G z z

k,l  ( ; )acbc

C
G z z

k,l  etc. 

Because there is no magnetic interaction, all Green functions (4.3)-(4.10) and other ones are 

proportional to  . From Heisenberg quantum equations of motion and equal-time 

canonical anti-commutation relations for the electron destruction and creation operators it 

follows the differential equations for these operators: 

 
( )

( ) ( ) ( ) ( ) ( ; ) ( ) ( ; ) ,
a b

dc z
i Ec z UN z c z V a z V b z

dz
 

         
k

k k k k   (4.11) 

 
( )

( ) ( ) ( ) ( ) ( ; ) ( ) ( ; ) ,
a b

dc z
i Ec z UN z c z V a z V b z

dz


    
      

k

k k k k  (4.12) 

 
( ; )

( ) ( ; ) ( ) ( ),
a a

da z
i E a z V c z

dz


  
k

k k k   (4.13) 

 
( ; )

( ) ( ; ) ( ) ( )
a a

da z
i E a z V c z

dz


   
k

k k k  (4.14) 

and similarly for ( ; )b z k  and ( ; )b z k .  

By using differential equation (4.11) and the equal-time canonical anti-commutation relation 
between ( )c z  and ( )c z , it is easy to derive the differential equation for the Green function 

( )cc

C
G z z

  

 
( ) ( ) ( )

( ) ( ; ) ( ) ( ; ) ,

cc cc

C C

ac bc

a C b C

d
i E G z z z z UH z z
dz

V G z z V G z z

    

 
  

             
      

k

k k k k

  (4.15) 
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which contains Green functions ( )cc

C
H z z

 , ( ; )ac

C
G z z

k  and ( ; )bc

C
G z z

k . These new 
functions must satisfy following differential equations which can be also derived by using 
differential equations (4.11)-(4.14): 

 



( ) ( ) ( )

( ) ( ; ) ( ) ( ; )

( ) ( ; ) ( ) ( ; ) ,

cc

C C

ac bc

a C b C

ccac ccbc

a C b C

d
i E U H z z n z z
dz

V H z z V H z z

V G z z V G z z

  

 
  

  

           
    

    


k

k k k k

k k k k

 (4.16) 

where 

  ,n c c c c 
   

    (4.17) 

 ( ) ( ; ) ( ) ( )ac cc

a C a C

d
i E G z z V G z z
dz

  

        
k k k   (4.18) 

and similarly for ( ; )bc

C
G z z

k .  

In Section 2 we have established the differential equation (2.20) for the Keldysh non-
equilibrium Green function of a free electron. If the free electron has energy ( )

a
E k , then it is 

denoted by ( )( )E

C
aS z zk  and must satisfy differential equation 

 ( )( ) ( ) ( ) .E

a C C
ad

i E S z z z z
dz

         
k

k   (4.19) 

Using this function, we obtain following expression of the solution of equation (4.18) 

 
( )( ; ) ( ) ( ) ( )Eac cc

C a C C
aG z z V dz S z z G z z  

        k
k k  (4.20) 

and similarly for ( ; )bc

C
G z z

k . Substituting the expression of the form (4.20) for 

( ; )ac

C
G z z

k  and ( ; )bc

C
G z z

k  into the r.h.s. of differential equation (4.15) for ( )cc

C
G z z

 , 

we rewrite this equation in a new form 

 
(1)

( ) ( ) ( )

( ) ( ) ,

cc cc

C C C

cc

C C

C

d
i E G z z z z UH z z
dz

dz z z G z z

    



             
      

  (4.21) 

where (1)( )
C

z z   is following self-energy part  

 [ ]2 2( ) ( )(1)( ) ( ) ( ) ( ) ( ) .E E

C a C b C
a bz z V S z z V S z z        k k

k

k k  (4.22) 

The differential equation for ( )cc

C
H z z

  contains new functions ( ; )ac

C
H z z

k , 

( ; )bc

C
H z z

k , ( ; )accc

C
G z z

k , ( ; )bccc

C
G z z

k , ( ; )ccac

C
G z z

k  and ( ; )ccbc

C
G z z

k , which 

must satisfy following differential equations 
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 ( ) ( ; ) ( ) ( )ac cc

a C a C

d
i E H z z V H z z
dz

  

        
k k k   (4.23) 

and similarly for ( ; )bc

C
H z z

k ,  

 

        

     
       

       

* *

; ,

; ;

; ; ,

accc

a C C

cc cc

a C C

aacc abcc

a bC C

acac acbc

a bC C

d
i E G z z a c c c z z
dt

V H z z G z z

V G z z V G z z

V G z z V G z z

 
     

  

  

  

         
      

      

      




l

l

k k k

k

l k,l l k,l

l k,l l k,l

  (4.24) 

and similarly for  ;bcccG z z
k , 

  

        

     
     

      

*

*

*

2 ; ,ccac

a C C

cc cc

a C C

acac caac

a C C

bcac cbac

b C C

d
i E E U G z z c c a c z z
dt

V H z z G z z

V G z z G z z

V G z z G z z

 
     

  

  

  

              
       

      

      


l

k k k

k

l l,k; l,k;

l l,k; l,k;

 (4.25) 

and similarly for  ccbc

C
G z z

k; .  

The presented calculations for deriving differential equations of Green function showed that 
there does not exist a closed system of a finite number of differential equations for a finite 
number of Green functions. Some approximation should be used for truncating the infinite 
system of all differential equations at some step. The mean-field approximation is the most 
appropriate one. In order to apply this approximation we rewrite equations (4.23)-(4.25) in 
the form of integral equations: 

          ; Eac cc

aC C C

C

aH z z V dz S z z H z z  
       k

k k   (4.26) 

and similarly for  ;bc

C
H z z

k , 

 

        
         

           
       

* *

; ,

; ;

;

Eaccc

C C

E cc cc

a C C C

C

E aac c abcc

a bC C C

C

E acac

aC C
C

a

a

a

a

G z z a c c c S z z

V dz S z z H z z G z z

dz S z z V G z z V G z z

dz S z z V G z z

 
     

  

  



   

           

           

     







k

k

k

l

k

k k

k

l k,l l k,l

l k,l    ; ,acbc

b C
V G z z

    
l

l k,l

   (4.27) 

and similarly for  ;bccc

C
G z z

k , 
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        
         

         
   

2

2*

2 *

*

; ,

; ;

;

E U Eccac

C C

E U E cc cc

a C C C
C

E U E acac caac

aC C C
C

bcac

b C

a

a

a

G z z c c a c S z z

V dz S z z H z z G z z

dz S z z V G z z G z z

V G z z G

  
     

 
  

 
  

 

   

           

            

   





k

k

k

l

k k

k

l l,k l,k

l l,k   ; ,cbac

C
z z
   l,k

  (4.28) 

and similarly for  ;ccbc

C
G z z

k . Substituting these solutions into the r.h.s. of the differential 

equation (4.16) for  cc

C
H z z

 , we rewrite this equation in the new form  

 

           

        
          

           

1

*

2

* * *

,

;

cc cc

C C C C

C

E

a C

E cc cc

a C C C

C

E aacc

a a bC C

C

a

a

a

d
i E U H z z n z z dz z z H z z
dz

V a c c c S z z

V dz S z z H z z G z z

dz V S z z V G z z V G

    

 
   

  



                   

 

           

      









k

k

k

k

k

k k

k

k l k,l l  

             

        
          

 

*

2

2 2

;

; ;

,

abcc

C

E acac acbc

a a bC C C
C

E U E

a C

E U E cc cc

a C C
C

a

a

a

a

z z

dz V S z z V G z z V G z z

V c c a c S z z

V dz S z z H z z G t t

dz V S



  

  
   

 
  

   

           

 

          





 







l

k

k l

k

k

k

k

k,l

k l k,l l k,l

k k

k

k
          

           

2 *

2 *

; ;

; ;

E U E acac caac

aC C C

C

E U E bcac cbac

a bC C C

C

a

a

z z V G z z G z z

dz V S z z V G z z G z z

 
  

 
  

         

           



 

k

l

k

k l

l l,k l,k

k l l,k l,k

 (4.29) 

 + similar terms with suitable interchange  a b .   

5. Dyson equations for non-equilibrium Green functions of electrons in 
single-level quantum dot connected with two conducting leads and their 
solutions 

The r.h.s. of equation (4.29) for Green function  cc

C
H z z

  contains multi-electron Green 

functions  ;aacc

C
G z z

k,l ,  ;abcc

C
G z z

k,l ,  ;acac

C
G z z

k,l ,  ;acbc

C
G z z

k,l , 

 ;caac

C
G z z

k,l ,  ;bcac

C
G z z

k,l ,  ;bcac

C
G z z

k,l  and similar ones with suitable 

interchange (a  b). In order to decouple this equation from those for other multi-electron 

Green functions we apply the mean-field approximation to the products of four operators. 

For example 

                ; ; ; ;
C C

T a z a z c z c z a z a z T c z c z        
        l k l k  (5.1) 

with  
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          ; ; ,
a

a z a z a a n      
kl kl

l k k k k   (5.2)  

where  an k  is the density of electrons with momentum k and spin projection   or   in 

the lead “a” at the given temperature 

  
 

 1

E

a E

a

a

e
n

e



 


k

k
k   (5.3) 

Note that  

    ( ) .cc

C C
T c z c z iG z z   

       

As the result we have 

      ; 1 ( )acac cc

aC C
G z z n G z z  

     
kl

k,l k  (5.4)  

and similarly for  ;bcbc

C
G z z

k,l . Applying the mean-field approximation to each of others 

above-mentioned multi-electron Green functions in any manner, we always obtain the 

vanishing mean value in the lowest order the perturbation theory with respect to the 

effective tunnelling coupling constants  ,a b
V k . Note that these functions enter the r. h. s. of 

the equation (29) with the coefficients of the second order with respect to the effective 

tunnelling coupling constants. This means that in this second order they do not give 

contributions. Thus in the second order approximation the equation (4.29) is simplified and 

becomes  

   
       

           2 3 ,

cc

C C C

cc cc

C C C C
C C

d
i E U H z z n z z z z
dz

dz z z H z z dz z z G z z

  

  

               
               

  (5.5) 

where  

 
          

          

*

2

,

, ,

E

aC C

E U E

a C

a

a

z z V a c c c S z z

V c c a c S z z a b

 
   

  
   

    

    

 k

k

k

k k

k k

  (5.6) 

                 22 22 E E U E

aC C C

a az z V S z z S z z a b             k k

k

k ,  (5.7)  

                   23 2E E U E

a aC C C

a az z n V S z z S z z a b             k k

k

k k . (5.8) 

Note that in the r.h.s. of equations (5.6)-(5.8), there appear the crossing terms containing 
   2E U E

C

aS z z  k . They must disappear in the non-crossing approximation. Two equations 

(4.21) and (5.5) form the closed system of Dyson equations for two Green functions 

 cc

C
G z z

  and  cc

C
H z z

 .  

To proceed further we note that 
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    

    

, ,

, ,

a c c c a c

c c a c a c

  
       

  
       

  

  

k k

k k
  (5.9) 

where  a c
 k  is a limiting value of the Green function  

11
;acG t k : 

    
11

; 0aca c iG
   k k .  (5.10)  

For evaluating the vertex (5.6) in the second order with respect to the tunnelling coupling 

constants  ,a b
V k  we calculate the limiting value (5.10) in the first order. Introduce the 

Fourier transformations of the Green functions, for example  

    1
; ;

2
ac i t ac

ij ij
G t d e G


 



  
 

k k ,  

        1

2

E Ei t

ij ij

a aS t d e S


 



  
 

k k ,  (5.11) 

    1

2
cc i t cc

ij ij
G t d e G


 



  
 

  for i, j = 1, 2.   

From the equation (4.20) it follows that  

          
11 11 11

; Eac cc

a
aG V S G     k

k k .  (5.12) 

For deriving  
11

;acG  k  in the first order with respect to the constant  a
V k  it is enough to 

use the expression of  11
ccG   in the case of the vanishing tunnelling coupling constant and 

have  

   

     
 

 
 

 

11

2

11
;

1
,

a aac
a

a a

E UE E

n n
G V

Z io E io E

e e e

io E io E U io E io E U

 


 

   

  

 
  

     
 

    
           

 k k
k k

k k
   (5.13) 

 21 2 E UEZ e e    . 

It is easy to calculate the limit 

    
11 110

1
; 0 lim ;

2
ac i acG d e G


 




   
 

k k   (5.14) 

by using the residue theorem and obtain 

      a a
a c V
   k k k ,  (5.15) 

where  
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    
 

     
 

111
E U E UE E

aa E

a

a a

e e ne e n
e

Z E E E U E

    


             

    

kk
k

k k
 (5.16) 

The formula (5.6) becomes 

                 2 2 .E E U E

a aC C C

a az z V S z z S z z a b              k k

k

k k  (5.17)  

 The system of Dyson equations (4.21) and (5.5) is the mathematical tool for the 
study of the electron transport through a single-level QD. Since this is a stationary process 
one can apply the Keldysh non-equilibrium Green function formalism in the limit 

0
t  . 

Because the interaction vanishes at this limit, the contour C can be considered to consist of 
only two segment 

1
[ , ]C io io      and 

2
[ , ]C io io     . In this case each complex 

time-dependent Green function  E

C
S z z ,  cc

C
G z z ,  cc

C
H z z ,  ( )

C
z z   , 1,2,3   

or  
C

z z   becomes a set of four real time-dependent functions  E

ij
S t t ,  cc

ij
G t t , 

 cc

ij
H t t ,  ( )

ij
t t   , 1,2,3   or  

ij
t t   with their Fourier transforms  E

ij
S  , 

 cc

ij
G  ,  cc

ij
H  ,  ( )

ij

  , 1,2,3   or  
ij

  with , 1,2i j  . Considering them as the 
elements of corresponding 2 2  matrices  ˆ ES  ,  ˆ ccG  ,  ˆ ccH  ,  ( )ˆ   , 1,2,3   or 

 ̂  , and setting  

 
1 0

ˆ
0 1

 
    

,  (5.18)  

we rewrite the system of Dyson equations (4.21) and (5.5) in the matrix form  

          (1)ˆ ˆ ˆ ˆ ˆˆ ˆˆ ˆ ˆ( ) ( )E E EG S US H S G             ,  (5.19)  

 
         
     

(2 )

(3)

ˆ ˆ ˆˆ ˆˆ ˆˆ ˆ ˆ( ) ( )

ˆ ˆˆˆ ˆ .

E U E U E U

E U

H nS S S H

S G

  



            

     
  (5.20)  

From these matrix equations we derive two systems of algebraic equations, each of which 
consists of four equations for four functions  

1i
G   and  

1i
H   or  

2i
G   and  

2i
H  , 

1,2i  . The observable physical quantities are expressed in terms of these functions. 

For the application let us calculate the Green function  
11

G  . By solving the system of 
equation (5.19) and (5.20) we obtain following result: 

 
11

( )
( ) ,

( )

Z
G

Y


 


   (5.21) 

 
   
   

(1)

22 22 11 1

(1)

12 12 21 2

( ) ( )[1 ( )] ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ,

E

E

Z B UD B S UC

B UD B S UC

          

         




  (5.22) 

 
   
   

(1) (1)

11 11 22 22

(1) (1)

12 12 21 21

( ) ( )[1 ( )] ( ) ( )[1 ( )] ( )

( ) ( ) ( ) ( ) ( ) ( ) ,

Y B UD B UD

B UD B UD

           

          
 (5.23) 
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 (2 ) (2 ) ( 2 ) (2 )

22 11 12 21
( ) [1 ( )][1 ( )] ( ) ( ) ,B              (5.24) 

 
 
 

(2 ) (2 )

1 22 2 21 11

(2 ) ( 2)

1 12 2 11 21

( ) ( ) [1 ( )] ( ) ( ) ( )

( ) ( ) ( ) [1 ( )] ( ),

E E

i i i

E E

i i

C S S

S S

          

         

 

 
  (5.25) 

i = 1,2 

 
 
 

( 2) (2 ) (3)

1 22 2 21 1

( 2 ) (2 ) (3)

1 12 2 11 2

( ) ( ) [1 ( )] ( ) ( ) ( )

( ) ( ) ( ) [1 ( )] ( ),

E E

ij i i j

E E

i i j

D S S

S S

           

         

 

 
 (5.26) 

 

(1) (1) (1)

1 1 2 2

(2 ) (2 ) (2 )

1 1 2 2

(3) (3) ( 3)

1 1 2 2

( ) ( ) ( ) ( ) ( ) ,

( ) ( ) ( ) ( ) ( ) ,

( ) ( ) ( ) ( ) ( ) ,

E E

ij i j i j

E U E U

ij i j i j

E U E U

ij i j i j

S S

S S

S S

 

 

         

         

         

  

  

  

  (5.27) 

 
1 1 2 2

( ) ( ) ( ) ( ) ( ) ( ) ,E U E U E U

ij ij i j i j
nS S S                  (5.28) 

1,2, 1,2.i j   

The expressions (5.21)-(5.28) of  
11

G   and similar ones for the Fourier transforms of other 

Green functions contain the self-energies ( )( ) , 1,2,3
ij

    . Because the tunnelling coupling 

constants ( )
a

V k and ( )
b

V k have small values, the contributions of these self-energies, in 

general, give small corrections to the Green functions. However, the self-energies may be 

divergent at some special values of . At some points near these special values the 

denominator Y() may vanish and the Green functions have the resonances. The formulae 

(5.23)-(5.28) would be used for the rigorous study of the behaviour of  
11

G  at the 

resonances. This will be done in the subsequent Section.  

6. Kondo and Fano resonances in electron transport through single-level 
quantum dot 

In this Section we study the appearance of the resonances in the expressions of the Fourier 
transforms of the Green functions when the denominator Y() is vanishing. The expression 
of Y() consists of the terms of two types: the finite terms which do not depend on the 
Fourier transforms ( )( )

ij

   of the self-energies and those proportional to ( )( ) , 1,2,3
ij

    . 
The functions ( )( )

ij

   contain the small tunnelling coupling constants ( )
a

V k and ( )
b

V k . 
They are determined by following formulae: 

  2 ( )(1)Σ ( ) ( ) ( ) ( ) ,E

ij a ij
aV S a b      k

k

k  (6.1) 

  2 ( ) 2 ( )( 2 )Σ ( ) ( ) [2 ( ) ( ) ] ( ) ,E E U E

ij a ij ij
a aV S S a b          k k

k

k   (6.2) 

  2 ( ) 2 ( )( 3)Σ ( ) ( ) ( ) [ ( ) ( ) ] ( ) ,E E U E

a a ij ij
a an V S S a b          k k

k

k k  (6.3) 
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Introducing the spectral functions  

 
( )

2( )

, , ,( )

,

,
( ) ( ) [ ( )] ,

1

E

a b a b a bE

a b

a b

e
V E

e






 
      

 
k

k

k

k k   (6.4)  

  ǂ = 0, 1, 2,   

we rewrite them in the new form convenient for the study of their divergence: 

 

(1) (0) (0)

11

(0) (0) (1) (1)

1 1
( ) Γ ( ) Γ ( )

Γ ( ) Γ ( ) 2Γ ( ) 2Γ ( ) ,

a b

a b a b

P d

i

           

         


 (6.5)  

 (1) (1) (1)

12
( ) 2 Γ ( ) Γ ( ) ,

a b
i          

 (1) (0 ) (0 ) (1) (1)

21
( ) 2 Γ ( ) Γ ( ) Γ ( ) Γ ( ) ,

a b a b
i               

 

(1) (0) (0)

22

(0) (0) (1) (1)

1 1
( ) Γ ( ) Γ ( )

Γ ( ) Γ ( ) 2Γ ( ) 2Γ ( ) .

a b

a b a b

P d

i

            

         


  

 

( 2 ) (0 ) (0 )

11

(0) (0) (1) (1)

(0) (0 )

(1) (1)

1 2 1
( ) Γ ( ) Γ ( )

2

2 Γ ( ) Γ ( ) 2Γ ( ) 2Γ ( )

Γ (2 ) Γ (2 )

2Γ (2 ) 2Γ (2 ) ,

a b

a b a b

a b

a b

P d
E U

i

i E U E U

E U E U

                      

          
       

       



 (6.6)  

 ( 2 ) (1) (1) (1) (1)

12
( ) 4 Γ ( ) Γ ( ) 2 Γ (2 ) Γ (2 ) ,

a b a b
i i E U E U                 

   

 

( 2 ) (0) (0) (1) (1)

21

(0) (0)

(1) (1)

( ) 4 Γ ( ) Γ ( ) Γ ( ) Γ ( )

2 Γ (2 ) Γ (2 )

Γ (2 ) Γ (2 ) ,

a b a b

a b

a b

i

i E U E U

E U E U

             
      

       



  

 

( 2 ) (0) (0)

22

(0) (0) (1) (1)

(0) (0)

(1) (1)

1 2 1
( ) Γ ( ) Γ ( )

2

2 Γ ( ) Γ ( ) 2Γ ( ) 2Γ ( )

Γ (2 ) Γ (2 )

2Γ (2 ) 2Γ (2 ) .

a b

a b a b

a b

a b

P d
E U

i

i E U E U

E U E U

                      

          
      

       


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( 3) (1) (1)

11

(1) (1) ( 2 ) (2 ) (1)

(1) (2 ) ( 2 )

1 1 1
( ) Γ ( ) Γ ( )

2

Γ ( ) Γ ( ) 2Γ ( ) 2Γ ( ) Γ (2 )

Γ (2 ) 2Γ (2 ) 2Γ (2 ) ,

a b

a b a b a

b a b

P d
E U

i E U

E U E U E U

                     

          
          



  (6.7) 

 ( 3) ( 2) (2 ) (2 ) (2 )

12
( ) 2 Γ ( ) Γ ( ) 2 Γ (2 ) Γ (2 ) ,

a b a b
i i E U E U                 

    

 

( 3) (1) (1) (2 ) (2 ) (1)

21

(1) (2 ) (2 )

( ) 2 Γ ( ) Γ ( ) Γ ( ) Γ ( ) Γ (2 )

Γ (2 ) Γ (2 ) Γ (2 ) ,

a b a b a

b a b

i E U

E U E U E U

             
          


  

 

( 3) (1) (1)

22

(1) (1) (2 ) ( 2 ) (1)

(1) (2 ) (2 )

1 1 1
( ) Γ ( ) Γ ( )

2

Γ ( ) Γ ( ) 2Γ ( ) 2Γ ( ) Γ (2 )

Γ (2 ) 2Γ (2 ) 2Γ (2 ) .

a b

a b a b a

b a b

P d
E U

i E U

E U E U E U

                      

          
          



  

The integrals in the r.h.s. of formulae (6.5)–(6.7) may be divergent at definite values of the 
frequency  which will be called the divergence points. Although the functions ( )( )

ij

  , i, 
j = 1, 2, contain the small tunnelling coupling constants ( )

a
V k and ( )

b
V k , near each 

divergence point some of them may become comparable with the finite terms in Y(). 
When Y() vanishes due to the cancellation between the finite terms and those containing 
divergent integrals, there appear the resonances. Therefore in order to study the 
resonances it is necessary to investigate the divergence of the integrals in the r.h.s. of the 
formulae (6.5)–(6.7). 

The functions ( )

11
( )   and ( )

22
( )   contain the dispersion integrals with the spectral 

functions ( )

,
( )

a b

  . Denote a and b the chemical potentials of the systems of conducting 

electrons in the leads “a” and “b”. From the definition (6.4) with 

 (0)

, , ,
( ) ( ) ,

a b a b a b
E E  k k   

where (0)

,
( )

a b
E k  are the kinetic energies of the conducting electrons in the leads, (0)

,
( ) 0

a b
E k , it 

follows that ( )( )
a

   vanishes at 
a

   and similarly for ( )( )n

b
  . Therefore the dispersion 

integrals in formulae (6.5)-(6.7) have the form  

 

,

,

( )
( ) ,

,

( )a b

a b

n
n a b

a bK P d





 








     (6.8)  

and  

 
,

,

( )
( ) ,

,

( )
,

2

a b

a b

n
n a b
a bL P d

E U



 







      (6.9)  
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where 
a

  is the top of the energy band of the conducting electrons in the leads “a” and 

similarly for 
b

 . For the study of the divergence of the integrals we replace approximately 

the values of ( )( )
a

   in the interval 
a

      by a constant 
a

  and similarly for ( )( )n

b
  . 

Then at zero temperature  

 

(0 )

, , ,

(1) (2 )

, , , ,

(0 )

, , ,

(1) ( 2 )

, , , ,

,

,

,

,

a b a b a b

a b a b a b a b

a b a b a b

a b a b a b a b

K I

K K I

L J

L L J

 

  

 

  

  (6.10) 

with  

 
,

,

,

1
,

a b

a b

a bI P d



 






   (6.11) 

 

,

0

,

1
,

a b

a bI P d



 

 
   (6.12) 

 
,

,

,

1
,

2

a b

a b

a bJ P d
E U


 






     (6.13) 

 

,

0

,

1

2
a b

a bJ P d
E U


 

  
     (6.14) 

Usually ( )
a b

  is very large in comparison with ( )
a b

  and ω. Therefore we have  

 ,

,

, ,

ln ,a b

a b

a b a b

I
 


 

  (6.15)  

 
,

,
ln ,a b

a b
I

 
 


  (6.16) 

 , ,

,

,

ln ,
2

a b a b

a b

a b

J
E U

 


  
  (6.17) 

 
,

,

2
ln

2
a b

a b

E U
J

E U

   
   

  (6.18) 

It is obvious that Ia is divergent at a
  , a

I  is divergent at a
   and 0 , Ja is 

divergent at 2
a

E U     and 
a

J  is divergent at 2
a

E U     and 2E U  . For 

, ,
b b b

I I J  and 
b

J  we have similar results.  
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If the temperature T of the system is low enough, but does not vanish, 

,
0 ,

a b
kT    

then instead of the divergence of 
,a b

I  at the Fermi surface 0  we have the limit 

 ,

,0

2
lim ln ,a b

a b

e
I

kT


    (6.19)  

and, similarly, instead of the divergence of 
,a b

J at 2E U   we have the limit  

 ,

,2

2
lim ln a b

a bE U

e
J

kT 


       (6.20)  

For the simplicity we set 
a a

     . 

From the results of the study of resonances of Green function 
11

( )ccG   and the explicit 

expressions (5.21)-(5.28) determining this function we obtain its asymptotic behavious at the 

divergence points of ( )( )
ij

  : 

a. As    and at low temperature 0T  , the Green function in equation (5.21) has 

asymptotic form: 

 

11

1
1 ( )

12
( )

1 22
( ) ln 2

2

1 ( )
1

22
( ) ln 2

cc

n E U

G
E U

E i

E n E U U

E U
E U i

        
         
 

           
          
 



  (6.21)  

If 0E    , then 
11

( )ccG   has two resonances at two points 

 
( )

( ) 4
1

E

e


       (6.22) 

and two resonances at two points 

 
( )

( ) 2
2

.
E U

e


          (6.23) 

Between these four resonances there are the dips. If 0E     but 0E U    , then 

11
( )ccG   has only two resonances at the points ( )

2

 . If 0E U    , then in the 
neighbourhood of the point    , the Green function 

11
( )ccG   has no resonance. All four 

points ( )

1

 and ( )

2

 are very close to the point     and the resonances at ( )

1

 and ( )

2

  
look like a resonance at    . The origin of these resonances is the presence of the Fano 
quasi-bound state at the lower edge of the energy band of the conducting electrons. If they 
exist, they would be called the Fano resonances.  
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b. As 0  and at 0T  , the Green functions 
11

( )ccG   has asymptotic form 

 
11

(1 )
( )

2
( ) ln 2 (3 2 )

cc E n U
G

U
E E U i E U

 
   

 
    

 

    (6.24)  

If ( ) 0E E U  , then 
11

( )ccG   has two resonances at the points 

 ( )

3

( )
exp

2

E E U

U
       

  
 ,  (6.25) 

which are very close to the point  = 0. At 0   and 0
K

T T  , 

 
( )1

exp ,
2

K

E E U
T

k U

     
  

  (6.26) 

where k is the Boltzmann constant, instead of formula (6.24) we have 

 
11

(1 ) 1
(0)

2 ln (3 2 )
cc

K

E n U
G

U T T i E U

 
 

    
   (6.27) 

The resonances in the neighbourhood of the point 0   have the same physical origin as 

the Kondo effect due to the scattering of electrons by a magnetic impurity. They are the 

Kondo resonances.  

c. As 2E U   and at 0T  , the Green function 
11

( )ccG   has asymptotic form: 

 
11

( )
2

( ) ln 2
2

cc E nU
G

U
E E U iE

E U


  

 
   

  

   (6.28) 

Therefore if ( ) 0E E U  , then 
11

( )ccG   has also two resonances at the points 

 
( )

( ) 2
4

2
E E U

UE U e
 

        (6.29) 

which are very close to the point 2E U   . At 2E U    and 0
K

T T  ,  

 
1 ( )

exp ,
2

K

E E U
T

k U

      
 

  (6.30)  

instead of formula (6.28) we have  

 
11

1
(2 )

2 ln
cc

K

E nU
G E U

U T T i E


  

   
   (6.31) 

The resonances in the neighbourhood of the point 2E U    are the Kondo resonances of 
the crossing terms.  
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d. As 2E U     and at low temperature 0T  , the Green functions 
11

( )ccG   has 
asymptotic form:  

 
11

1 ( )
( )

2 2
( ) ln 2

cc

n E U
U

G
E U E

E U i


    

  
           
 

  (6.32) 

If 0E U    , then 
11

( )ccG   has two resonances at the points 

 ( ) 2
5

2
E U

E U e
  

         ,  (6.33) 

which are very close to the point 2E U     . They are the Fano resonances of the 

crossing terms. 

7. Conclusion  

The present Chapter is an introductory review of the Keldysh non-equilibrium Green 
functions of electrons in simplest nanosystems: isolated single-level QD and single-level QD 
connected with two conducting leads. In the case of an isolated single-level QD the closed 
system of a finite number of differential equations for a finite number of Green functions 
was established by using the Heisenberg quantum equations of motion for the electron 
destruction and creation operators. The exact expressions of the Green functions were 
derived. In the case of the nanosystem consisting of a single-level QD connected with two 
conducting leads there does not exist a finite closed system of differential equations for 
some finite number of Green functions. In the differential equations for n-point Green 
functions there appear the contributions from (n+2)-point Green functions. Therefore, the 
exact system of differential equations contains an infinite number of equations for an infinite 
number of Green functions. In order to truncate this infinite system of differential equations 
we have applied the mean-field approximation to the products of four electron quantum 
operators and limited at the terms of the second order with respect to the effective 
tunnelling coupling constants. As the result we have derived a closed system of Dyson 
equations for two types of 2-point Green functions. All the crossing terms are included into 
the equations. The exact solution of the system of Dyson equations may have the resonances 
of four types in the dependence on the physical parameters of the system: the Kondo 
resonances at the Fermi surface, whose origin is similar to that of the Kondo effect in the 
scattering of electrons on magnetic impurities, the Fano resonances due to the presence of 
the electron quasi-bound state at the lower edge of the energy band of the conducting 
electrons, the Kondo resonances in the crossing terms and the Fano resonances in the 
crossing terms. The analytical asymptotic expressions of the single-electron Green function 
at these resonances were derived. These results agree well with the numerical calculations in 
references on the electron Green functions in QD (Yeyati et al., 1993; Costi et al., 1994; 
Izumida et al., 1997, 1998, 2001; Sakai et al., 1999; Torio et al., 2002).  

The theoretical study of the non-equilibrium Green functions of electrons in QDs would 
signify the beginning of the development of the quantum dynamics of physical processes in 
QD-based nanodevices. The next step would be the elaboration of the theory of non-
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equilibrium Green functions of phonons in QDs as well as of electrons and phonons of 
interacting electron-phonon systems in QDs. The quantum dynamical theory of QD-based 
optoelectronic and photonic nanodevices necessitates also the study of non-equilibrium 
Green functions of electrons and phonons confined in QDs in the presence of the electron-
phonon interactions as well as the interaction of photons with confined electron-phonon 
systems. The methods and reasonnings presented in this Chapter could be generalized for 
the application to the study of all above-mentioned non-equilibrium Green functions.  
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