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1. introduction

Recently, there are many studies regarding to MR (Mixed Reality) and AR (Augmented
Reality)(ARtoolkit; Fudono et al. (2005); Ichikari et al. (2006)). Many research efforts have
also been made for NVE (Networked Virtual Environment) and CSCW (Computer Supported
Cooperative Work) (Fujimoto & Ishibashi (2005); Yang et al. (2010)). These technologies allow
remote users to participate in social activities such as shopping, exhibition, sports, and game
which are held in real space. However, VE requires high performance servers and high speed
networks for supporting massively many users. AR and MR often require special devices
(e.g. a motion capturing suit, an immersive display, a camera array, and so on) for capturing
movements of users in a real world and reflecting them into a virtual space. In order to utilize
VE and AR/MR for various purposes, a technology for realizing these techniques with low
cost is essential. In our target application systems, the data amount exchanged between users
is much bigger than that in typical network games, because we would like to capture and
reflect more realistic and complex movement of objects for smooth interaction. However,
we should notice that the available communication bandwidth in the Internet is limited. We
introduce a DVE (Distributed Virtual Environment) mechanism to solve these problems. In
order to realize the DVE mechanism, the following five criteria should be satisfied: (1) real
and virtual users share a common virtual space; (2) users can freely change their positions
and directions, and the changes are instantly reflected in other users’ views; (3) each user
can introduce objects into the shared space, and make actions, such as pushing and holding
objects, and reaction should be reflected in other users’ views; (4) the required apparatuses
should not be special nor expensive; and (5) a massive number of objects can exist in the
shared space.

There are some studies on communication architectures for MMOG (Hu & Liao (2004);
Vleeschauwer et al. (2005); Yu & Vuong (2005)) and NVEs for remote cooperation (Chertov
& Fahmy (2006); Eraslan et al. (2003)). Some of these existing studies realize scalability on
sharing virtual space between many users using P2P technologies. However, they allow
sharing virtual space and objects among only virtual users. On the other hand, the existing
MR and AR technologies, the criteria (1) to (3) can be satisfied. However, they require special
devices, servers and networks, and thus satisfying the criteria (4) and (5) is difficult.
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2 Will-be-set-by-IN-TECH

In this chapter, we propose a framework named FAIRVIEW (Yamamoto et al. (2007)) which
realizes smooth cooperation and interaction between real and virtual users satisfying all the
criteria (1) to (5) using inexpensive devices off the shelf. To satisfy the criteria (1) to (3),
FAIRVEIEW produces a hybrid shared space by overlapping a virtual space and a real space,
and provides a mechanism for allowing the virtual and real users to observe each other.
To satisfy the criterion (4), we suppose that virtual users use ordinary PCs with an internet
connection, and that real users use wearable computers with HMDs (head mount display)
or smartphones, with internet connection via wireless LAN. In FAIRVIEW, the information
regarding to orientations and positions of real objects (called AR information, hereafter) are
measured at short intervals using an existing AR measurement tool. The information is
exchanged among user terminals, and objects are displayed as 3D graphics on the display
of the virtual user’s terminal. To achieve the criterion (5), we propose a mechanism for
delivering AR information as well as action/reaction to the objects in real time (which we
call AR event delivery mechanism, hereafter) to realize smooth cooperation among real and
virtual users. Here, information of action/reaction consists of information of attribute (the
color or the form, etc), action type(push, pull, etc), action strength and action direction. In
addition, we define the AR event that consists of AR information and the information of
action/reaction. The AR event delivery mechanism includes a QoS adaptation mechanism for
controlling the intervals of transferring AR events between users so that the total transmission
rates will not exceed the limit of available bandwidth. The adaptation mechanism decides the
transfer intervals according to importance of each object for each user, which is determined
automatically according to the distance and position of the object in the user’s view.

To evaluate the proposed mechanism, we analyzed the required bandwidths and investigated
the effectiveness of our QoS adaptation mechanism under some configurations with different
numbers of objects. In addition, in the real space, users may not get sufficient efficacy of QoS
adaptation because users share wireless bandwidth in a single AP coverage area. However,
this problem can be improved by introducing multiple APs with appropriate AP selection.
Therefore, we conducted computer simulation for measuring improvement of QoS adaptation
with strategic AP selection when there are multiple APs in the real space. Furthermore, in
the real-time interaction, users often do the sudden action, such as turn around. Therefore,
to evaluate tolerance of our QoS adaptation mechanism to the sudden action of users, we
measured the delay until reflecting update frequency of objects when the user’s view changes,
by using a prototype of FAIRVIEW. Simultaneously, to evaluate whether FAIRVIEW can
achieve sufficiently short delays for real-time interaction, we measured the end-to-end AR
event delivery delays through the AR event delivery mechanism in LAN. As a result, we
confirmed that the proposed mechanism realizes smooth interaction involving a large number
of real and virtual users/objects on an ordinary wireless LAN and internet environment.

2. Related work

Studies regarding to NVE and DVE, can be roughly categorized into two types: one is aiming
at reducing traffic of game information and keeping scalability by efficiently managing Area
of Interest (AOI) of users, and another is aiming at efficiently using computation and network
resources.

In Hu & Liao (2004); Vleeschauwer et al. (2005); Yu & Vuong (2005), efficient AOI (Area of
Interest) management methods are proposed. In Hu & Liao (2004), game space is dynamically
divided based on Voronoi diagram for direct communication among players in a same
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QoS Adaptation for Realizing Interaction between Virtual and Real Worlds through Wireless LAN 3

fragment. In Vleeschauwer et al. (2005), the space is divided into small areas called micro cells.
To distribute the load for processing events among multiple servers, the regions managed
by each server are dynamically changed. In Yu & Vuong (2005), the shared virtual space is
divided into honeycomb regions, and a mechanism based on Pastry (Rowstron & Druschel
(2001)) is used to allow each user to receive information for players and objects in the player’s
AOI.

Although these existing NVEs enable efficient information exchange among virtual users, it
is difficult to apply them to the mixed space of real and virtual worlds which requires a large
amount of information exchange in real time on resource-limited wireless network, which is
the target environment of FAIRVIEW.

In Chertov & Fahmy (2006); Eraslan et al. (2003), a load distribution and a QoS adaptation
mechanisms for DVEs are proposed, respectively. In Chertov & Fahmy (2006), in order to cope
with so called area boundary problem (inconsistency caused by neighboring areas managed by
different servers), the whole shared space is managed by each of game servers, and game
processing tasks are flexibly distributed among the servers. Unfortunately, this method
supposes high performance servers and high-speed networks and treats only virtual users.
In Eraslan et al. (2003), an IPv6-based network architecture called VESIR-6 is proposed for
realizing a large-scale DVE where users can share a 3D virtual space and objects. Aiming at
efficient utilization of network resources, VESIR-6 uses multicast for delivering object state
updates to users, anycast for load distribution among servers, and IntServ/DiffServ-based
QoS adaptation mechanism for regulating per-flow transmission rate. However, VESIR-6 does
not suppose wireless network environment which is necessary for interaction between real
and virtual users. Also, delivery of object state updates is managed only by joining/leaving
the corresponding multicast group. Therefore, VESIR-6 cannot provide fine-grain QoS
adaptation like the proposed method.

The most related study to our work is tele-immersion which captures the whole environment
and reproduces it at geographically distant location. TEEVE (Yang et al. (2010)) displays 3D
live visuals from each user’s view in real-time, and constructs an environment for cooperative
working. However, expensive and specialized devices and infrastructures such as 3D cameras
and broadband network environments are needed to construct tele-immersion environment.

3. Overview of FAIRVIEW

This section overviews the functions of FAIRVIEW and presents example applications, then
describes the target environment and the basic ideas for implementation.

3.1 Functions of FAIRVIEW

FAIRVIEW overlaps real space and virtual spaces, and provides the environment where users
in real space (called real users) and users in virtual spaces (called virtual users) can interact as
if they were in the same space. We call the overlapped space hybrid space 1 in Fig. 1. The
main functions of FAIRVIEW are as follows: Function (1) Providing the same view to real/virtual
users: Virtual users can change their positions in virtual space using keyboards and mice

1 FAIRVIEW is also capable of overlapping more than one distant real spaces and provides the same view
for the users in those spaces. For simplicity, we focus on interaction between the users in real space and
virtual space.

103QoS Adaptation for Realizing Interaction 
Between Virtual and Real Worlds Through Wireless LAN

www.intechopen.com



4 Will-be-set-by-IN-TECH

Fig. 1. Hybrid Space Produced by FAIRVIEW

like ordinary 3D first person shooting games. Real users can ordinarily move using their
feet in real space. The users see objects in both virtual and real spaces according to their
positions/directions. Function (2) Voice conversation among users: Users can talk with each
other using their voice. The user’s voice can be heard according to the user’s position. This
function can be realized with the technique in Yasumoto & Nahrstedt (2005). Function (3)
Object sharing: Real objects and virtual objects can be registered in (and also unregistered
from) the hybrid space. The registered objects can be seen by both virtual and real users. Users
themselves are also objects2. Shared objects can be seen by all users whose views include the
objects. We assume that 3D geometry data for the registered objects are prepared beforehand.
Function (4) Moving and bonding objects: Users can move neighboring objects. Virtual objects
can be moved by both real and virtual users, while real objects can be moved only by real
users. Movement of objects can be observed by other users. Two or more objects can be
bonded by specifying their relative positions. Bonded objects basically move together, but if a
user moves a virtual part of bonded objects made of real and virtual objects, the bonded object
is disengaged.

3.2 Applications of FAIRVIEW

We describe two example applications which are enriched by using the functions of
FAIRVIEW described above.

Virtual flea market In this application, real and virtual users trade goods as if they were in a
real market. Virtual users go shopping to a flea market in hybrid space. Real sellers register
their goods to hybrid space. Virtual buyers see what kinds of goods are sold from distance.
The sellers and buyers interact with each other via gestures and voice. The sellers show and
explain details of their goods to virtual users by rotating and moving the goods. This kind of
application includes exhibition, trade fair, and shopping center.

2 Unregistered real objects can also be seen by real users, but in this chapter we assume that all objects
are registered.
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Multiplayer game In this application, virtual users participate in a paintball wargame held in
real space. In paintball wargames, players possess airguns and targets, and shoot opponent
groups’ targets. Players whose targets are shot lose the game. Real players only need to
register airgun and target. The virtual users cooperate with other real or virtual users. Virtual
characters like a huge dinosaur can participate in the game. This kind of application includes
attractions in theme parks, events on a street corner.

3.3 Devices and network used in FAIRVIEW

Table 1 shows the list of necessary equipments for the users. Real users use wireless small
computing devices such as smartphones, and HMD with which the real view can be seen
as the background of virtual view. These devices should not hinder real users’ movements.
The equipments also include positioning devices such as GPS receiver, sensors to detect
position and direction, and audio input/output devices. We assume that inexpensive devices
are available for these purposes. We use webcams and dedicated software like ARtoolkit
(ARtoolkit) for positioning and detecting orientations of objects. Virtual users use ordinary
PCs for FAIRVIEW.

Type Computer Display Network Other

Real User PC/Smartphone HMD/etc WiFi/etc Sensor, Webcam
Virtual User PC LCD/etc Internet Mouse/etc

Table 1. User Equipment

3.4 Basic ideas to implement FAIRVIEW

To realize an application using AR technology, we considered how the views seen by
users are rendered inexpensively. In TEEVE (Yang et al. (2010)), images captured by 3D
multi-cameras are processed and transferred through Internet2. Since we are aiming at
inexpensively implementing the functions, we decided to measure AR information using
inexpensive sensors. To realize this method, we have to resolve the following three problems:
(i) measuring AR information accurately; (ii) transferring the measured AR information in
real time; and (iii) rendering the objects.

For resolving the problem (i), we use GPS receiver if a user is in outdoor space. If a user
is in indoor space, we use an indoor positioning method such as a method using wireless
LAN access points (Kitasuka et al. (2003)), a method using speakers and microphones (Scott
& Dragovic (2005)), Place Lab (Lab.), and Weavy (Kourogi & Kurata (2003)). The orientation
of an object can be measured using rotational and translational acceleration sensors, methods
based on image processing such as ARtoolkit (ARtoolkit) or the method in Fudono et al.
(2005). To use the methods based on image processing, stickers with special patterns
printed are put on objects, and the orientation and position of the objects can be obtained
instantaneously from an image captured by a web camera. This kind of methods have
cost advantage. In FAIRVIEW, AR information can be measured by combining the methods
described above.

For the problem (iii), we assume that users have terminals capable of rendering 3D graphics.
The problem (ii) is the main problem which we treat in this chapter. To resolve this problem,
we need a delivery mechanism with which AR information can be exchanged among wireless
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and wired users in real time. We call this mechanism AR event delivery mechanism. In
applications such as flea market or paintball wargame, hybrid space may have many objects
and bandwidth shortage can occur as the amount of exchanged AR information becomes
large. Therefore, we have to lower the frequency of delivering AR information. However,
if the frequency becomes too low, the user experience of interaction may be ruined. Therefore,
we propose a QoS adaptation mechanism which maximizes users’ satisfaction by prioritizing
transfer of AR information among objects based on relative position and orientation between
users and objects. As a solution, we present the AR event delivery mechanism in Sect. 4, and
the QoS adaptation mechanism in Sect. 5.

4. AR event delivery mechanism

notation definition

Real Space R

Virtual Space V
Hybrid Space H H = (R, V)
Real Objects RO RO = {ro1, ..., ron}
Virtual Objects VO VO = {vo1, ..., vom}
Objects o o ∈ RO ∪ VO

Real Users RU RU = {ru1, ..., rul}
Virtual Users VU VU = {vu1, ..., vuk}
Users u u ∈ RU ∪ VU

User Terminals node(u)
Real User Terminals RN RN = {node(u)|u ∈ RU}
Virtual User Terminals VN VN = {node(u)|u ∈ VU}
All Object AO AO = RO ∪ VO ∪ RU ∪ VU
Object including Users ao ao ∈ AO

AR Information AR(ao) AR(ao) = {pos, angle}
Attribute Information attribute attribute = 〈color, f orm, ...〉
Action action action = 〈type, direction, strength, ...〉,

type ∈ {push, pull, ...}
AR Events ARe(ao) ARe(ao) = (AR(ao), attribute, action)

Table 2. Definitions

This section describes details of the AR event delivery mechanism.

4.1 Notation

Let R and V be the target real space and the corresponding virtual space, respectively. Let
H = (R, V) be the hybrid space produced by overlapping R and V. We suppose that H is an
axis-aligned rectangle on x-y plane of 3D coordinate system. Let hvec = (1, 0, 0) and vvec =
(0, 0, 1) be the horizontal standard vector and the vertical standard vector of H, respectively.

Let RO = {ro1, ..., ron}, VO = {vo1, ..., vom}, RU = {ru1, ..., rul} and VU = {vu1, ..., vuk} be
the set of real objects in R, the set of virtual objects in V, the set of real users (i.e., mobile users)
and the set of virtual users (i.e., remote PC users), respectively. In addition, let AO be the set
of all objects including users, where each member object is denoted by ao ∈ AO.
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divide

hybrid space M sub
hybrid spaces

Fig. 2. Division of Shared Space

Note that RU ⊆ RO and VU ⊆ VO. Let node(u) be the user terminal of u for each user
u ∈ RU ∪ VU. RN = {node(u)|u ∈ RU} and VN = {node(u)|u ∈ VU} are the real user
terminals and the virtual user terminals, respectively.

For each object ao ∈ AO, let AR(ao) = (pos, angleH, angleV) be the AR information of ao,
where pos, angleH, and angleV are its position on or beyond H, the horizontal angle to hvec,
and the vertical angle to vvec, respectively. Each item of AR information is referred to by,
e.g., ao.pos. In addition, let ARe(ao) = (AR(ao), attribute, action) be the AE Event of ao,
where AR(ao) is the AR information of ao, attribute = 〈color, f orm, ...〉 is attribute information
such as color and so forth, and action = 〈type, direction, strength, ...〉 is action to other objects,
characterized by type ∈ {push, pull, ...}.

We suppose that each real user terminal in RN can measure its user’s AR information at a
sufficiently high frame rate, e.g., 60 times per second, with equipment explained in Sect. 3.
We also suppose that AR information of each real object ro except for users can be measured
by a user terminal in ro’s proximity with ARtoolkit and webcam.

4.2 Assumption on user communication

We suppose that the whole real space R is covered by only one AP connected to the Internet.
Therefore, each real user terminal in RN can communicate with any virtual user terminal in
VN.

Let BWAP be the available bandwidth between real user terminals and AP. Note that all
real user terminals share the bandwidth. For each vn ∈ VN, let bwAP(vn) be the available
bandwidth between vn and AP. For each vn ∈ VN and rn ∈ RN, let bw(vn, rn) be the available
bandwidth between vn and rn. Note that bw(vn, rn) = Min(BWAP, bwAP(vn)). For each pair
of virtual user nodes vn1, vn2 ∈ VN, let bw(vn1, vn2) be the available bandwidth between
vn1 and vn2.

4.3 AR event delivery mechanism

We choose some of the user terminals as server nodes to manage efficient AR events exchange.
In order to reduce processing and traffic load of each server node based on user’s AOI, we
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Fig. 3. Overlay Network for AR Event Delivery

divide the whole shared space H into small rectangular sub-areas, as shown in Fig. 2, and
assign a server node called area node to each sub-area. This is a similar approach to existing
P2P-based MMOG gaming architectures such as Yamamoto et al. (2005). Let anA be the area
node assigned to sub-area A.

The sub-area anA receives AR events of objects in A, and delivers the AR events to users (in
A and neighboring sub-areas) who are watching the objects.

In FAIRVIEW, since the network resource is tight due to wireless communication and
calculating the reaction of an object as a consequence of an action is heavy for a real user
terminal, we introduce new server node called bandwidth controller node (bwc-node).

One bwc-node is prepared for each virtual user terminal vn ∈ VN satisfying that bw(vn, anA)
is less than necessary traffic for AR event transmission or for the set of all real user terminals3.
Let bn(u) be the bwc-node for user u ∈ RU ∪ VU. Then bn(u) applies QoS adaptation to the
AR event stream between anA and node(u), by monitoring bw(bn(u), node(u)).

Consequently, we construct the overlay network per sub-area, consisting of an area node, N
object nodes, M user nodes, and M bwc-nodes, as shown in Fig. 3, where N and M are the
numbers of objects and users in the subarea, respectively. We will explain how these nodes
exchange AR events below.

User Node In FAIRVIEW, (1) a user u ∈ RU ∪ VU can watch other objects in its view, (2) u
can be watched by other users since u is also an object, and (3) u can take an action to other
objects.

For (1), node(u) measures u’s AR information continuously and if the information differs
from the last measurement, node(u) sends the information as AR event to the area node anA

(Fig. 3 (a)). For (2), node(u) receives the AR events of the objects in u’s view and draws

3 In FAIRVIEW, due to wireless bandwidth limitation, we restrict all real users to watching each virtual
object at the same framerate.
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the latest appearance of objects on display of node(u). To receive AR event, node(u) uses
publish/subscribe model (Tanenbaum & Steen (2002)). Once node(u) sends its AR event to
the area node anA, anA automatically identifies the objects in u’s view, and forwards the AR
events of the objects to node(u) via the bwc-node (Fig. 3 (b)(b’)). As shown in Fig. 3 (b’),
the real user terminals receive the AR events from the bwc-node assigned for real space R via
wireless AP by broadcast. For (3), when u takes an action to virtual object o, node(u) sends an
action event containing power and direction, to anA (Fig. 3 (c)).

Area Node For each sub-area A of the hybrid space H, a virtual user node is selected and
assigned to the area node. A virtual node with sufficient network and computation resources
is selected, e.g., by the lobby server when the application starts 4.

The area node anA manages the positions of the objects as well as the users’ view in the
sub-area A. When anA receives the AR events of all objects in A from the corresponding user
nodes and object nodes (Fig. 3 (c)), anA identifies the users who are watching part of other
sub-areas neighboring A, based on their views calculated from their AR events (e.g., pos and
angleH), and sends the AR events to the neighboring area nodes if needed. The sub-area anA

also receives the AR events of such users in other sub-areas from the neighboring area nodes.
Finally, anA sends the AR events of the objects in A to the user nodes via the corresponding
bwc-nodes.

Bandwidth Controller Node One bwc-node is assigned to each user node u, although one
node may serve as the bwc-nodes of multiple users. The bwc-node bn(u) monitors available
bandwidth to its associated user node node(u), and regulates transmission rates of AR event
streams.

4.4 The overall flow

The overall flow is as follows.

Step(1) User Node node(u) sends AR event ARe(u) to Area Node an. Then, when User Node
node(u) has the managerial responsibility of an object o, it acquires the AR information of
o, makes AR event ARe(o), and sends ARe(o) to an.

Step(2) Area Node an adds an importance to AR event ARe(ao) using the QoS adaptation
mechanism described in Sect. 5.

Step(3) Area Node an sends to Bandwidth Control Node bn, AR event ARe(ao) with the
importance.

Step(4) Bandwidth Control Node bn regularly redistributes bandwidth with the QoS
adaptation mechanism explained in Sect. 5 and decides update frequency of each AR event
ARe(ao).

Step(5) Bandwidth Control Node bn sends the set of AR events to User Node node(u) with
the update frequency defined in Step(4).

Step(6) User Node node(u) updates data of Hybrid Space H with the set of received AR
events.

Step(7) User Node node(u) draws Hybrid Space H with the updated data.

Step(8) returns to Step(1).

4 The node selection/replacement algorithm for area nodes and bwc-nodes are omitted due to the space
limitation. We use a similar technique to Yamamoto et al. (2005).
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Fig. 4. User’s View and Zones with Relative Importance

5. View-oriented QoS adaptation

The basic ideas of our QoS adaptation mechanism are as follows: (1) we decide relative
importance value of each object according to how important the object is for a user; and (2)
for each user, we regulate transmission rates of AR events of observable objects based on their
importance values so that the sum of transmission rates are less than the available bandwidth.

5.1 Decision of importance value

Let Watcher(o) be the set of users who can observe an object o in RO ∪ VO. The set of users
Watcher(o) is defined by

Watcher(o)
de f
=

{

{u|u ∈ RO ∪ VO, View(u) ∈ o.pos} (o ∈ VO)

{u|u ∈ VU, View(u) ∈ o.pos} (o ∈ RO)

Where View(u) is u’s view on hybrid space H, and represented by a half circle as shown in
Fig. 4.

For each object o in RO ∪ VO and each user u in Watcher(o), let Imp(o, u) be the importance
value of o for u. Like in the real world, the importance value Imp(o, u) should increase as the
distance between o and u is shorter and o is located nearer the center of u’s view. Therefore,
we define each user’s view as a half circle and divide it into 15 zones with five levels of
importance a, b, c, d and e, as shown in Fig. 4. Here, the objects located on zone a have the
highest importance, and the importance of objects on zones b, c, d and e decreases in this order.

5.2 Decision of framerates of AR events

The transmission rate of AR events for each object towards user u is decided based on the
ratio of its importance value to the sum of importance values of all objects in u’s view. The
available bandwidth is distributed among the objects, and the framerate of AR events for each
object is decided from the assigned transmission rate and the size of each AR event.
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QoS Adaptation for Realizing Interaction between Virtual and Real Worlds through Wireless LAN 11

As mentioned in Sect. 4, AR events of each object are delivered to each user node through the
corresponding bwc-node (see Fig. 3). The bwc-node drops packets of the AR events so that
the transmission rate does not exceed the assigned bandwidth.

We describe our view-oriented QoS adaptation mechanism using examples. The QoS
adaptation for AR event streams differs depending on the receiver type (i.e., virtual user or
real user). Thus, we give two examples in the following subsections.

5.2.1 QoS adaptation for virtual user

Suppose that a virtual user v ∈ VU is watching three objects o1, o2 and o3 in his view. In this
case, node(v) receives the AR events of those three objects via the bwc-node bnv ∈ VN (see
Fig. 3).

We assume that the available bandwidth between bnv and node(v) is 1Mbps. We also assume
that transmission rates for AR event streams of objects o1, o2 and o3 are 0.5 Mbps respectively,
that is, the sum of the streams is 1.5 Mbps. In this case, the available bandwidth (1 Mbps)
is distributed according to the importance values of objects o1, o2 and o3. Suppose that the
importance values of objects o1, o2, and o3 are 10, 25, and 15, respectively. As a result, portions

of bandwidth
10×1Mbps
10+25+15 = 0.2Mbps,

25×1Mbps
10+25+15 = 0.5Mbps, and

15×1Mbps
10+25+15 = 0.3Mbps are

assigned to the AR event streams, respectively. Based on this result, the bwc-node bnv controls
transmission of the AR event stream of each object by dropping some of the received packets.

5.2.2 QoS adaptation for real user

Suppose that a real user r ∈ RU is watching three virtual objects o1, o2 and o3 in his view.
In this case, node(r) receives the AR events of those three objects via wireless AP and the
bwc-node bnW ∈ VN (see Fig. 3).

In this case, we define the importance value Impr(o) of an virtual object o ∈ VO as
the sum of the importance rated by the users observing the object o, i.e., Impr(o) =
∑u∈Watcher(o)(Imp(o, u)). The framerate of AR events of each object is decided similarly to
the case in Sect. 5.2.1, and the bwc-node bnW applies the QoS adaptation to the AR event
streams to real users.

6. Experiments

In order to evaluate the proposed method, we conducted experiments on five items. First,
we measured the required bandwidth for application of users and objects (Sect.6.2). Second,
we measured the framerates at which users can watch the objects for two cases with and
without our QoS adaptation mechanism (Sect.6.3). Thirdly, we measured the improvement of
QoS adaptation with emulation in which users choose AP according to a strategy when there
are multiple APs (Sect.6.4). Fourth, we measured the delay necessary for changing update
frequency by QoS adaptation when the user’s view changes, under some configurations with
different numbers of objects using a prototype of FAIRVIEW (Sect.6.5). Finally, we measured
the end-to-end delay through AR event delivery mechanism using a prototype of FAIRVIEW
(Sect.6.5). Note that the experiments in Sect.6.2, 6.3 and 6.4 were emulations. The experiment
in Sect.6.5 was conducted on a testbed using a prototype of FAIRVIEW with LAN.

111QoS Adaptation for Realizing Interaction 
Between Virtual and Real Worlds Through Wireless LAN

www.intechopen.com



12 Will-be-set-by-IN-TECH

6.1 Configurations

Exp.6.2, 6.3 Exp.6.4 Exp.6.5

User Real 100 100 –

Virtual 100 – 1

Field Size (m2) 50×50 50×50 6×6– 120×120

the number of APs 1 2, 4 –

Bandwidth (Mbps) wired 10 – –

wireless 5 5 5

Virtual Objects 50– 5000 500– 2500 8– 1683

Packet Size 32 64 32– 64

Max update frequency ( f rame/sec) 60 60 30

Table 3. Experimental Configurations

We show the experimental configurations in Table 3. The sizes of virtual space V and real
space R are both 50 × 50 m. As user’s view in Fig. 4, we set the radius of a half circle to be
15m and divided the half circle equally so that the angle and the radius of each zone are 1/3
(i.e., π/3 and 5m), respectively. In this configuration, the average number of objects in each
user’s view is around 1– 2 when there are 50 objects in the whole space. In Fig. 4, zone c
exceeds in the number of objects compared with the zones a, b because zone c is the largest
in the gross floor area. Therefore, in zones a, b, there is not much advantage than in zone c
when we give 2 times importance sequentially backward from zone e. Hence, we give zones
a, b importance of 4 times sequentially from c backward. Thus, we assign the importance 64,
16, 4, 2, 1 to the zones a, b, c, d, e, respectively.

6.2 Required bandwidth for user terminals

The experimental configurations are shown in Table 3. The other setting is as follows. There
is one wireless AP whose radio range covers the whole real space R. The available wireless
bandwidth BWAP is shared among all real users. One area node and bwc-nodes are allocated
on PCs on fixed wired network. 100 real users, 100 virtual users, and n virtual objects are
placed on the positions decided at random in the hybrid shared space, changing n from 50 to
5000. The directions of the users are also set randomly. Each user terminal sends 60 packets of
AR events every second, and the size of each packet is 32 bytes. The result is shown in Fig. 5.
This result is average of 100 trials.

We measured the required network bandwidth between a user node and the corresponding
bwc-node under the configurations in Sect. 6.1 for both cases with and without our QoS
adaptation mechanism. The average results of 100 simulations are shown in Fig. 5.

Without the QoS adaptation mechanism, the required bandwidths for each real user terminal
(“RU without QoS” in Fig. 5) and each virtual user terminal (“VU without QoS” in Fig. 5)
exceeded the capacity (i.e., 10Mbps and 5Mbps ) when the number of objects in the whole
space becomes more than 250 and 500, respectively. With our QoS adaptation mechanism, the
required bandwidth is regulated below the capacity even if the number of objects increases to
5000 (“RU with QoS” and “VU with QoS” in Fig. 5).
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Fig. 5. Required Bandwidth for User Terminals

6.3 Impact of QoS adaptation

With our QoS adaptation method, AR events of more important objects are transmitted at
higher transmission rates (i.e., framerates) than other objects, within the available bandwidth.
To examine the effect of the QoS adaptation, we measured the framerates of AR events for
objects in view zones a to e under the configurations in Sect. 6.2. The results are shown in Fig.
6 and Fig. 7.

In Fig. 6 and Fig. 7, the lines with labels a, b, c, d, and e show the average framerates for objects
on the corresponding zones, and the line with label uniform shows the average framerate when
the bandwidth is uniformly distributed to objects.

Fig. 6 shows that each virtual user can watch important objects in zones a and b at higher
framerates than uniform. Especially, framerate of objects in zone a keeps more than 50
frames/sec while the number of objects is less than 4500. The framerates of less important
objects on zones c, d and e are reduced below uniform.

Fig. 7 shows that each real user can also watch important objects in zones a at better framerates
than uniform. However, the effect is smaller than the case for virtual users. The framerates of
objects in other zones are reduced below uniform. This is because each object’s importance
value is decided as the maximum value among its watchers as explained in Sect. 5.1 and
large portion of objects are regarded as important objects when the number of objects is large.
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Fig. 6. Framerates Obtained by Virtual Users
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Fig. 7. Framerates Obtained by Real Users
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However, the framerates of the objects in zone a are improved to a great extent when the
number of objects is less than 2000.

6.4 Improvement of QoS adaptation control by AP selection

The real users share AP and receive AR events broadcast from AP. In the real space, each
object’s overall importance value is the sum of the values rated by all users sharing AP.
Therefore, it cannot sufficiently reflect the importance of each user (shown as Sect. 5.2.2 and
Sect. 6.3). If multiple APs are installed in real space, and users can choose AP which can
reflect one’s importance effectively, then we can improve the satisfaction of users. Therefore,
we measured the improvement of QoS adaptation with simulation in which users choose AP
according to a strategy when there are multiple APs. In this experiment, we installed 2 to 4
APs. In case the number of AP is 2, we equally divide real space in x-axis into two areas and
placed one AP in each area. In case the number of AP is 4, we placed AP in each of the two by
two matrix regions formed by equally sectoring a long x-axis and y-axis. In this experiment,
to focus on the AP selection strategy, we supposed that a radio range is the whole area. In this
experiment, the strategies that users are supposed to use are as follows.

1. UNIFORM: the user connects to AP with ID equal to his/her ID mod the number o f APs.

2. POSITION: the user connects to the nearest AP from his/her position.

3. VIEW: the user connects to the nearest AP from his/her position taking into account
his/her view. Thus, comparing the his/her position and the end point of his/her view
(e.g. distance = 15m and angle = 0 ◦), it employes the point whose distance to the AP is
greater.

The results are shown in Fig. 8. This figure is typical boxplot that show how much frame-rate
was assigned according to importance with strategic AP selection and the number of the AP. In
this figure, the bar graph is Max-Min range and the box graph is the inter-quartile range. For
example, in importance 64, 2 APs, “UNIFORM” in Fig. 8, we can see that there are the users
for whom only 50 frames/sec was assigned to objects of importance 64, while many users
can watch objects of importance 64 in 60 frames/sec. In this result, we can see how efficiently
bandwidth allotment reflects the importance of the object for each user. In “UNIFORM” in Fig.
8, when several APs are available, the improvement is seen in comparison with the result in
case the number of objects equals 2500 of Fig. 7. The value of framerates to be given disperse,
because this strategy is random selection. In “POSITION” or “VIEW” in Fig. 8, dispersion of
provided framerates for the importance of the user becomes small. In these results, “VIEW”
was approximately equal to “POSITION”. “VIEW” strategy removes users facing the other
APs than the AP concerned. In spite of that, it is seen in Fig. 8, that bandwidth assignment
in “VIEW” strategy seems more dispersive than “POSITION” strategy. The reason is that in
“VIEW” strategy AP accepts far-off users looking towards itself as compensation does not
accept far-off users looking outwards. As a result, the AP selection in consideration of the
orientation of the user is effective in the QoS adaptation control for the real users. In QoS
adaptation control for the real space, when there are some APs are available, we can get big
benefits with strategic AP selection.

6.5 Processing delay of QoS adaptation

We measured the the coordination time of update frequency under some configurations when
moving user’s view by prototype system with different numbers of objects in LAN.
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Fig. 8. Impact of AP Selection Strategy

Experimental configurations are shown in Table 3. The other setting is as follows. The user is
placed in the center of the space. He/She walks at 1 m/sec towards the destination decided
at random. When he/she arrives at the destination, the next destination is decided at random
again. In this experiment, we place n virtual objects every 3 meters from the user. Then, the
space has just only enough room for the all objects. Updates of the data of each object by
the AR event, the transmission of packets, reception of packets, changes of the importance,
and QoS adaptation control are preformed by parallel computation at about 30 times per
second in the prototype for an experiment. Then, each process is asynchronous processed
in an individual timeslot. The change of the importance is executed in a bwc-node and the
QoS adaptation control is executed in an area node. We used TCP for communication protocol.
The specifications of PCs are as follows: the area node and the bwc-node : CPU:Athlon64 X2

4200+, Memory:2GB, OS:Debian Linux (kernel 2.6.8); and a user node: CPU:Opteron 242(1.6
GHz)×2, Memory:8GB, OS:Debian Linux (kernel 2.6.8). Programming Language is JAVA SE
1.6.0_05.

We measured, using the timestamp, the processing delay necessary for the recalculation of
the importance and the recomputation of QoS adaptation control. In addition, we measured
the end-to-end delay by the difference of timestamp from the time when user node sends AR
event to the time when user node receives and updates data. These data do not include the
delay of thread generation. The results are shown in Figs. 9 and 10. These results are average
of 5 trials.
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Fig. 9 is a graph of the processing delay of recomputation of the importance to change
along the position of the avatar (”importance” in Fig.9) and recomputation by QoS
adaptation control (”QoS Adaptation” in Fig.9). As a result, in the recalculation of the
importance, a processing delay considerably grows as the number of objects increases because
computational complexity increases according to the number of objects. The main cause of this
processing delay is calculation of distance and angle of the avatar vs. the object. Therefore,
when there are many objects, the importance is difficult to calculate in short time (e.g., as
for every frame). As a solution, we can increase the number of area nodes or lower the
frequency of the recalculation. The delay of QoS adaptation control changes by a timing of the
processing. However, this delay stay lower than 25ms and does not depend on the number
of objects. Furthermore, by the total of the recalculation of the importance and recomputation
of QoS adaptation control, we can see the tolerance of user’s sudden action (such as turns
around), how much delay the influence is reflected on QoS adaptation when the importance
of each object largely changes.

In Fig. 10, we show the end-to-end delay through AR event delivery mechanism including
a result of Fig. 9 (Step(1)– (7) in Sect. 4.4). The end-to-end delay is quite satisfactorily and
less than 200ms. The delay can be factored as follows: the recalculation of importance, the
recomputation of QoS adaptation control, the wait time of the asynchronous processing. In

Fig. 9, we see that the sum of the recomputation of QoS adaptation control and recalculation
of importance is less than 50ms. Therefore, we show a main cause is wait time of the
asynchronous processing. In addition, in Figs. 9 and 10, when there are objects more than
1,500, the total calculation delay is about 30ms and the influence is reflected within 200ms. If
a human turns around and considers movement to adjust a focus to an object , we can permit
this delay in practical uses. As a result, our framework can sufficiently cope with games
requiring quick response.

7. Conclusion

In this chapter, we proposed a framework for interaction between real and virtual users
in hybrid shared space called FAIRVIEW. In FAIRVIEW, the users share the information
about moving objects including users themselves with Publish/Subscribe method on divided
sharing space. In addition, in order to use FAIRVIEW in the ordinary environments, we
proposed a QoS adaptation mechanism that can be implemented in a network with bandwidth
limitation.

Through experiments, we confirmed that our method can handle hundreds of real and virtual
users and thousands of objects with sufficiently fast framerate in an ordinary wireless LAN
and internet environment. In addition, we confirmed FAIRVIEW could effectively offer QoS
adaptation for real users by introducing strategic AP selection among a number of APs,
compared with the case in which QoS adaptation is made through a single AP.

The future work is as follows. In the wireless communication environment, the delay tends to
greatly fluctuate in comparison with the Internet. To such environments, we need to devise
methods for realizing a short latency. In addition, e.g. in game applications, targets and
obstacles are treated equally because our QoS adaptation control method treats all objects
based on their values of importance. We will examine adjustment of the importance according
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to the kind of the object. Furthermore, we are planning to implement the proposed method as
middleware library and evaluate its performance.
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