
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800



1. Introduction

Maxwell’s electromagnetic theory is more than a century old. It is a well established and

understood theory. Usually the theory is presented in standard textbooks as a field theory

in flat space-time (1; 2). The establishment of the theory in curved space-time (3) requires

the understanding of how exactly the Faraday tensor couples with the gravitational field,

and presently this is an open issue. In the ordinary description of electrodynamics in flat

space-time one almost always assumes that the sources and fields are established in an inertial

reference frame. Very few investigations (4) attempt to extend the analysis to accelerated

frames. Such extension is mandatory because most frames in nature are, in one or another

way, accelerated.

Until recently the attempts to describe the electromagnetic field in an accelerated frame

consisted in performing a coordinate transformation of the Faraday tensor defined in an

inertial frame in flat space-time. For this purpose one considers a coordinate transformation

from the flat space-time cartesian coordinates to coordinates that describe a hyperbola in

Rindler space, in case of uniform acceleration. This procedure is not satisfactory for two

reasons. First, a coordinate transformations is not a frame transformation. A coordinate

transformation is carried out on vectors and tensors on a manifold, and they just express

the fact that (i) a point on the manifold may be labelled by different coordinates in different

charts, and that (ii) one can work with any set of coordinates. On the other hand, a frame

transformation is a Lorentz tranformation, it satisfies the properties of the Lorentz group and

is carried out in the tangent space of the manifold.

The second reason is that by considering an accelerated frame as a frame obtained by

a coordinate transformation, one cannot provide satisfactory answers to situations that

are eventually understood as paradoxes, because the inertial and “accelerated" fields are

described in different coordinates. One of these paradoxes is the following: are the two
situations, (i) an accelerated charge in an inertial frame, and (ii) a charge at rest in an inertial

frame described from the perspective of an accelerated frame, physically equivalent?

The procedure to be considered here consists, first, in assuming that the Faraday tensor

and Maxwell’s equations are abstract tensor quantities in space-time. Then we make use

of tetrad fields to project the electromagnetic field either on an inertial or on a non-inertial

frame, in the same coordinate system, in flat space-time. Tetrad fields constitute a set of four

orthonormal vectors, that are adapted to observers that follow arbitrary paths in space-time.

They constitute the local frame of these observers. Since the fields in the inertial frame and in
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2 Will-be-set-by-IN-TECH

the accelerated frame are defined in the same coordinate system, they can be compared with

each other unambiguously.

Given any set of tetrad fields, we may construct the acceleration tensor, as we will show.

This tensor determines the inertial (i.e., non-gravitational) accelerations that act on a given

observer. For instance, a stationary observer in space-time undergoes inertial forces, otherwise

it would follow a geodesic motion determined by the gravitational field. A given frame (or a

given tetrad field) may be characterized by the inertial accelerations.

In this chapter we will obtain the general form of Maxwell’s equations that hold in inertial or

noninertial frames. The formalism ensures that the procedure for projecting electromagnetic

fields in noninertial frames is mathematically and physically consistent, and allows the

investigation of several paradoxes. It is possible to conclude, for instance, that the radiation

of an accelerated charged particle in an inertial frame is different from the radiation of the

same charged particle measured in a frame that is co-accelerated (equally accelerated) with the

particle. Consequently, the accelerated motion in space-time is not relative, and the radiation

of an accelerated charged particle is an absolute feature of the theory (5).

We will study in detail the description of plane and spherical electromagnetic waves in

linearly accelerated frames in Minkowski space-time. We will show that (i) the amplitude,

(ii) the frequency and the wave vector of the plane wave, and (iii) the Poynting vector in the

accelerated frame vary (decrease) with time, while the light speed remains constant.

Notation:

1. Space-time indices µ, ν, ... and Lorentz (SO(3,1)) indices a, b, ... run from 0 to 3. Time and

space indices are indicated according to µ = 0, i, a = (0), (i).

2. The space-time is flat, and therefore the metric tensor in cartesian coordinates is given by

gµν = (−1,+1,+1,+1)

3. The tetrad field is represented by ea
µ. The flat, tangent space Minkowski space-time metric

tensor raises and lowers tetrad indices and is fixed by ηab = eaµebνgµν = (−1,+1,+1,+1).

4. The frame components are given by the inverse tetrads ea
µ, although we may as well refer

to {ea
µ} as the frame. The determinant of the tetrad field is represented by e = det(ea

µ)

2. Reference frames in space-time

The electromagnetic field is described by the Faraday tensor Fµν. In the present analysis we

will consider that {Fµν} are just tensor components in the flat Minkowski space-time described

by arbitrary coordinates xµ. The projection of Fµν on inertial or noninertial frames yields the

electric and magnetic fields Ex, Ey, Ez, Bx, By and Bz, which are the frame components of {Fµν}.

The projection is carried out with the help of tetrad fields ea
µ. For instance, Ex = −cF(0)(1),

where c is the speed of light and F(0)(1) = e(0) µe(1) νFµν. The study of the kinematical

properties of tetrad fields is mandatory for the characterization of reference frames.

Tetrad fields constitute a set of four orthonormal vectors in space-time,

{e(0) µ, e(1) µ, e(2) µ, e(3) µ}, that establish the local reference frame of an observer that

moves along a trajectory C, represented by functions xµ(s) (6–8) (s is the proper time of the
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The Electromagnetic Field in Accelerated Frames 3

observer). The tetrad field yields the space-time metric tensor gµν by means of the relation

ea
µeb

νηab = gµν, and e(0) µ and e(i)
µ are timelike and spacelike vectors, respectively.

We identify the a = (0) component of ea
µ with the observer’s velocity uµ along the trajectory

C, i.e., e(0)
µ = uµ/c = dxµ/(cdτ). The observer’s acceleration aµ is given by the absolute

derivative of uµ along C,

aµ =
Duµ

dτ
= c

De(0)
µ

dτ
. (1)

The absolute derivative is constructed with the help of the Christoffel symbols. Thus e(0)
µ

and its absolute derivative determine the velocity and acceleration along the worldline of an

observer adapted to the frame. The set of tetrad fields for which e(0)
µ describes a congruence

of timelike curves is adapted to a class of observers characterized by the velocity field uµ =
c e(0)

µ and by the acceleration aµ. If ea
µ = δa

µ everywhere in space-time, then ea
µ is adapted

to static observers, and aµ = 0.

We may consider not only the acceleration of observers along trajectories whose tangent

vectors are given by e(0)
µ, but the acceleration of the whole frame along C. The acceleration

of the frame is determined by the absolute derivative of ea
µ along the path xµ(τ). Thus,

assuming that the observer carries a frame, the acceleration of the latter along the path is

given by (4; 9),
Dea

µ

dτ
= φa

beb
µ, (2)

where φab is the antisymmetric acceleration tensor of the frame (φab = −φba). According to

Refs. (4; 9), in analogy with the Faraday tensor we can identify φab ≡ (�a/c, �Ω), where �a is

the translational acceleration (φ(0)(i) = a(i)/c) and �Ω is the frequency of rotation (φ(i)(j) =

ǫ(i)(j)(k)Ω
(k)) of the spatial frame with respect to a nonrotating (Fermi-Walker transported

(6; 8)) frame. It follows from Eq. (2) that

φa
b = eb

µ
Dea

µ

dτ
. (3)

Therefore given any set of tetrad fields for an arbitrary space-time, its geometrical

interpretation may be obtained by suitably interpreting the velocity field uµ = e(0)
µ and the

acceleration tensor φab.

Using the definiton of the absolute derivative, we can write Eq. (3) as

φa
b = eb

µ

(
dea

µ

dτ
+ Γ

µ
λσ

dxλ

dτ
ea

σ

)

= eb
µ

(
dxλ

dτ

∂ea
µ

∂xλ
+ Γ

µ
λσ

dxλ

dτ
ea

σ

)

= eb
µuλ

(
∂ea

µ

∂xλ
+ Γ

µ
λσea

σ

)
= eb

µuλ∇λea
µ. (4)

Following Ref. (7), we take into account the orthogonality of the tetrads and write Eq. (4)

as φa
b = −uλea

µ∇λeb
µ, where ∇λeb

µ = ∂λeb
µ − Γ

σ
λµeb

σ. Next we consider the identity
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4 Will-be-set-by-IN-TECH

∂λeb
µ − Γ

σ
λµeb

σ + 0ωλ
b

c ec
µ = 0, where 0ωλ

b
c is the Levi-Civita spin connection given by

Eq. (21) below, and express φa
b according to

φa
b = uλea

µ
(

0ωλ
b

c ec
µ

)
= c e(0)

µ( 0ωµ
b

a). (5)

Finally we make use of the identity 0ωµ
a

b = −Kµ
a

b, where Kµ
a

b is the contortion tensor

defined by

Kµab =
1

2
ea

λeb
ν(Tλµν + Tνλµ + Tµλν), (6)

where

Tλ
µν = ea

λTa
µν = ea

λ (
∂µea

ν − ∂νea
µ
)

, (7)

is the object of anholonomity. Note that Tλ
µν is also the torsion tensor of the Weitzenböck

space-time. After simple manipulations we arrive at

φab =
c

2

[
T(0)ab + Ta(0)b − Tb(0)a

]
, (8)

where Tabc = eb
µec

νTaµν. The expression above is not covariant under local Lorentz

(SO(3, 1) or frame) transformations, but is invariant under coordinate transformations. The

noncovariance under local Lorentz transformations allows us to take the values of φab to

characterize the frame.

In order to measure field quantities with magnitude and direction (velocity, acceleration, etc.),

an observer must project these quantities on the frame carried by the observer. The projection

of a vector Vµ on a particular frame is determined by

Va(x) = ea
µ(x)Vµ(x), (9)

and the projection of a tensor Tµν is

Tab(x) = ea
µ(x) eb

ν(x) Tµν(x). (10)

Note that the projections are carried out in the same coordinate system.

We consider now an accelerated observer that follows a worldline x̄µ(τ) in Minkowski

space-time and carries a tetrad ea
µ, such that e(0)

µ = uµ/c and Dea
µ/dτ = φa

beb
µ. At each

instant τ of proper time along the worldline there are spacelike geodesics orthogonal to the

worldline that form a local spacelike hypersurface. The observer can assign local coordinates

xa = {x(0), x(i)} = {cτ, �x′} to an event, which is also described by Cartesian coordinates

xµ = {ct,�x} belonging to this hypersurface, where

x(0) = cτ, x(i) = [xµ − x̄µ]e(i)
µ. (11)

The inverse transformation reads

xµ = x̄µ + e(i)
µx(i). (12)
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If we differentiate both sides of this equation over the worldline, we find

dxµ =

(
1

c

dx̄µ

dτ
+

1

c

de(i)
µ

dτ
x(i)

)
dx(0) + e(i)

µdx(i)

=

(
e(0)

µ +
1

c
φ(i)

a ea
µ x(i)

)
dx(0) + e(i)

µdx(i). (13)

Substituting Eq. (13) into the line element ds2 = ηµνdxµdxν, we obtain the metric in the local

coordinate system of an accelerated observer,

ds2 =

⎡
⎣−

(
1 +

�a · �x′

c2

)2

+
1

c2

(
�Ω × �x′

)2

⎤
⎦ (dx(0))2 +

(
2

c
�Ω × �x′

)
dx(0)dx(i)

+ η(i)(j)dx(i)dx(j), (14)

where we used φ(i)
(0)x(i) = (�a · �x′)/c and φ(j)

(i)x(j) =
(
�Ω × �x′

)(i)
.

We see from Eq. (14) that η(0)(0)
∼= −1 only in the regions of space-time where

|�x′| ≪
c2

|�a|
, and |�x′| ≪

c

|�Ω|
. (15)

Furthermore, some cτ = constant surfaces will intersect each other if we extend the spatial

local coordinates far away from the observer’s worldline, which is not an admissible situation.

Since we cannot assign two sets of coordinates for the same event, the local spatial coordinates

have a limit of validity. In fact, the local coordinate system of Eq. (11) is valid only in those

regions in the neighborhood of the observer’s wordline in which Eqs. (15) hold. We call

c2/|�a| the translational acceleration length and c/|�Ω| the rotational acceleration length. On

the Earth’s surface, for example, we have (|�a| = 9, 8 m/s2, |�Ω| = Ω⊕)

c2

|�a|
= 9.46 · 1015 m ≈ 1 ly and

c

|�Ω|
= 4.125 · 1012 m ≈ 27.5 AU. (16)

Hence we can use the local coordinates xa with confidence in most experimental situations in

a laboratory on the Earth, where |�x′| is negligible comparing to the acceleration lengths.

3. The formulation of Maxwell’s theory in moving frames

The vector potential Aµ, the Faraday tensor Fµν = ∂µ Aν − ∂ν Aµ and the four-vector current

Jµ are vector and tensor components in space-time. Space-time indices are raised and lowered

by means of the flat space-time metric tensor gµν = (−1,+1,+1,+1). On a particular frame

the electromagnetic quantities are projected and measured according to Aa(x) = ea
µ(x)Aµ(x)

and Fab(x) = ea
µ(x)ea

ν(x)Fµν(x).

An inertial frame is characterized by the vanishing of the acceleration tensor φab. A realization

of an inertial frame in Minkowski space-time is given by ea
µ(t, x, y, z) = δa

µ. It is easy to verify

141The Electromagnetic Field in Accelerated Frames

www.intechopen.com



6 Will-be-set-by-IN-TECH

that this frame satisfies φab = 0. More generally, all tetrad fields that are function of space-time

independent parameters (boost and rotation parameters) determine inertial frames. Suppose

that Aa are componentes of the vector potential in an inertial frame, i.e., Aa = (ea
µ)in Aµ =

δa
µ Aµ. The components of Aa in a noninertial frame are obtained by means of a local Lorentz

transformation,

Ãa(x) = Λ
a

b(x)Ab(x) , (17)

where Λ
a

b(x) are space-time dependent matrices that satisfy

Λ
a

c(x)Λ
b

d(x)ηab = ηcd . (18)

In terms of covariant indices we have Ãa(x) = Λa
b(x)Ab(x). An alternative but completely

equivalent way of obtaining the field components Ãa(x) consists in performing a frame

transformation by means of a suitable noninertial frame ea
µ, namely, in projecting Aµ on

the noninertial frame,

Ãa(x) = ea
µ(x)Aµ(x) . (19)

Of course we have Λ
a

b δb
µ = Λ

a
b (e

b
µ)in = ea

µ.

The covariant derivative of Aa is defined by

Da Ab = ea
µDµ Ab

= ea
µ(∂µ Ab −

0ωµ
c

b Ac) , (20)

where

0ωµab = −
1

2
ec

µ(Ωabc − Ωbac − Ωcab) ,

Ωabc = eaν(eb
µ∂µec

ν − ec
µ∂µeb

ν) , (21)

is the metric-compatible Levi-Civita connection considered in Eq. (5). Note that we are

considering the flat space-time, and yet this connection may be nonvanishing. In particular,

for noninertial frames it is nonvanishing. The Weitzenböck torsion tensor Ta
µν is also

nonvanishing. However, the curvature tensor constructed out of 0ωµab vanishes identically:

Ra
bµν(

0ω) ≡ 0.

Under a local Lorentz transformation the spin connection transforms as

0̃ωµ
a

b = Λ
a

c(
0ωµ

c
d)Λb

d + Λ
a

c∂µΛb
c . (22)

It follows from eqs. (17), (21) and (22) that under a local Lorentz transformation we have

D̃a Ãb = Λa
c(x)Λb

d(x) Dc Ad . (23)

The natural definition of the Faraday tensor in a noninertial frame is

Fab = Da Ab − Db Aa . (24)

142 Electromagnetic Radiation

www.intechopen.com



The Electromagnetic Field in Accelerated Frames 7

In view of eq. (24) we find that the tensors Fab and F̃ab in two arbitrary frames are related by

F̃ab = Λa
c(x)Λb

d(x)Fcd . (25)

The Faraday tensor defined by eq. (24) is related to the standard expression defined in inertial

frames. By substituting (20) in (24) we find

Fab = ea
µ(∂µ Ab −

0ωµ
m

b Am)− eb
µ(∂µ Aa −

0ωµ
m

a Am)

= ea
µ(∂µ Ab)− eb

µ(∂µ Aa) + ( 0ωabm − 0ωbam)Am . (26)

We make use of the identity
0ωabm − 0ωbam = Tmab , (27)

where Tmab is given by eq. (7), and write

Fab = ea
µeb

ν(∂µ Aν − ∂ν Aµ) + Tm
ab Am

+ ea
µ(∂µeb

ν)Aν − eb
µ(∂µea

ν)Aν . (28)

In view of the orthogonality of the tetrad fields we have

∂µeb
ν = −eb

λ(∂µec
λ)ec

ν . (29)

With the help of the equation above we find that the last two terms of eq. (28) may be rewritten

as

ea
µ(∂µeb

ν)Aν − eb
µ(∂µea

ν)Aν = −Tm
ab Am . (30)

Therefore the last three terms of (28) cancel each other and finally we have

Fab = ea
µeb

ν(∂µ Aν − ∂ν Aµ) . (31)

The equation above shows that given the abstract, tensorial expression of the Faraday tensor

we can simply project it on any moving frame in Minkowski space-time. This is exactly the

procedure adopted by Mashhoon (4) in the investigation of electrodynamics in accelerated

frames. Mashhoon is interested in developing the non-local formulation of electrodynamics.

However, if we restrict attention to the evaluation of total quantities, such as the integration of

the Poynting vector and the total radiated power (and not to pointwise measurements), then

the standard formulation suffices to arrive at qualitative conclusions.

We may obtain Maxwell’s equations with sources from an action integral determined by the

Lagrangian density

L = −
1

4
e FabFab − µ0 e Ab Jb , (32)

where e = det(ea
µ), Jb = eb

µ Jµ and µ0 is the magnetic permeability constant. Although

in flat space-time we have e = 1, we keep e in the expressions below because it allows a

straightforward inclusion of the gravitational field. Note that in view of eq. (31) we have

FabFab = FµνFµν . (33)
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Therefore L is frame independent, besides being invariant under coordinate transformations.

The field equations derived from L are

∂µ(e Fµb) + e Fµc (0ωµ
b

c) = µ0 e Jb , (34)

or

eb
ν[∂µ(e Fµb) + e Fµc (0ωµ

b
c)] = µ0 e Jν , (35)

where Fµc = eb
µFbc. In view of eq. (33) it is clear that the equations above are equivalent to

the standard form of Maxwell’s equations in flat space-time.

The second set of Maxwell’s equations is obtained by working out the quantity DaFbc +
DbFca + Dc Fab, where the covariant derivative of DaFbc is defined by

DaFbc = ea
µDµFbc (36)

= ea
µ(∂µFbc −

0ωµ
m

bFmc −
0ωµ

m
cFbm) .

Taking into account relations (27) and (29) we find that the source free Maxwell’s equations in

an arbitrary moving frame are given by

DaFbc + DbFca + Dc Fab = ea
µeb

νec
λ(∂µFνλ + ∂νFλµ + ∂λFµν) = 0 , (37)

in agreement with the standard description.

We refer the reader to Ref. (5), where we consider an accelerated frame with velocity v(t) with

respect to an inertial frame, and describe Gauss law in the accelerated frame for the situations

(i) in which the source is at rest in the inertial frame, and (ii) in which the source is at rest in

the accelerated frame.

4. Plane electromagnetic waves in a linearly accelerated frame

In this section we consider an observer in Minkowski space-time that is uniformly accelerated

in the positive x direction. The wordline and velocity of the observer in terms of its proper

time τ are

x̄µ =

{
c2

a
sinh

( aτ

c

)
,

c2

a

[
cosh

( aτ

c

)
− 1

]
, 0, 0

}
, (38)

and

uµ =
dx̄µ

dτ
=

{
c cosh

( aτ

c

)
, c sinh

( aτ

c

)
, 0, 0

}
, (39)

respectively.

A simple form of tetrad fields adapted to the observer with velocity uµ, i.e., for which e(0)
µ =

uµ/c and ea
µeaν = ηµν, is given by

ea
µ =

⎛
⎜⎜⎝

cosh(aτ/c) − sinh(aτ/c) 0 0

− sinh(aτ/c) cosh(aτ/c) 0 0

0 0 1 0

0 0 0 1

⎞
⎟⎟⎠ . (40)
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The Electromagnetic Field in Accelerated Frames 9

If we substitute the tetrad fields and the inverses into Eq. (4), we see that the only

nonvanishing component of φab is

φ(0)
(1) =

a

c
. (41)

The frame described by Eq. (40) is moving with uniform acceleration a in the positive x
direction, and its axes are oriented along the global Cartesian frame. In view of Eqs. (12),

(38) and (40), it follows that

t =
c

a

(
1 +

ax′

c2

)
sinh

( aτ

c

)
,

x =
c2

a

(
1 +

ax′

c2

)
cosh

( aτ

c

)
−

c2

a
,

y = y′,

z = z′. (42)

We note that Eq. (39) can be given alternatively in terms of the time coordinate t of the inertial
frame by

uµ(t) = {cγ(t), cβ(t) γ(t), 0, 0} , (43)

where

γ(t) =
√

1 + a2t2/c2 , and β(t)γ(t) = at/c .

In terms of the coordinates (t, x, y, z) adapted to the inertial frame, the Faraday tensor for a

plane electromagnetic wave that propagates in the positive x direction reads

Fµν =

⎛
⎜⎜⎝

0 0 −Ey/c 0

0 0 −Bz 0

Ey/c Bz 0 0

0 0 0 0

⎞
⎟⎟⎠ . (44)

where

Ey(t,�x) = E0 cos (kx − ωt), (45)

Bz(t,�x) =
E0

c
cos (kx − ωt). (46)

In these expressions k is the wave number and ω is the frequency of the wave, which are

related by k = |�k| = ω/c. The speed of propagation of the electromagnetic wave is

vp =
ω

|�k|
= c . (47)

The expression of the electromagnetic field in the inertial frame is formally obtained out of

Eqs. (45) and (46) by means of the tetrad field ea
µ = δa

µ. However we will consider that (45)

and (46) do represent the fields in the inertial frame.

In view of the expressions above we see that the only nonzero component of the Poynting

vector

�S =
1

µ0

�E × �B, (48)
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is given by

Sx =
(E0)

2

µ0c
cos2 (kx − ωt), (49)

where µ0 is the magnetic permeability constant. Thus the energy flux of the electromagnetic

wave points in the same direction of the wave propagation.

In order to obtain the electric and magnetic field components of the electromagnetic wave in

the uniformly accelerated frame, we insert Eqs. (44) and (40) into Fab = ea
µeb

νFµν. We obtain

E(y) = cosh
( aτ

c

)
Ey − c sinh

( aτ

c

)
Bz, (50)

B(z) = −
1

c
sinh

( aτ

c

)
Ey + cosh

( aτ

c

)
Bz, (51)

where Ey and Bz are given by (45) and (46), respectively.

In Eqs. (50) and (51) Ey and Bz are expressed in terms of the coordinates (t, x). In order to

present the electric and magnetic fields in terms of the coordinates (τ, �x′) of the accelerated

frame we make use of Eq. (42). We arrive at

E(y)(τ, �x′) = E0 e−aτ/c cos
[
k
(

e−aτ/c
)

x′ −
ωc

a

(
1 − e−aτ/c

)]
, (52)

B(z)(τ, �x′) =
E0

c
e−aτ/c cos

[
k
(

e−aτ/c
)

x′ −
ωc

a

(
1 − e−aτ/c

)]
, (53)

where we used

e−aτ/c = cosh(aτ/c)− sinh(aτ/c) .

The only nonzero component of the Poynting vector is

S(x) =
(E0)

2

µ0c
e−2aτ/c cos2

[
k
(

e−aτ/c
)

x′ −
ωc

a

(
1 − e−aτ/c

)]
, (54)

We see that the density of energy flux decreases in time by a factor e−2aτ/c in a frame that is

uniformly accelerated in the same direction of the propagation of the electromagnetic wave.

The amplitudes in Eqs. (52) and (53) may be written as

E(0) = E0 e−aτ/c, (55)

B(0) =
E0

c
e−aτ/c =

E(0)

c
. (56)

The identification of the wave number and of the frequency of the wave in the accelerated

frame is made by means of a projection of the wave vector kµ = (−ω/c, k, 0, 0) from the

inertial to the accelerated frame, according to ka = ea
µkµ. We recall that this procedure is

equivalent to performing a local Lorentz transformation where the coefficients Λ
a

b of the

transformation satisfy ea
µ = Λ

a
b (e

b
µ)in = Λ

a
b δb

µ. Thus we have

k′ = k e−aτ/c, (57)
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ω′ = ω e−aτ/c. (58)

We conclude that the amplitude, wave number and frequency of the electromagnetic wave

decrease in proper time by a factor e−aτ/c in a frame that is uniformly accelerated in the

same direction of the wave propagation. We note that the observer will never reach the

speed of light. Considering Eqs. (57) and (58) we see that the speed of propagation of the

electromagnetic wave in the uniformly accelerated frame is

v′p =
ω′

k′
=

ω e−aτ/c

k e−aτ/c
= c . (59)

Therefore the speed of the electromagnetic wave is independent of the observer’s acceleration.

5. Spherical waves in a radially accelerated frame

We will repeat the analysis carried out in the previous section and consider the measurement

of spherical electromagnetic waves, produced in an inertial frame, in a radially accelerated

frame. A spherical wave in an inertial frame may be characterized by the following

expressions for the electric and magnetic fields,

�E(t, r, θ, φ) = E0
sin θ

r

[
cos (kr − ωt)−

1

kr
sin (kr − ωt)

]
φ̂, (60)

�B(t, r, θ, φ) = −
E0

c

sin θ

r

[
cos (kr − ωt)−

1

kr
sin (kr − ωt)

]
θ̂, (61)

where the unit vectors φ̂ and θ̂ are defined in terms of the cartesian unit vectors by

φ̂ = − sin φ x̂ + cos φ ŷ,

θ̂ = cos θ cos φ x̂ + cos θ sin φ ŷ − sin θ ẑ. (62)

A set of tetrad fields in spherical coordinates, adapted to an observer that undergoes uniform

acceleration in the radial direction, is given by

ea
µ(t, r, θ, φ) =

⎛
⎜⎜⎜⎜⎝

γ −γβ 0 0

−γβ γ 0 0

0 0 r 0

0 0 0 r sin θ

⎞
⎟⎟⎟⎟⎠

, (63)

where

γ =

√

1 +
a2t2

c2
, γβ =

at

c
. (64)

The inverse components of Eq. (63) are such that e(0)
µ(t, r, θ, φ) = (γ, βγ 0, 0). Therefore the

frame is accelerated along the radial direction.
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We start with the Faraday tensor in cartesian coordinates,

Fµν(t, x, y, z) =

⎛
⎜⎜⎝

0 −Ex/c −Ey/c −Ez/c

Ex/c 0 −Bz By

Ey/c Bz 0 −Bx

Ez/c −By Bx 0

⎞
⎟⎟⎠ . (65)

The electric and magnetic field components in the expression above are obtained out of Eqs.

(60), (61) and (62). We must consider the expression above in spherical coordinates. So we

perform the coordinate transformation

F′αβ(t, r, θ, φ) =
∂x′α

∂xµ

∂x′β

∂xν Fµν(t, x, y, z). (66)

After some algebra we obtain

F′01 = 0,

F′02 = 0,

F′03 = −
E0

c

1

r2

[
cos (kr − ωt)−

1

kr
sin (kr − ωt)

]
,

F′12 = 0,

F′23 = 0,

F′31 =
E0

c

1

r2

[
cos (kr − ωt)−

1

kr
sin (kr − ωt)

]
. (67)

The quantities in Eq. (67) represent both the abstract tensor components of the Faraday tensor

in spherical coordinates, and the components of the Faraday tensor in an inertial frame. Next

we project these tensor components on the accelerated frame defined by Eq. (63). We arrive at

F′(0)(1) = 0,

F′(0)(2) = 0,

F′(0)(3) = −
E0

c
(γ − γβ)

sin θ

r

[
cos (kr − ωt)−

1

kr
sin (kr − ωt)

]
,

F′(1)(2) = 0,

F′(2)(3) = 0,

F′(3)(1) =
E0

c
(γ − γβ)

sin θ

r

[
cos (kr − ωt)−

1

kr
sin (kr − ωt)

]
. (68)

Note that the factor (γ − γβ) may be rewritten as

γ − γβ =

√
1 − β

1 + β
. (69)

In order to verify how Eqs. (60) and (61) are modified in the accelerated frame we just compare

the structure of Eqs. (67) and (68), and indentify (60) and (61) in the latter expression. We
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obtain

�E(t, r, θ, φ) = E0(γ − βγ)
sin θ

r

[
cos (kr − ωt)−

1

kr
sin (kr − ωt)

]
φ̂, (70)

�B(t, r, θ, φ) = −
E0

c
(γ − βγ)

sin θ

r

[
cos (kr − ωt)−

1

kr
sin (kr − ωt)

]
θ̂, (71)

in the inertial frame coordinates.

By comparing Eqs. (70) and (71) with (60) and (61) we see that the major qualitative difference
between these expressions is the emergence, in the former pair of equations, of the time

dependent Doppler factor (γ − βγ) given by Eq. (69). If the accelerated frame is at the radial

position (r, θ) at the instant t, then the measured amplitude of the wave in the accelerated

frame will be smaller by a factor (γ − βγ) than if the frame were at rest at the same position.

Thus the amplitude of the spherical wave in the accelerated frame varies with time, and

approaches zero in the limit t → ∞, since in this limit β → 1.

6. Final comments

The tetrad field and its interpretation as a frame adapted to arbitrary observers in space-time

allow the formulation of electrodynamics in accelerated frames. The idea is to project the

electromagnetic vectorial and tensorial quantities in any moving frame by means of the tetrad

field. Specific issues regarding electromagnetic radiation were discussed in ref. (5).

Of course all the results derived from the procedure adopted in this chapter are valid as long

as the very concept of tetrad field and its interpretation are also valid. The justification behind

the usage of tetrad fields for this purpose is given by principle of locality (10). The idea is

the following. A physical measurement is considered to be reliable if it is performed in an

inertial reference frame. Normally it is admitted that the observer is standing in an inertial

frame. Measurements in accelerated frame are, in general, not easily performed. When

an electromagnetic field quantity is projected in a frame by means of the tetrad field, it is

assumed that this tetrad field is, at each instant of time, physically equivalent (identical) to

another frame that is inertial and momentarily co-moving with the accelerated frame. The

worldline of the two frames, the accelerated and the inertial, coincide at that instant of time.

To a certain extent, the hypothesis of locality, together with the concept of tetrad field, extends

the principle of relativity, since it relates inertial and non-inertial frames.

An interesting consequence of the present analysis is the following. Let us suppose that an

accelerated observer in the context of section 4 measures the frequencies ω′
1 and ω′

2 at the

instants of proper time τ1 and τ2, respectively,

ω′
1 = ω e−aτ1/c, ω′

2 = ω e−aτ2/c, (72)

according to eq. (58). By dividing the two frequencies of the electromagnetic waves we obtain

a =
c

∆τ
ln

(
ω′

1

ω′
2

)
, (73)

where ∆τ = τ2 − τ1. Therefore the accelerated observer may determine the value of its

own acceleration provided the luminosity of the source is constant and the acceleration is

149The Electromagnetic Field in Accelerated Frames

www.intechopen.com



14 Will-be-set-by-IN-TECH

uniform. This formula may be useful in the evaluation of the acceleration of the solar system,

for instance, with respect to the distant supernovas, provided it is verified that in the interval

∆τ the luminosity of the supernova is not substantially changed. Of course the resulting value

will provide just the order of magnitude of the acceleration of the expansion of the universe.

The final expressions of the electric and magnetic fields in the accelerated frames, Eqs. (52-53),

and (70-71), for plane and spherical waves, respectively, are related to the expressions in

the inertial frame by means of simple time dependent functions. The simplicity of the final

expressions ensures that the present tehcnique is correct, and suggests that all manifestations

of electrodynamics may be investigated in any moving frame.
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