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Vortices in Electric Dipole Radiation 
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1California Polytechnic State University,  

2Mississippi State University, 
USA 

1. Introduction 

In the geometrical optics limit of light propagation, light travels from a source to an observer 

along straight lines, known as optical rays. On the other hand, the energy in an 

electromagnetic field flows along the field lines of the Poynting vector. It can be shown 

(Born & Wolf, 1980) that in the geometrical optics limit, where variations in the radiation 

field on the scale of a wavelength are neglected, the optical rays coincide with the field lines 

of the Poynting vector, and both are straight lines. In nanophotonics and near-field optics, 

where sub-wavelength resolution of the energy transport is of interest, the optical rays lose 

their significance. Energy flows along the field lines of the Poynting vector, and these field 

lines are in general curves. When sub-wavelength resolution is required, we need the exact 

solution of Maxwell’s equations. In order to study the fundamental aspects of energy 

propagation, we consider the simplest and most important source of radiation, which is the 

electric dipole. When a small object, like an atom, molecule or nanoparticle, is placed in an 

external electromagnetic field (usually a laser beam), oscillating with angular frequency  , 

a current will be induced in the particle, and this gives the particle an electric dipole 

moment of the form 

 o( ) Re( )i tt d e d u , (1) 

with od an overall (real) constant, and u  a complex-valued unit vector, normalized as 

* 1 u u . The oscillating dipole moment emits electromagnetic radiation. The electric field 

will have the form 

 ( , ) Re[ ( ) ]i tt e E r E r , (2) 

with ( )E r  the complex amplitude, and the magnetic field ( , )tB r  has a similar form. We 

shall allow for the possibility that the dipole is embedded in a linear isotropic homogeneous 

medium with relative permittivity r  and relative permeability r , and both are complex in 

general. The imaginary parts of r  and r  are non-negative, as can be shown from causality 

arguments. The index of refraction n of the medium is a solution of 2
r rn   , and we take 

the solution with Im 0n  . When r  and r  are both positive or both negative, we have 
2 0n  , and this leaves the sign of n ambiguous. It can be shown with a limit procedure 
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(McCall et al., 2002) that we should take 0n   when r  and r  are both positive and 0n   

when r  and r  are both negative. The time-averaged Poynting vector in such a medium is 

(Jackson, 1998) 

 
o r

1 1
( ) Re ( ) * ( )

2 
 

  
 

S r E r B r  (3) 

2. Electric dipole radiation 

Let the dipole be located at the origin of coordinates. The complex amplitudes of the electric 
and magnetic fields are then found to be (Li et al., 2011b) 

 
o2

r o o

o o o

ˆ ˆ ˆ ˆ( ) ( ) [ 3( ) ] 1
4

ink rd k i i e

nk r nk r r




           
   

E r u r u r u r u r  , (4) 

 
o2

r o o

o o

ˆ( ) ( ) 1
4

ink rn d k i e

c nk r r




 
   

 
B r r u  , (5) 

for 0r . Here, o /k c  is the wavenumber of the radiation in free space and ˆ /rr r  is 

the unit vector in the radially outward direction. With these expressions for ( )E r  and ( )B r , 

the Poynting vector from (3) can be worked out. First we introduce 

 
2 4
o o

o
o12

cd k
P


  , (6) 

which equals the power that would be emitted by the same dipole in free space. As we shall 

see, the field lines of the Poynting vector scale with ok , so we introduce okq r  as the 

dimensionless position vector of a field point. Similarly, we set ox k x , etc., for the 

dimensionless Cartesian coordinates of a field point. Therefore, in dimensionless 

coordinates, a distance of 2  corresponds to one optical free-space wavelength. Then, the 

field lines of a vector field are determined by the directions of the vectors at each point in 

space, but not by their magnitudes. So when we set 

 2 Im2o
r2

3
( ) | | ( )

8

q nP
e

r



S r σ q  , (7) 

then the field lines of ( )σ q  are the same as the field lines of ( )S r , since the overall factor that is 

split off in (7) is positive. We shall simply refer to ( )σ q  as the Poynting vector. We find 

 
r

ˆ ˆ ˆ( ) [1 ( )( *)]Re 1
n i

nq
  

      
   

σ q r u r u r   

 

2

r r2

1
ˆ ˆ ˆ ˆ1 {[1 3( )( *)]Im( ) 2Im[ ( *) ]}

| |

i

nqq n
       r u r u r r u u  (8) 
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Vector ( )σ q  is dimensionless, and only depends on the field point through its 

dimensionless representation q. It furthermore depends on the polarization vector u of the 

dipole moment, and it depends in a complicated way on the material parameters r  and 

r .  

3. Field lines of the poynting vector 

A field line of the vector field ( )σ q  can be parametrized as ( )uq , with u a dummy variable. 

Since at any point q on a field line the vector ( )σ q is on the tangent line, the field lines are a 

solution of 

 
d

( )
du


q σ q  (9) 

Given an initial point iq , equation (9) determines the field line through this point. The 

dimensionless position vector q has Cartesian coordinates ( , , )x y z , in terms of which (9) 

becomes 

 
d

( , , )
d

x

x
x y z

u
  ,  

d
( , , )

d
y

y
x y z

u
  ,  

d
( , , )

d
z

z
x y z

u
  (10) 

Here, ( , , )x x y z  is the x component of ( )σ q , expressed in the variables x , y  and z . The 

field line pictures in this chapter are made by numerically integrating the set (10). For 

further analysis it is useful to express (9) in spherical coordinates ( , , )q   . This gives 

 
d

ˆ( )
d

q

u
 σ q r  , (11) 

 d
( )

d
q

u



 σ q e  , (12) 

 
  

d
sin ( )

d
q

u
σ q e  (13) 

At a large distance from the dipole, compared to a wavelength, we have 1q  . Then the 

Poynting vector (8) simplifies to 

 
r

ˆ ˆ ˆ( ) [1 ( )( *)]Re
n


 

     
 

σ q r u r u r  (14) 

It can be shown (McCall et al., 2002) that Re( / )rn   is positive, and therefore the Poynting 

vector is approximately in the radially outward direction. We shall not consider the limiting 

case where r/n   is imaginary. Therefore, at a large distance from the dipole the field lines 

are approximately straight lines, running away from the dipole. Conversely, any curving of 

the field lines can only occur close to the dipole, e.g., within a distance of about a 

wavelength. All terms in (8) are proportional to r̂ , except for the term containing the factor 

r
ˆIm[ ( *) ] r u u . Therefore, any curving of the field lines is due to this term. This can happen, 
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for instance, when u is complex, or when r  has an imaginary part due to damping in the 

material.  

4. Dipole in free space 

Let us first consider a dipole in free space, so that r r 1n    . The simplest case is when 

the incident field is linearly polarized, say along the z axis. Then the dipole moment will 

oscillate along the z axis, and we have zu e . With (1) we have 

 o( ) cos( )zt d td e  (15) 

The Poynting vector (8) becomes 

 2ˆ( ) sin σ q r  , (16) 

which is in the radially outward direction at all points. Therefore, the field lines are straight 
lines coming out of the dipole. Figure 1(a) shows the field line pattern. 

     
(a)                                                                (b) 

Fig. 1. The figure on the left shows the field lines of the Poynting vector for a dipole which 

oscillates linearly in the direction of the arrow. In the figure on the right two field lines of 

the Poynting vector are shown for a dipole which rotates in the xy plane. The field lines 

wind around the z axis in the same direction as the direction of rotation of the dipole 

moment. The x and y axes in the figure have been lowered for clarity of drawing. The 

constant o  is / 4  for the upper field line, and this angle is the angle of the cone around 

the z axis on which the field line runs. For the lower field line this angle is 3 / 4 .  

When the incident field is circularly polarized, with the electric field vector rotating in the xy 
plane, the unit vector u is 

 
1

( )
2

x yi  u e e  , (17) 
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and the dipole moment becomes 

 o( ) [ cos( ) sin( )]
2

x y

d
t t t   d e e  (18) 

This dipole moment rotates in the xy plane, and the direction of rotation is counterclockwise 
when viewed down the positive z axis. The Poynting vector becomes 

 21
2 2

1 1
ˆ( ) (1 sin ) 1 sin

q q
 

 
     

 
σ q r e  (19) 

The first term on the right-hand side is in the radially outward direction, and the second 

term is proportional to e . For q large, this second term vanishes, so at large distances, the 

field lines run radially outward. For small q, this second term dominates, and the field lines 

run approximately in the e  direction. Since   is the angle around the z axis, we expect the 

field lines to rotate around the z axis. Equations (11)-(13) for the field lines become 

 21
2

d
1 sin

d

q

u
   , (20) 

 
d

0
du


  , (21) 

 
2 2

d 1 1
1

du q q

  
   

 
 (22) 

From (21) we see that  is constant along a field line, and we shall indicate this constant by 

o . Therefore, a field line lies on a cone with its axis as the z axis. Field lines run into the 

direction of increasing u, and since the right-hand side of (22) is positive, angle   increases 

along a field line. Therefore, the field lines wind around the z axis in a counterclockwise 

direction when viewed down the positive z axis. From (22) and (20), and with o  , we 

have 

 o 2 2

d 1 1
( ) 1

d
Z

q q q

 
 

   
 

 , (23) 

where we have set 

 o 21
o2

1
( )

1 sin
Z 





 (24) 

We now see q as the independent variable, and then the solution of (23) is 

 o 2

1 1
( ) ( ) 1

3
q Z

q q
  

 
    

 
o  , (25) 
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where o  is the integration constant. A field line starts at the location of the dipole, so at 

0q  . The function ( )q  increases with q, and for q   it reaches the asymptotic value of 

o . The field line spirals around the z axis in the counterclockwise direction, when viewed 

down the positive z axis, and this spiral lies on the cone o  . Two field lines are shown in 

Fig. 1(b). The resulting field line picture has a vortex structure, and this was called ‘the dipole 

vortex’ (Arnoldus & Foley, 2004). The spatial extent of this vortex is less than a wavelength, 

as can be seen from the figure. On this scale, a distance of 2 corresponds to one 

wavelength. 

  

Fig. 2. A field line of the Poynting vector approaches asymptotically a line   at a large 
distance from the source. This field line appears to come from a point in the xy plane with 

position vector dq . Therefore, the dipole seems to be displaced over vector dq , when 

observed from the far field.  

5. Virtual displacement of the source 

For the circular dipole in free space, the field lines form a vortex structure, as illustrated in 

Fig. 1(b). Close to the source, the field lines wind around the z axis numerous times, and 

then they run away to the far field, while remaining on a cone. In the far field, a field line 

approaches asymptotically a straight line, and this line is the optical ray from geometrical 

optics. In geometrical optics, a sub-wavelength spatial structure like the vortex is not 

resolved, and it would appear as if the optical ray comes from the location of the dipole. 

However, when sub-wavelength resolution is of interest, this is not the case anymore. Due 

to the rotation of a field line near the source, it appears as if the ray comes from a point in 

the xy plane which is displaced with respect to the position of the dipole, as shown in Fig. 2. 

The line   is the asymptote of the field line, and this is the optical ray. This line intersects 

the xy plane at a location indicated by the displacement vector dq , so this vector represents 

the apparent location of the source.  
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The dimensionless Cartesian coordinates ( , , )x y z  for a point on the field line are 

parametrized as 

 osin cos ( )x q q   , (26) 

 osin sin ( )y q q   , (27) 

 ocosz q   (28) 

Here, o  is the angle of the cone on which the field line lies, and ( )q  is given by (25). The 

free parameter is q. In order to obtain a representation of the line  , we expand the right-

hand sides of (26)-(28) in an asymptotic series in 1/q. Due to the overall factors of q, we need 

to expand cos ( )q  and sin ( )q  up to order 1/q, so that the combination yields a constant. 

From (25) we have 

 o

1
( ) ( ) ...q Z

q
    o  , (29) 

and this gives 

 o o o

1
cos ( ) cos ( )sin ...q Z

q
       , (30) 

 o o o

1
sin ( ) sin ( )cos ...q Z

q
       (31) 

Then we substitute the right-hand sides of (30) and (31) in (26) and (27), respectively, and 

omit the ellipses. We then obtain 

 o o o osin [ cos ( )sin ]x t Z      , (32) 

 o o o osin [ sin ( )cos ]y t Z      , (33) 

 ocosz t   (34) 

Here we have replace q by t, since this parameter does not represent the distance to the 

origin anymore. Equations (32)-(34) are the parameter equations for the line  . This line is 

the asymptote of the field line that runs into the observation direction o o( , )  , and this 

direction is indicated by the eye in Fig. 2.  

The unit vector in the observation direction o o( , )   is 

 o o o o o
ˆ sin (cos sin ) cosx y z     r e e e  , (35) 

and the position vector of a point on the line is x y zx y z  q e e e . The parameter equations 

(32)-(34) can then be written in vector form as 
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 o d
ˆ: t q r q  , (36) 

where we have set 

 d o o o osin ( )( sin cos )x yZ    q e e  (37) 

It follows from (34) that 0z   for 0t  , so the line   intersects the xy plane for 0t  . From 

(36) we see that for 0t   we have dq q  so vector dq  is the displacement vector from Fig. 

2. From (35) and (37) it follows that d ô 0 q r , and therefore the displacement is 

perpendicular to the observation direction. The magnitude of the displacement vector is  

 o
d 2

o

2sin

1 cos
q







 (38) 

  

Fig. 3. Illustration of the image plane and the coordinate system in this plane.  

The displacement is zero for observation along the z axis, and has its maximum for 

o / 2  , e.g., for observation in the xy plane. The maximum displacement is d 2q  . Since 

2  corresponds to one wavelength, this displacement equals /  , with o2 / k   the 

wavelength of the radiation. For visible light, this is of the order of about 150 nm. In 

nanophotonics, where structures with dimensions of a few nanometers are studied, this 

displacement is not negligible.  

6. Displacement in the far field 

In the far field, the line   is the asymptote of the field line that runs into the observation 

direction o o( , )  . The virtual displacement of the source in the xy plane is then inferred 

from an extrapolation of the line   from the far field to its intersection with the xy plane. We 

shall now consider this from a different point of view (Shu et al., 2008). For a given vector 
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or , we define the observation plane, or image plane, as the plane which is perpendicular to 

or , and which contains the point or . We shall take the direction of or  as specified by 

o o( , )  , so that ôr  is given by (35). Therefore, we can view the image plane as the tangent 

plane of a sphere with radius or  around the dipole, and located at the spherical position 

o o( , )  . So the position of the image plane is specified by its angular location o o( , )  , and 

by its distance or  to the origin of coordinates. The point or  is taken as the origin O’ in the 

plane, as illustrated in Fig. 3. The spherical-coordinate unit vectors 
oe  and 

oe  lie in the 

image plane, and are given explicitly by 

 o o o o o( cos sin )cos sinx y z      e e e e  , (39) 

 o o osin cosx y    e e e  (40) 

We then introduce a   and a   axis in the image plane, as shown in Fig. 3, so that a point 

in the image plane is represented by the Cartesian coordinates ( , )   in the plane. A point r 

in the image plane can therefore be written as 

 
o oo     r r e e  (41) 

A field line of the Poynting vector for the radiation emitted by a circular dipole in free space 

is parametrized by the angles o  and o , which are the asymptotic values of   and   

along the field line. We now consider an image plane which is located at the angular 

location o o( , )  , and we assume that the image plane is located in the far field, so or  is 

much larger than a wavelength of the radiation. Then the field line is approximately along 

the asymptote  . This line intersects the image plane at the location of the black dot in the 

figure. This point is represented by vector fr  in the image plane, as shown, or by the 

dimensionless vector f o fkq r . The parameter equation for   is given by (36), and dq  can 

be written as 

 
od o osin ( )Z   q e  (42) 

Since this is a vector in the image plane, we see immediately that 

 f dq q  (43) 

If the field lines were straight, then the field line in the o o( , )   direction would intersect the 

image plane at O’. Due to the rotation of the field lines, a field line intersects the image plane 

at fq , so fq  is the displacement of the field line in the far field. Apparently, this 

displacement is the same as the virtual displacement of the source in the xy plane. This 

conclusion holds for a circular dipole in free space, but not in general, as we shall see below. 

The dimensionless coordinates in the image plane are ok   and ok  . We then see 

from (42) that the intersection point of   and the image plane has coordinates 

 f f o o0 , sin ( )Z       (44) 
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7. Image of the dipole 

A single field line may not be directly observable by a detector. Usually, an image is formed 

on an image plane, and the intensity distribution over the plane is determined by a bundle 

of field lines that hit the plane. We shall take the plane of Fig. 3 as the image plane, and we 

consider the image formed on the plane by the radiation emitted by the circular dipole. 

Since or̂  is the unit normal on the plane, the intensity (power per unit area) at a point r on 

the plane is 

 o o
ˆ( ; , ) ( )I    r S r r  (45) 

The Poynting vector ( )S r  is evaluated at point r on the plane, with r written as in (41). The 

intensity depends on the position of the image plane, represented by or . This position is 

determined by its angular location o o( , )   and by its distance or  to the dipole. We shall 

write o o oq k r  for the dimensionless representation of this distance. The dependence on 

( , )   then gives the intensity distribution over the plane.  

With the Poynting vector given by (7) and (19), the intensity distribution can be evaluated 
immediately. We obtain (Shu et al., 2009) 

 

3

2 2o
o o o o o o2 2

o

1 1 1
( ; , ) 1 [( sin cos ) ] 1 sin

2

q
I I q

q q qq q
       

                    
r  , (46) 

 

Fig. 4. The figure shows a 3D view of the image plane, the coordinate system, and several 

field lines. The bold field line is the field line that runs into the direction o o( , )   and it 

intersects the image plane under 90º if the image plane is located in the far field. Angle   is 

the angle under which the point r on the image plane is seen from the location of the dipole.  
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where we have set 

 2 2 2
oq q      , (47) 

for the dimensionless distance between the point r in the image plane and the position of the 
dipole, and 

 o
o 2

o

3

8

P
I

r
  (48) 

The overall factor 3
o( / )q q  has two contributions. A factor of 2

o( / )q q  comes from the fact 

that ( )S r  is proportional to 21 /r  and a factor of o /q q  comes from the dot product of ( )S r  

with or̂  in (45). So this comes from the projection of ( )S r  onto the normal direction, and 

therefore this factor accounts for the fact that a field line crosses the image plane under an 

angle other than 90º. We see form Fig. 4 that o / cosq q  , with   the angle under which 

the point r on the image plane is seen from the location of the dipole. An intensity 

distribution 3
o o( / )I q q  would be a single peak at the origin of the image plane, and this 

peak is rotational symmetric around the normal vector ôr . The angular half-width at half 

maximum of the peak, as seen from the location of the dipole, would be 37º. The expression 

in braces in (46) accounts for the angular dependence of the emitted power and for the 

rotation of the field lines near the site of the dipole.  

 

Fig. 5. The location of the peak of the intensity distribution is p p( , )  , and p oq  . The 

solid line in the figure shows the dependence of  on o , and the dashed line is an 

approximation (Shu et al., 2009). 

It can be shown that the intensity distribution (46) has a single peak in the ( , )   plane, 

when the image plane is located in the far field ( o 1q  ). Let p p( , )   be the dimensionless 

coordinates of the position of the peak. If we write p oq  , then   depends on the 

observation angle o , and can be computed numerically. The result is shown in Fig. 5. Since 

p  scales with oq , the location of the peak in the   direction is a result of the angular 

distribution of the radiated power, and not of the rotation of the field lines near the dipole. 

More interesting is the location of the peak in the   direction. We obtain  
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 2 3/2 o
p 2 2

o o

2sin
(1 )

8(1 ) 5(sin cos )

 
   

  
  

 (49) 

This shift depends on o , and this dependence is shown in Fig. 6. It is independent of oq , 

and it is a direct result of the rotation of the field lines near the source. The shift is maximum 

for o / 2  , and the maximum shift is 2/3. Figure 7 shows the intensity distribution for 

this case.  

The field line that runs into the o o( , )   direction intersects the image plane at f 0   and 

 

Fig. 6. The figure shows the dependence of p  and f  on o .  

  

Fig. 7. The figure shows the intensity distribution over the image plane for o / 2  . The 

coordinates of the peak are p p( , ) (0, 2 / 3)    , and this represents the largest possible shift 

from the origin due to the rotation of the field lines.  
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 o
f 2

o

2sin

1 cos




 


 , (50) 

according to (44). The value of f  is also shown in Fig. 6, and we see that it does not 

coincide with the location of the maximum of the intensity distribution. The displacement of 

the field line is larger than the shift of the peak of the profile. So, the displacement is a good 

indicator of the position of the image, but due to subtle effects the position of the image is 

not exactly at the same location where the field line for this o o( , )   direction intersects the 

image plane. Figure 8 illustrates how a bundle of field lines forms the image, rather than the 

field line for this direction only.  

8. The difference profile 

The shift of the peak in Fig. 7 is of the same order of magnitude as the spatial extent of the 

dipole vortex, and it is independent of the distance between the dipole and the observation 

plane, provided the image plane is in the far field. An experimental observation of this shift 

would confirm the existence of the vortex near the source. In this fashion, a property of the 

near field is observable through a measurement in the far field. However, the magnitude of 

the shift is less than a wavelength, and in the visible region of the spectrum, this is 

extremely small. Any observation of this shift would also require a very precise calibration 

of the experimental setup, since the shift is measured with respect to the origin O’ of the 

image plane. Furthermore, the profile has a large background, as can be seen from Fig. 7, 

and the shape of the background depends on the observation angle o .  

  

Fig. 8. The figure shows several field lines for a dipole that rotates counterclockwise in the 

xy plane. The image plane here is located at o 4q  , and at    o o / 2 , so perpendicular 

to the y axis. The field line in the  o o( , )  direction intersects the image plane at 2x   and 

the maximum of the intensity profile is located at 2 / 3x  .  
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We see from Fig. 8 that the shift is due to the spiraling of the field lines. If we would reverse 

the rotation direction of the dipole, by reversing the helicity of the driving laser, the peak in 

the profile would move to 0x   in Fig. 8, and the background would remain approximately 

the same. When changing the direction of rotation of the dipole, expression (46) for the 

intensity remains the same, except that the term with osin   picks up a minus sign. We 

therefore introduce the difference profile I  as the intensity from (46) minus the same 

intensity for the radiation emitted by a dipole which rotates in the reverse direction. We 

then find (Li & Arnoldus, 2010a) 

 o o4 2

1
( ; , ) 1 sinI

q q

   
 

     
 

r  , (51) 

where 

 
2

o o3

4

P k


  (52) 

In (51), q is given by (47), so we see that I  depends on oq ,   and  . The dependence on 

the observation angle o  only enters through the overall factor osin . For a given o , the  

    

(a)                                                              (b) 

Fig. 9. The figure on the left shows a 3D view of the intensity difference profile for o 20q  , 

and the figure on the right shows the profile as a function of  . The extrema have an 

angular location of 30   . 

difference profile in the image plane is a function of   and  , with oq  fixed. It is easily 

verified from (51) that I  has two extrema on the   axis, and since I  is antisymmetric in 

 , there is a maximum and a minimum. This difference profile is shown in Fig. 9 for 

o 20q  . The coordinates of the extrema are  

 o
e

3

q
    , (53) 
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for o 1q  , e.g., in the far field. The location of the peak in Fig. 7 is at 2 / 3   , and this is 

a displacement of about one-tenth of a wavelength with respect to O’. The extrema of the 

difference profile are proportional to oq , and therefore these extrema are located at 

macroscopic distances from O’. As viewed from the dipole, they appear under an angle of 

30   , as follows from (53). Therefore, the extrema in the difference profile are a 

macroscopic feature of the intensity distribution. They appear in the far field due to the 

rotation of the field lines in the near field. Even though the vortex is of microscopic 

dimension, the location of the peaks in I  is macroscopic. This opens the possibility to 

observe the dipole vortex through a measurement in the far field. Such an experiment was 

performed recently (Haefner et al., 2009). The small particles were polystyrene spheres with 

a diameter of 4.6 m, the laser light had a wavelength of 532 nm and the observation angle 

was o 90   . The results of the experiment were in good agreement with Fig. 9(b).  

9. Linear dipole in a medium 

So far we have considered the radiation emitted by a dipole in free space. We shall now 

consider the effect of an embedding medium with relative permittivity r  and relative 

permeability r , both of which are complex in general. When a plane electromagnetic wave 

travels through a material, say in the positive z direction, then the magnitude of the 

Poynting vector decays exponentially along the direction of propagation. This magnitude is 

proportional to oexp( 2 Im )k z n , so energy is dissipated when the imaginary part of the 

index of refraction is finite. Since the field lines of the Poynting vector are determined by the 

direction of ( )S r , and not its magnitude, the damping by the material does not affect the 

field lines of the Poynting vector (which are straight lines, parallel to the z axis, for this case). 

Let us now consider a linear dipole, oscillating along the z axis. In free space, the Poynting 

vector is given by (16), and the field lines are straight lines, coming out of the dipole, as 

shown in Fig. 1(a). One may expect that the result of damping by the medium is a 

diminished power flow in the radially outward direction, but with a field line picture that is 

the same as in Fig. 1(a). This reduced power flow was already split off in (7) as the factor 

exp( 2 Im )q n . We shall now show for dipole radiation the result of the damping is far more 

dramatic.  

When we set zu e  in (8), we obtain for the Poynting vector 

2

r

ˆ( ) sin Re 1
n i

nq



  

   
   

σ q r  

 

2

2
r2

1
ˆ1 [ (1 3cos ) 2 cos ]Im

| |
z

i

nqn q
     r e  (54) 

For a dipole in free space, this simplifies to 2ˆ( ) sin σ q r , giving field lines that run radially 

outward. When the dipole is embedded in a medium, this gets multiplied by Re[...]. It can be 

shown that this factor is positive (unless r/n   is imaginary, which we shall not consider 

here), and therefore this would still give field lines that run radially outward. Furthermore, 
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in the far field the second line in (54) vanishes, and we have 2
r

ˆ( ) sin Re( / )n σ q r . So, in 

the far field, the field lines run approximately radially outward. When the imaginary part of 

r  is non-zero, the second line of (54) contributes to the Poynting vector. This term 

dominates in the near field, where q is small, and it has a part which contains ze . This part 

is responsible for a deviation of the field lines from the radially outgoing pattern. Since this 

part only contributes when rIm 0  , any deviation from the radial pattern is due to 

damping.  

The vector field ( )σ q  from (54) is rotationally symmetric around the z axis and reflection 

symmetric in the xy plane. Therefore we only need to consider the field lines in the first 

quadrant of the yz plane. In this quadrant, cos  is positive, and therefore the part of ( )σ q  

containing ze  is in the positive z direction. As a result, the field lines will bend away from 

the radial direction, and upward. The factor in square brackets in (54) is 

 2 2ˆ(1 3cos ) 2 cos sin [ (1 3cos ) 3 sin cos ]z y z         r e e e  , (55) 

from which we see that the y component vanishes for cos 1 / 3  , so 54.7   . Therefore, 

when   equals 54.7º, the part of the Poynting vector that contains rIm  is in the positive z 

direction. Consequently, the field lines in the near field cross the line 54.7    in a vertical, 

upward direction. Furthermore, for field points with a smaller angle  , the y component of 

( )σ q  is negative, and this means that the field line through such a point is headed towards 

the z axis. At the z axis we have 0  , and it follows from (55) that the z component 

vanishes, relative to the y component, and therefore each field line in the near field 

approaches the z axis under 90º. The resulting field line pattern is illustrated in Fig. 10.  

  

Fig. 10. The figure shows field lines of the Poynting vector for a dipole oscillating along the z 

axis and embedded in a material with r 1.7 0.06i    and r 1  . These are the values for 

water at 3 μm . The index of refraction is 1.3 0.023n i  . 
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Interestingly, we see that very close to the dipole some field lines form semiloops. The 
energy that flows along such a semiloop comes out of the dipole and is then entirely 
dissipated by the material. The field line ends at the z axis. A more careful analysis (Li et al., 
2011a) shows that all field lines start off horizontally, so along the xy plane. Therefore, all 
energy is initially emitted along the xy plane. Some field lines form semiloops and some run 
to the far field where they eventually run approximately in the radial direction. This 
situation is in sharp contrast to the emission in free space, where the energy is emitted in all 
directions (except along the z axis), as shown in Fig. 1(a). Another remarkable difference is 
the near the z axis all field lines approach the z axis under 90º, whereas for emission in free 
space the field lines near the z axis run parallel to the z axis.  

When a linear dipole is embedded in a medium, the field lines of energy flow are curves, 
rather than straight lines, when the imaginary part of the relative permittivity is finite. 
Because of the damping, the energy flow is redistributed in the material. The effect of the 
dissipation is not only a weakening of the power transported along a field line, as for a 
plane wave, but the absorption during propagation results in a dramatic change in the 
direction of power flow in the near field.  

10. Circular dipole in a medium 

Let us now consider a rotating dipole moment, embedded in a medium. With u given by 
(17), the Poynting vector (8) becomes 

  21
2

r

ˆ( ) 1 sin Re 1
n i

nq



  

    
   

σ q r   

   
2

21 1
r r2 2 2

1
ˆ1 1 sin sin(2 ) Im (sin )Re

| |

i

nqn q
             

r e e  (56) 

The right-hand side of the first line of (56) is proportional to r̂ . This is the leading term in 

the far field, so far from the dipole the field lines run approximately in the radially outward 

direction. The term on the second line of (56) has a part proportional to r(sin )Re  e , and if 

the imaginary part of r  is zero, this is the only additional term. In that case, the Poynting 

vector has no e  component, and therefore   is constant along a field line, according to 

(12). Consequently, a field line lies on a cone around the z axis, as in Fig. 1(b) for r 1  . 

When there is damping in the material due to the imaginary part of r , the vector ( )σ q  has 

an e  component. This will lead to a redirection of the field lines, and hence the field lines 

will not lie on a cone anymore. In other words, the flow of energy will be redistributed due 

to the damping, just like in the previous section.  

The field line equations (11)-(13) become with (56) 

 d
( , )

d

q
g q

u
  , (57) 

 
2

r2 2

d 1
1 sin(2 )Im

d 2| |

i

u nqn q

     , (58) 
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2

r2 2

d 1
1 Re

d | |

i

u nqn q

    , (59) 

with 

  
2

21
r2 2

r

1
( , ) 1 sin Re 1 1 Im

| |

n i i
g q

nq nqn q
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

           
     

 (60) 

A field line runs into the direction of increasing u. Since rIm 0  , the function ( , )g q   is 

positive, and it then follows from (57) that q increases without bounds along a field line. 

Therefore, field lines start at the dipole, and run away to the far field. For the linear dipole, 

some field lines form semiloops, as seen in Fig. 10, but for a circular dipole this can not 

happen. For q large, the right-hand sides of (58) and (59) vanish, and therefore angles   and 

  for points on a field line approach the constant values o  and o , just like in section 4 for 

the circular dipole in free space. Therefore, field lines approach asymptotically a straight line 

 , as illustrated in Fig. 11.  

 

Fig. 11. Two field lines of the Poynting vector for a rotating dipole moment, embedded in a 

material with r 1 0.2i    and r 1  . Field lines approach asymptotically a straight line, 

and this gives rise to a virtual displacement dq  of the source.  

10.1 Rotation of the field lines 

Angle   is the angle around the z axis, and we see from (59) that d /du  is positive when 

rRe  is positive. Then   increases along a field line, and the field line swirls around the z 

axis in the counterclockwise direction when viewed down the z axis. However, when rRe  

is negative, angle   decreases along a field line, and the field line rotates clockwise around 

the z axis. In this case, the direction of rotation of the field lines is opposite to the direction of 

rotation of the dipole moment. A material with rRe 0   (and r 1  ) is metallic, and the 
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index of refraction is approximately imaginary. We see from (7) that this gives a very strong 

damping in the medium, and therefore hardly any radiation will be emitted. However, for 

materials known as double negative metamaterials the real part of the permeability is also 

negative, and then the index of refraction becomes approximately real (and negative). In 

that case the material is transparent, and the dipole radiation can propagate away from the 

site of the source with little damping. Among the many peculiar features of these 

metamaterials, this reversal of rotation of the dipole vortex is certainly noteworthy (Li & 

Arnoldus, 2010c). 

Because q increases monotonically along a field line, we can consider q as the independent 

variable rather than u. We then find from (57)-(59) 

 

2

r2 2

d 1 1
1 sin(2 )Im

d ( , ) 2| |

i

q g q nqn q

  


   , (61) 

 

2

r2 2

d 1 1
1 Re

d ( , )| |

i

q g q nqn q

 


   (62) 

Let us now consider the solution for q small. For rIm 0   we see from (61) that   is 

constant, and so a field line lies on a cone. Then we expand the right-hand side of (62) for q 

small, and integrate. This yields 

 
 
 
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1 / , Im 0
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1 / , Im 0

O q
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O q


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

 (63) 

For 0q  , the value of ( )q  goes to   or   very quickly, and this leads to a large 

number of rotations of a field line around the z axis, as can be seen in Fig. 1(b). For rIm 0   

we find in a similar way 

 

2
ln (1) , 0

( )
1

ln (1) , 0

q O z

q

q O z





   
  


 , (64) 

where we have set 

 r

r

Im

Re




  (65) 

For rIm 0  , the approach of ( )q  to   is logarithmic, so much slower than for the case 

rIm 0  . Consequently, the windings around the z axis are much thinner than in Fig. 1(b). 

Due to the damping, it appears as if the field lines wind around the z axis only a few times, 

as can be seen in Figs. 11 and 12.  
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(a)                                                                   (b) 

Fig. 12. The figure on the left shows two field lines of the Poynting vector for r 1 0.1i     

and r 1  . We see that the direction of rotation is reversed, as compared to the direction of 

rotation in Fig. 1(b). The figure on the right shows two field lines of the Poynting vector for 

r 1 0.07i    and r 1  . The field lines swirl around on a funnel surface, rather than a 

cone.  

10.2 The funnel vortex 

When rIm 0  , field lines lie on a cone, as in Fig. 1(b), and they are very dense near the 

location of the dipole. We see from Figs. 11 and 12 that when rIm 0   the field lines are not 

only less dense near the source, but they also do not lie on a cone anymore. We see from the 

figures that due to the damping the field lines now lie on a funnel-shape surface. It follows 

from (62) that   increases or decreases monotonically along a field line. We shall now 

consider   as the independent parameter, and we consider   to be a function of  . From 

(61) and (62) we then find 

 1
2

d
sin(2 )

d

  

  . (66) 

The solution of this equation is 

 i( )
itan tane     , (67) 

with i i( , )   coordinates of the initial point. We now consider again the behavior of a field 

line for 0q  , when rIm 0  . It follows from (64) that     for 0  , and to   for 

0  , in the limit 0q  . Therefore,    in both cases, and so tan 0   for 0q  . If 

the initial point is in the region 0z  , so i0 / 2   , this implies that 0   for 0q  . 

Similarly, if i/ 2     we have   . For an initial point in the xy plane we have 

i / 2  , and it follows from (58) that then / 2   for all points along the field line. 
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Therefore, the field line lies in the xy plane. It follows from (64) and (67) that tan ( )O q   for 

i / 2  . Consequently, we have for 0q    

 

( ) , 0

( ) / 2 , 0

( ) , 0

O q z

q z

O q z

 



 
  

 (68) 

It follows from (68) that 0  , / 2   or    for 0q  . Because the radiated energy is 

emitted along a field line, we come to the remarkable conclusion that due to the damping all 

energy is emitted along the z axis or along the xy plane, and this is illustrated in Fig. 12(a). 

This is in sharp contrast to the situation for rIm 0  , because then field lines lie on any 

cone around the z axis. In that case, the energy is emitted into the direction o , with o  the 

angle of the cone.  

10.3 The displacement 

As shown in Fig. 11, a field line approaches asymptotically a straight line   in the far field. 

The field line runs in the o o( , )   direction, but the line   does not go through the origin of 

coordinates. In order to find the line  , we expand the right-hand sides of (61) and (62) in a 

series in 1 /q , and integrate the result. We then obtain 

 o
o o r

sin(2 )
( ) ( ) Im ...

2
q Z

q

       , (69) 

 o o r
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where 
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
 (71) 

Along similar steps as in section 5, we now find  

 o f
ˆ: t q r q  , (72) 

with 

 
o of o o r o rsin ( )[ Re( ) cos Im( )]Z        q e e  (73) 

Vector fq  is perpendicular to or̂ , so it is a vector in the image plane. It represents the 

displacement in the far field, and it corresponds to the intersection of   with the image 

plane, as in Fig. 3. For a dipole in free space, the virtual displacement in the xy plane, dq , is 

the same as the displacement fq  of a field line in the far field. With damping, this is not the 

case anymore. The intersection of   with the xy plane is now found to be 
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 o od o o r rsin ( )[ Re( ) Im( )]Z       q e e  , (74) 

with 

 o o ocos sinx y   e e e  , (75) 

the radially outward unit vector in the xy plane. The magnitude of the displacement is 

 
o

d 2
r r o

2sin

| |Re( / )(1 cos )
q

n


  


  , (76) 

which generalizes (38). In free space, the maximum value of dq  is 2, and this occurs for 

o / 2  . For a dipole embedded in a material, the factor rRe( / )n   in the denominator 

can become small, and this would give a large dq . This could happen, for instance, for 

r 1   and r  approximately negative. Then n is approximately imaginary, and the 

displacement is very large.  

11. Linear dipole near a mirror 

We have studied the field lines of energy flow for an electric dipole with a linear and a 

rotating dipole moment, both in free space and in an embedding medium. In this section we 

shall consider the effect of the presence of a boundary. Let the dipole be located on the z 

axis, a distance H above a mirror. The surface of the mirror is taken as the xy plane. We shall 

consider a linear dipole, oscillating under an angle   with the z axis, so 

 sin cosy z  u e e  (77) 

In the region 0z   the field is identical to the field of the dipole plus the field of its mirror 

image (which is the reflected field at the interface). The mirror dipole is located a distance H 

below the xy plane, and it has a dipole moment represented by 

 
im sin cosy z   u e e  (78) 

The setup is shown in Fig. 13. Let 1r  be the location of a field point, measured from the 

location of the dipole, and 2r  be the same field point but measured from the image dipole. 

The electric and magnetic field amplitudes are then given by (4) and (5) with r  replaced 

by 1r , and for the amplitudes of the image fields we replace r  by 2r  and u  by imu . The 

Poynting vector can then be constructed, and field lines can be drawn with the method 

outlined in section 3 (Li & Arnoldus, 2010b). Figure 14 shows the field lines for a 

perpendicular ( 0  ) and a parallel ( / 2  ) dipole, both for o 2h k H   . For these 

cases, the field line patterns are rotationally symmetric around the z axis. Without the 

interface, the field lines are straight, as in Fig. 1(a). For the perpendicular dipole, Fig. 

14(a), the field lines are more or less straight near the dipole. The field lines that run 
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towards the mirror bend at the mirror, and then run off more or less horizontally. For the 

parallel dipole, Fig. 14(b), the pattern is much more complex. We see that singularities 

appear, which are indicated by small white circles. At such a singularity the Poynting 

vector vanishes. We see from the figure that several field lines end at a singularity, and 

other field lines bend such as to avoid the singularity. The case of 45    is shown in Fig. 

15. The field line pattern is not rotationally symmetric around the z axis anymore. At the 

right of the z axis, the pattern is similar to Fig. 14(a). On the left of the z axis we see 

numerous singularities, and we now also observe the appearance of three optical vortices 

in the energy flow pattern. The points labeled a, b and c in the figure are singularities at 

the centers of the vortices. At the other singularities, except for d, field lines abruptly 

change direction. It is also interesting to see that there are field lines which start at point a 

and end at point b. These field lines represent a local energy flow where the energy does 

not directly originate from the location of the dipole. At point e, some field lines seem to 

collide, and this leads to a singularity. At singularities f, g and h, field lines split in two 

directions.  

 

Fig. 13. Setup of the dipole near the mirror. 

The vortices and singularities in Figs. (14) and (15) are a result of interference between the 

radiation that is emitted by the dipole and the radiation that is reflected off the surface. 

Close to the dipole, the field that is emitted directly by the dipole is much stronger than the 

reflected field, and it may seem that therefore this field dominates the energy flow pattern. 
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(a)                                                                    (b) 

Fig. 14. The figure on the left shows the field line pattern for a dipole oscillating 
perpendicular the the surface. Field lines that are headed towards the surface bend when 
they come close to the surface. For the figure on the right, the dipole oscillates parallel to the 
surface, and we see the appearance of singularities. The distance between the dipole and the 

interface is one wavelength for both figures ( 2h  ).  

 

Fig. 15. Field line pattern for a dipole oscillating under 45º with the z axis, and for 2h  . 

Numerous singularities are present, and three vortices appear.  
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 In other words, we may expect that close to the dipole the field lines are straight lines, as in 

Fig. 1(a), and that away from the dipole interference sets in, leading to complicated flow 

patterns as in Figs. (14) and (15). We shall now show that this is not the case. In order to 

study the emission of the radiation, we consider a region close to the dipole. We assume 

1 1q   and 1q h . This means that we consider field points that are close to the dipole, 

compared to a wavelength, and we assume that the distance between the mirror and the 

dipole is much larger than the distance between the dipole and the field point. The 

expression for the Poynting vector can be expanded in a series in 1q , and we obtain 

 2 2
1 1

1

sin
ˆ ˆ( ) ( )[(3cos 1) ' 3cos ( ') ] sin (1)v h O

q

        σ q u q u u q  (79) 

Here,  is the angle between u and 1q̂ , vector 'u  is defined as 

 ' cos siny z   u e e  , (80) 

and 

 
1 sin(2 )

( ) cos(2 )
2 2

h
v h h

h h

    
 (81) 

Without the mirror, this would be 2
1

ˆ( ) sin σ q q , and this is exact at all distances. The 

corresponding field lines are straight, as in Fig. 1(b). Due to interference, the first term in  

 

Fig. 16. Field line pattern close to the dipole for 45    and 2h  . 
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Fig. 17. Field line pattern close to the dipole for 45    and 2h  , in 3D. It appears that 

the radiation is emitted as a set of four vortices. 

(79) appears, and this term is proportional to 11 /q . Close to the dipole, this term 

dominates. The field line picture close to the dipole is shown in Fig. 16. We see that some 

field lines are closed loops, and a singularity appears very close to the dipole. When we 

graph the field lines in 3D, we obtain the result shown in Fig. 17. In front of the yz plane, 

there are two vortices which come out of the dipole. Two other vortices are behind the yz 

plane, but these are not shown in the figure. The dashed curves in the figure are closed 

loops from Fig. 16 in the yz plane. Therefore, radiation is emitted as a set of four vortices, 

and this is a result of interference between the directly emitted radiation and the reflected 

field by the mirror. These vortices are present no matter the distance between the dipole and 

the mirror, but the spatial extent of the vortices diminishes with distance.  

12. Conclusions 

Energy in an electromagnetic field flows along the field lines of the Poynting vector. We 

have considered the radiation emitted by an electric dipole. For a linear dipole in free space, 

the field lines are straight lines coming out of the dipole. When the dipole moment rotates in 

the xy plane, the field lines are curves that lie on cones around the z axis. Close to the source, 

the field lines wind around the z axis a large number of times, and at larger distances, in the 

far field, the field lines approach asymptotically straight lines. Such a line is displaced, as 

compared to a line that would start at the location of the dipole, and this gives a virtual 

displacement of the position of the source in the xy plane. Also in the far field, this line is 

displaced as compared with the radially outward direction, and this gives rise to a shift of 

the image of the dipole when projected onto an observation plane. When the dipole is 

embedded in a medium, the damping in the material gives rise to a redistribution of the 

power flow, as compared to emission in free space. For a linear dipole, the field lines are not 
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straight anymore, and for a circular dipole a field line has a funnel appearance, rather than 

lying on a cone. Also the spacing of the field lines near the source becomes much less dense 

due to the damping. It is also shown that when the real part of the permittivity is negative, 

the field lines reverse in rotation direction, and the flow of energy counterrotates the 

rotation direction of the dipole. The virtual displacement of the location of the source and 

the displacement of the image in the far field can be much larger than in free space. When 

the dipole is located near the surface of a mirror, a host of new phenomena appear due to 

the interference of the dipole radiation with the reflected radiation by the mirror. In the flow 

field, singularities and vortices appear in the neighborhood of the dipole and in between the 

dipole and the mirror. For a linear dipole in free space, the field lines come straight out of 

the dipole, but when this dipole is located near a mirror, the mechanism of emission is 

drastically altered. In the oscillation plane of the dipole, all radiation is emitted in a direction 

perpendicular to the dipole moment, and some field lines form closed loops. Energy flowing 

along these field lines returns to the dipole. For emission off this plane, the radiation is 

emitted as a set of four vortices, emanating from the dipole.  
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