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1. Introduction 

Acute kidney injury (AKI) is common in critically ill patients affecting 20 - 60% of patients 
(Chertow, et al., 2005; de Mendonca, et al., 2000; Mehta, et al., 2005; Ostermann & Chang, 
2008; Silvester, et al., 2001; Uchino, et al., 2005). The exact incidence varies depending on 
patient population, associated comorbid factors and criteria used to define AKI. Sepsis 
induced AKI accounts for approximately 50% of cases and AKI is commonly a manifestation 
of multiple organ dysfunction (Chertow, et al., 2005; de Mendonca, et al., 2000; Mehta, et al., 
2005; Ostermann & Chang, 2008; Silvester, et al., 2001; Uchino, et al., 2005). Many patients 
with AKI have a mixed aetiology where the presence of sepsis, ischaemia and 
nephrotoxicity co-exist. Current management of AKI is supportive, ensuring adequate 
perfusion pressures, correction of fluid depletion, avoidance of nephrotoxins and when 
required institution of renal replacement therapy (RRT). Despite the widespread use of RRT 
in the intensive care unit (ICU), AKI is associated with an associated mortality risk of 40 – 
90% depending on patient population (Chertow, et al., 2005; Ostermann & Chang, 2008; 
Silvester, et al., 2001). Furthermore, evidence has emerged that AKI survivors have an 
increased risk of chronic kidney disease, long-term dialysis, increased mortality and 
reduced quality of life (Johansen, et al., 2010; Lo, et al., 2009; Lopes, et al., 2010; Wald, et al., 
2009). AKI is no longer viewed as a reversible bystander of critical illness but a significant 
contributor to short and long-term morbidity and mortality.   

2. Renal physiology 

2.1 Renal blood supply and oxygenation 

The chief function of the kidneys (ie. filtration of plasma and formation of urine) dictates the 
renal flow to be much higher than necessary to meet the metabolic needs. The kidneys 
receive blood via the renal arteries which supply them with approximately 25% of cardiac 
output. The vascular supply of nephrons consists of glomerular afferent and efferent 
arterioles which branch into the peritubular arteries and vasa recta. Oxygen tensions in the 
kidney are low, decreasing from 70 mmHg in the cortex to 20 mmHg in the medulla. The 
unique microvasculature of the kidneys coupled with high oxygen demand from the tubular 
salt-water reabsorption make the kidneys, in particular the medulla highly sensitive to 
hypoxia (Brezis & Rosen, 1995; Evans, et al., 2008). As a result, the renal microcirculation is 
recognised as a key actor in the initiation and development of AKI.  
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Basal renal oxygen consumption is approximately 400mmol/min/100g. Due to the high 

renal blood flow, there is a low oxygen extraction (Valtin & Schafer, 1995). Energy 

dependent processes in the kidney are those related to basal cellular metabolism and those 

related to filtration and reabsorption of solutes. In conditions associated with decreased 

renal blood flow, there is a reduction in both glomerular filtration and tubular reabsorption 

followed by a reduction in oxygen consumption. This relationship holds until the threshold 

of approximately 150mL/min/100g blood flow at which point oxygen extraction increases. 

At a blood flow of approximately 75mL/min/100g tissue the capacity for increased oxygen 

extraction is exceeded and anaerobic metabolism and cellular ischaemia occur (Schlichtig, et 

al., 1991). 

2.2 Renal energy utilisation 

Aside from basal metabolic requirements the major energy dependent process in the kidney 

is the reabsorption of solute, especially sodium. From animal studies, it is well established 

that there is a linear relationship between the reabsorption of sodium and oxygen 

consumption within the kidney (Gullans & Mandel, 1992). The predominant method of ATP 

production within the kidney is oxidative metabolism. In the cortex, oxidative metabolism 

accounts for over 97% of ATP production whereas in the medulla, up to 33% of energy 

comes from glycolysis (Bernanke & Epstein, 1965). In the presence of renal cortical 

hypoxia, the predominant form of energy production changes to glycolysis, however, this 

can not sustain significant function of the renal cells above homeostasis (Gullans & 

Mandel, 1992). 

3. Ischaemic Acute Kidney Injury 

Ischaemic AKI can occur in several clinical settings ranging from hypotension due to fluid 

depletion, blood loss, sepsis or reduced cardiac output to the use of vasoactive drugs. 

Following a reduction in effective kidney perfusion, tubular cells are unable to maintain 

adequate intracellular ATP. This depletion of ATP leads to rapid disorganization of the 

cytoskeletal structure and disruption of tight intercellular junctions (Sharfuddin & Molitoris, 

2011). in case of severe depletion, apoptosis or necrosis occur and cells die. All segments of 

the nephron can be affected during an ischaemic insult but the most commonly injured sites 

are the proximal and distal tubular cells. Sloughed tubular cells and cellular debris can 

obstruct the tubule lumen and ultimately cease glomerular filtration in that functional 

nephron.  

A marked decrease in total kidney perfusion may cause global ischaemia, but more often, 

ischaemic injury occurs due to decreased regional perfusion without major change in global 

perfusion. Both ischaemia and sepsis can have profound effects on renal endothelial cells, 

resulting in microvascular dysregulation and continued ischaemia and further injury. 

Ischaemic injury results in endothelial cell activation, endothelial swelling, up-regulation of 

adhesion molecules and shedding of components of the glycocalyx. This, in combination 

with leucocyte activation, platelet aggregation, red cell trapping and activation of the 

coagulation pathway serve as the basis for vascular congestion of the microvasculature (Le 

Dorze, et al., 2009). In response, a range of inflammatory mediators are being released, 

including prostaglandins, endothelin and nitric oxide, that alter the balance of 
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vasodilatation and constriction within the renal vasculature (Bonventre, 2004; Le Dorze, et 

al., 2009). Although the ultimate aim is to control intrarenal damage and to promote repair, 

these activated leucocytes and proinflammatory mediators are also thought to be 

responsible for distant effects in non-renal organs, in particular lungs, heart and brain (ie. 

principle of organ cross-talk).  

4. Septic Acute Kidney Injury 

Sepsis is a pathological state characterised by a systemic inflammatory response to infective 

agents. Septic shock is characterised by inadequate tissue perfusion and significant 

hypotension is usually present. There are a number of proposed mechanisms regarding the 

pathogenesis of septic AKI, including hypoperfusion at the systemic and/or microcirculatory 

level, apoptosis mediated by either the infective agents or cytokines released in response to 

infection as well as renal mitochondrial hibernation triggered by sepsis.  

4.1 Histopathology 

Our progress in understanding the pathogenesis of AKI in sepsis has been limited due to the 

paucity of histopathological studies performed in well-defined patient populations with 

sepsis. Results from studies have been inconsistent with varying reports of cellular necrosis, 

glomerular infiltration and microvascular thrombosis (Solez, et al., 1979). 

Autopsy studies have similarly reported variable and inconsistent findings in sepsis-
induced AKI including interstitial oedema, swelling of the tubular cells, tubular cell 
apoptosis and regeneration, as well as focal necrosis and micro-abscess formation (Lucas, 
2007). Part of the difficulty with autopsy series is that autolysis of the kidney occurs rapidly 
after death which leads to difficulties in interpreting findings. In one study reporting on 
rapid autopsies (within 6 hours) of 20 patients who died from sepsis and multiple organ 
dysfunction, there was no evidence of cellular necrosis or apoptosis (Hotchkiss, et al., 1999). 
However, a more recent study of immediate (within 30 minutes) post-mortem renal 
histology in patients with septic shock demonstrated acute tubular lesions, glomerular 
leukocyte infiltration and tubular cell apoptosis which affected 2.9% of tubular cells (Lerolle, 
et al., 2010). In this study these patients had died in states of profound shock. Hypovolaemia 
and hyperlactataemia, suggestive of poor tissue perfusion correlated with the degree of 
histological change seen and it is not clear that the changes seen were due to shock and 
hypoperfusion or sepsis per se. 

Animal models of sepsis-induced AKI exist and have also demonstrated inconsistent 
changes in renal histopathology (Heyman, et al., 2002; Rosen & Heyman, 2001). 
Furthermore, the microvasculature of the rat kidney is markedly different from that of 
humans (Rosen & Heyman, 2001) and none of the models adequately account for the 
resuscitation and supportive management seen in critically ill patients, making data difficult 
to extrapolate (Heyman, et al., 2002). 

4.2 Haemodynamic changes 

Experimental evidence for renal haemodynamic changes due to sepsis is inconsistent. 

Animal models variably demonstrate that with preserved systemic blood pressures there is 
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either a reduction in renal blood flow causing decreased glomerular flow (Badr, et al., 1986; 

Kikeri, et al., 1986) or renovascular vasodilatation with a consequent increase in renal blood 

flow (Langenberg, et al., 2006; Ravikant & Lucas, 1977). In humans, techniques measuring 

renal blood flow using para-aminohippurate extraction and renal vein catheter 

thermodilution have demonstrated that renal blood flow is preserved in sepsis (Brenner, et 

al., 1990). A systematic review of human and animal trials found that the primary 

determinant of renal blood flow during sepsis was cardiac output and that even in the 

presence of preserved renal blood flow, there is a reduction in glomerular filtration and AKI 

continues to progress (Langenberg, et al., 2005). It remains unclear as to whether there is 

significant relative reduction in medullary blood flow in humans with sepsis but given that 

the renal medulla is normally exposed to relative hypoxia, it has been hypothesised that this 

may be exacerbated during sepsis leading to tubular cell dysfunction or death (Brezis & 

Rosen, 1995; Eckardt, et al., 2005). Sepsis also leads to damage of the endothelial glycocalyx 

which aggravates a breakdown of the vascular barrier and contributes to microcirculatory 

changes in septic AKI (Chappell, et al., 2009). 

4.3 Apoptosis 

Apoptosis has been demonstrated to occur in animal models of AKI (Bonegio & Lieberthal, 

2002; Sharfuddin & Molitoris, 2011; Wan, et al., 2003). Apoptosis is thought to occur in 

response to a variety of insults including sepsis, ischaemia, inflammatory cytokines and 

bacterial lipo-polysaccharide. However, there is inconsistent evidence for the presence of 

significant apoptosis in kidneys from patients with sepsis at autopsy (Hotchkiss, et al., 1999; 

Lerolle, et al., 2010; Lucas, 2007). It remains uncertain that apoptosis, estimated at less than 

3% in a recent study (Lerolle, et al., 2010), is occurring on a scale that would result in 

significant organ dysfunction and failure. 

4.4 Bioenergetics 

A recent hypothesis is that the organ dysfunction including AKI observed in sepsis is 

secondary to bioenergetic changes with mitochondrial down-regulation and hibernation 

(Singer, 2007a, 2007b; Singer, et al., 2004). There is some evidence that there is reversible 

mitochondrial dysfunction resulting in inadequate ATP generation and that this may 

underlie the organ dysfunction seen in sepsis (Singer, et al., 2004). Although not 

conclusively demonstrated in humans, there is evidence of decreased ATP and a reduction 

in activity of respiratory chain complexes associated with sepsis and septic shock (Brealey, 

et al., 2002). 

4.5 Immune mechanisms 

Another mechanism of renal failure associated with infection is that of immune-mediated 

glomerulonephritis (Naicker, et al., 2007). This occurs as a post-infectious condition and is 

usually related to streptococcal or viral diseases. The pathophysiological mechanism is 

immune-complex deposition leading to inflammation within the glomerulus and 

glomerulonephritis. Although well characterised following infection, there is no evidence 

that this mechanism is responsible for AKI associated with acute sepsis. 
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5. Repair of AKI 

Renal tubular epithelial cells have high potential to regenerate after an ischaemic, septic or 

toxic insult. Minimally injured cells are repaired when blood flow is re-established. Viable 

cells proliferate and spread across denuded basement membrane and later regain their 

characteristics as tubular epithelial cells (Sharfuddin & Molitoris, 2011). There is evidence 

that progenitor cells, stem cells and mesenchymal stem cells have an important role in 

promoting tubular epithelial repair but also lead to chronic fibrosis. The benefit of infusions 

of mesenchymal cells to promote recovery of renal function in humans is currently under 

investigation (Humphreys & Bonventre, 2008). Endothelial cells have less regenerative 

capability. Decrease of peritubular capillary density has been observed several months after 

an episode of AKI (Basile, et al., 2001). 

6. Conclusion 

AKI is a common manifestation of multiple organ dysfunction observed in critically ill 

patients, especially in relation to sepsis and ischaemia.  There is increasing evidence that 

independent of the exact aetiology, AKI should be regarded as an inflammatory condition 

with secondary effects on other organs. However, the exact underlying pathophysiology 

and pathology of human AKI remains incompletely understood. 
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