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1. Introduction 

Infrared spectroscopy is nowadays one of the most important analytical techniques 
available to scientists. One of the greatest advantages of the infrared spectroscopy is that 
virtually any sample in any state may be analyzed. For example, liquids, solutions, pastes, 
powders, films, fibres, gases and surfaces can all be examined with a judicious choice of 
sampling technique. The review by Annette, Sudhakar, Ursula and Andrea [1-2] also 
demonstrates the applicability of dispersion infrared spectroscopy for natural fibres studies. 

Fourier transform infrared spectroscopy (FTIR) has facilitated many different IR sampling 
techniques, including attenuated total reflection and diffuses reflectance infrared Fourier 
transform (DRIFT) spectroscopy. It has dramatically improved the quality of infrared 
spectra and minimized the time required to obtain data. The increased speed and higher 
ratio of signal-to-noise of FTIR relative to dispersion infrared has lead to a substantially 
greater number of applications of infrared in natural fibres research. In addition, the 
constant advancing of computer and computing science has made infrared spectroscopy 
techniques striding further: The availability of a dedicated computer, which is required for 
the FTIR instrumentation, has allowed the digitized spectra to be treated by sophisticated 
data processing techniques and increased the utility of the infrared spectra for qualitative 
and quantitative purposes. With interferometric techniques, the infrared spectroscopy is 
being launched into a new era and interest in this technique is at an all time high. 

Cellulose, which acts as the reinforcing material in the cell wall, is the main constitute in 
natural fibres. The cellulose molecules are laid down in microfibrils in which there is 
extensive hydrogen bonding between cellulose chains, producing a strong crystalline 
structure. Much work has been published on the characterization of the hydrogen bonds in 
cellulose by using various techniques, among which FTIR has proved to be one of the most 
useful methods [3-6]. Furthermore, FTIR can provide researchers with further information 
on the super-molecular structure. FTIR can also be used to determine the chemical 
compositions of native natural fibres and the modified natural fibres. 

This chapter of the book describes the application of FTIR in the hydrogen bonds analysis, 
determination of structures and chemical compositions, and the morphology characterization 
for natural fibres.   

www.intechopen.com



 
Fourier Transform – Materials Analysis 

 

46 

2. Hydrogen bonds analysis of natural celluloses by using FTIR  

A hydrogen bond is the attractive interaction of a hydrogen atom with an electronegative 
atom, such as nitrogen, oxygen or fluorine, that comes from another molecule or chemical 
group. Cellulose occurs in the form of long, slender chains, polymer of 1-4 linked  
ǃ-D-glucose (Figure 1). Hydroxyl groups in C2, C3 and C6 contribute to the formation of 
various kinds of inter- and intra-molecular hydrogen bonds. The formation of inter- and 
intra- molecular hydrogen bonds in the cellulose not only has a strong influence on the 
physical properties of cellulose, including solubility [7-8], hydroxyl reactivity [9-10] and 
crystallinity [11-12], but also plays an important role in the mechanical properties of the 
cellulose [13]. Calculated by Tashiro and Kobayashi [14] showed that hydrogen bonds 
contribute about 20% the strain energy to the cellulose. It is apparent that the investigation 
of hydrogen bonds on cellulosic fibres and other materials gives rise to great benefits for the 
research on all other aspects of natural fibres and related materials.  

 
Fig. 1. Chemical structure of cellulose  

X-ray diffraction has been a powerful tool [15-19] to investigate hydrogen bonds 
visualization, lengths and angles. FTIR is even a more advanced tool to study hydrogen 
bonds in cellulose. IR was firstly used to investigate hydrogen bonds in cellulose in the 
1950s [e.g. 20-22] and then the whole area of OH stretching wave-number in IR spectra for 
cellulose I and cellulose II [23-24]. The OH stretching region always covers 3-4 sub-peaks 
and these sub-peaks cannot be determined in the original data set. Some mathematical 
methods (e.g. deconvolution [25-27] and second-derivative [28-30]) were used to identify the 
exact peak for hydrogen bonds. Hinterstoisser and Salmén [3, 31] recently used DMA-FTIR 
to investigate OH stretching vibration regions between 3700 and 3000 cm−1 in the cellulose. 
In their experiments, cellulose sheets were stretched sinusoidally at low strains while being 
irradiated with polarized infrared light. For the obtained dynamic IR signals (the in-phase 
and the out-of-phase responses of the sample), the dynamic IR cross-correlation can be 
defined. The responses of the OH-groups to an external perturbation can be recorded as  
in-phase and out-of phase spectra. The cross correlation of these spectra gave the 2D 
synchronous (Figure 2) and asynchronous (Figure 3) plots, clearly showing the separated 
bands in the OH-vibration range and the relation of the OH-groups among them. It is 
apparent that most of the researchers have focused on the establishment of cellulose 
structure by investigating hydrogen bonds with FTIR. These (the structure of nature fibres) 
will be discussed in the next section. Few reports have described the correlation of hydrogen 
bonds with other characteristics of cellulose by using FTIR technologies. 
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Fig. 2. Synchronous 2D plot-cross-correlation of in- and out-of-phase spectra [3] 

 
Fig. 3. Asynchronous 2D plot-cross-correlation of in- and out-of-phase spectra [3] 

FTIR is very useful for examining the variation of hydrogen-bonds due to various defects 
[32]. The Nano-cellulose and Bio-composite Research Centre at Brunel University has 
investigated dislocations in natural fibres (hemp fibres) by using hydrogen-bonding 
characteristics under FTIR procedure. The test pieces were made from dislocation cluster 
(region) with the size of a single dislocation from a few microns to 100μm. The test pieces 
were then processed and examined by using FTIR measurement by using a Perkin-Elmer 
spectrometer and the standard KBr pellet technique. The recorded FTIR spectra (e.g. 3660–
3000cm-1) were deconvolved using Peak Fit V.4.12 software (Figure 4) and the peak 
positions of the major IR bands can be summarized and compared (Table 1). It can be found 
that the absorbance of hemp fibres without dislocations in the X–H (O–H and C–H) 
stretching region is much higher than that with dislocations. The peak positions of the four 
bands for hemp fibres with and without dislocations are 3450cm-1, 3346cm-1, 3262cm-1 and 
3161cm-1 for the hemp without dislocations, and 3451cm-1, 3350cm-1, 3264cm-1 and 3167cm-1 
for the dislocation regions. These bands are related to the valence vibration of hydrogen 
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bonded OH groups [26]: i.e. band 1 to the intra-molecular hydrogen bond of O(2)H---O, 
band 2 to the intra-molecular hydrogen bond of O(3)H---O, band 3 to the intermolecular 
hydrogen bond of O(6)H---O and band 4 to the O---H stretching respectively.  

Peak wavenumber 
(without dislocation) 
(cm-1) 

Peak wavenumber 
(with dislocation)  
(cm-1) 

Δν(cm-1) Bonds 

3327 3332 5 OH stretching 

2883 2882 -1 
C–H symmetrical 
stretching 

1724 1724 0 
C=O stretching 
vibration 

1623 1624 1 
OH bending of 
absorbed water 

1506 disappear - 
C=C aromatic 
symmetrical stretching 

1423 1423 0 
HCH and OCH in-
plane bending 
vibration 

1368, 1363 1367,1363 -1/0 
In-the-plane CH 
bending 

1325 1325 0 S ring stretching 

1314 1313 -1 
CH2 rocking vibration 
at C6 

1259 1261 1 G ring stretching 

1245 1244 -1 

C-C plus C-O plus 
C=O stretch; G 
condensed > G 
etherfied 

1232 1231 -1 COH bending at C6 

1204 1199 -5 
C-O-C symmetric 
stretching, OH plane 
deformation 

1152 1156 4 
C-O-C asymmetrical 
stretching 

1046 1043 -3 
C-C, C-OH, C-H ring 
and side group 
vibrations 

1020 1018 -2 
C-C, C-OH, C-H ring 
and side group 
vibrations 

994 996 2 
C-C, C-OH, C-H ring 
and side group 
vibrations 

895 894 -1 
COC,CCO and CCH 
deformation and 
stretching 

662 663 1 
C-OH out-of-plane 
bending 

Table 1. Bonds wavenumber related to regions without and with dislocations 
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                                        (a)                                                                            (b) 

Fig. 4. Deconvolved FTIR spectra of the υOH region of hemp without dislocation (a) and 
dislocation regions (b). (Solid curves=calculated data; dotted curves=experimental data) [32] 

It can be seen that the wave-numbers of peak position of dislocations are higher than those 
of hemp fibre without dislocation. This indicates that the degree of hydrogen bonding in 
dislocation regions is lesser than that in without dislocation regions. Furthermore, the 
absorbance of these bands in the dislocation regions is much lower than that in the regions 
without dislocations: for dislocation regions being about 79.3% for band 1, 64.4% for band 2, 
64.9% for band 3 and 75.7% for band 4 those without dislocations respectively. These mean 
that the number of hydrogen bonds in dislocations is lower than without dislocation regions 
according to Beer–Lambert law.  

3. Structure of natural fibres determined by using FTIR   

The structure of cellulose has a remarkable and complex influence on the course of chemical 
reactions of the polymer (cellulosic materials). Generally, the structure of cellulose consists 
of three structural levels: namely (i) the molecular level of the single macromolecule; (ii) the 
supramolecular level of packing and mutual ordering of the macromolecules; (iii) the 
morphological level concerning the architecture of already rather complex structural 
entities, as well as the corresponding pore system [33]. This section only focuses on the 
molecular level and supramolecular level, and the morphological level will be discussed in 
the final section of this chapter.  

Molecular orientation is one of the most important parameters, affecting the physical 
properties of macromolecular systems. It is often introduced in natural macromolecules by 
the mechanical deformation incurred during their processing. By using FTIR equipped with 
a microscopic accessory, Kataoka and Kondo [34] determined the molecular orientation of 
cellulose during the formation of wood cell wall by virtue of the C-O-C stretching mode 
parallel to molecular chains [23] (Figure 5). It was found that the molecular orientation of 
cellulose in the primary cell wall coincided with the direction of enlarging cellular growth. It 
is therefore that the cellulose in the (nascent) primary cell wall might be oriented during 
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crystallization and subsequent formation of microfibrils due to the drawing stress/effect 
exerted during cellular enlargement. This force, distributed along molecular chains, can 
cause ǃ-glucose chains in the nascent cellulose to crystallize in the Iα phase with a higher 
crystallinity, making the molecules orientated in the enlarging direction.  
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Fig. 5. Changes in FTIR spectra with a rotation of IR polarizer to the tracheid cell axis due to 
the C-O-C stretching mode: the primary (P) and the mature (P + S1 + S2 + S3) [34] 

In order to better understand wood and wood fibres for their potential utilization in 
advanced materials, some researchers have employed FTIR in conjunction with mechanical 
loading to study the molecular responses to the stress/load, such as for spruce wood and 
cellulose paper materials [35] (Figure 6), illustrating the shift of the absorption peak at 1,160 
cm-1, C–O–C vibration when the materials successively loaded from 0 up to 24 MPa at 0% 
RH. The decrease of the shift of absorption peak as the stress increased can be observed  
(6 wavenumbers in Figure 6). This decrease in wavenumber signifies an increase in the 
length of the covalent bonds involved in the vibration absorption, i.e. a decrease in the force 
constant of the bond. This demonstrates that FTIR-spectroscopy may be used to monitor 
molecular straining of cellulosic material under load and the molecular deformation is 
linearly related to the macroscopic load of the material. Using FTIR technologies, it was 
found that spectral deformations occurred in cellulose related groups, but no molecular 
deformation detected for the lignin or hemicelluloses of wood constituents. The molecular 
straining of the cellulose molecule resulted in greater macroscopic force under moist 
conditions compared to dry conditions, but an equal macroscopic strain under both 
conditions. This may be interpreted that moisture accessible regions are arranged tending in 
parallel with the cellulose load bearing entities, suggesting that the cellulose disordered 
regions may not exist as large regions across the cellulose aggregate structure, rather that 
are spread out. In addition, the moisture absorbing area of the cellulose structure is 
probably related to the surface areas of the cellulose.  
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Fig. 6. Absorption spectra of the C–O–C vibration peak with increasing stress levels [35] 

Polarized FTIR accompanied with a vapor-phase deuteration has been used to characterize 
orientation of the main chains and hence to study the molecular orientation of Nematic 
Ordered Cellulose (NOC) [36]. A ratio (R) of the absorbance of the band due to the 
particular molecular moiety for radiation polarized perpendicular to to parallel to the 
stretching direction was introduced to evaluate the orientation behaviour of the main chains 
and OH groups. Computation of the FTIR spectra (e.g. Figure 7) shows that R values for the 
main chain are 0.32, and OH group 0.81 for Intramolecular and 0.91 for intermolecular H.B. 

   
                                            (a)                                                                                    (b) 

Fig. 7. The bridge C–O–C (a) and OH (b) stretching band for the NOC film before deuteration 
[for (b) (A, B)=before, (C, D)=after, (//)=electric vector parallel to and (⊥)=perpendicular to 
the stretching direction] 

It is apparent that: (1) the R value for the ǃ-glucan main chains of cellulose molecules is not 
necessarily in agreement with that for the side chains of OH groups; (2) the uniaxial 
drawing process to prepare the NOC film gave rise to the oriented main chains toward the 
stretching direction; (3) the nonoriented OH groups in the noncrystalline regions which 
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occupy more than 80% of the drawn film samples could be the key for discouragement of 
the crystallization. 

Supramolecular level investigated with FTIR mainly focuses on the crystal structure, which 
includes: 1) hydrogen bonding, 2) crystallinity measurement and 3) cellulose Iǂ and Iǃ 
determination. Kondo, Togawa and Brown [37] proposed a concept to describe how various 
states of molecular association can be categorized in cellulose. Figure 8 demonstrates the 
schematic representation of their concept. 

Non-crystalline
For example

NOC, Liquid crystals

Ordered domain
Non-ordered domain

(Amorphous;  no preferred orientation)

For example
Random gels, amorphous solids

crystalline

• Crystalline lattice
• Molecular packing

(Energy minimization)

For example
Cellulose I- IV

 
Fig. 8. Concept of glucan chain association for cellulose  

According to two-phase model theory [38], there exist two regions in cellulose chain, namely 
amorphous and crystalline regions. Crystalline region in cellulose is an idealistic assembly 
of cellulose molecules in the biological system. There exist four different crystalline forms in 
cellulose. Researchers have developed various techniques to characterize the crystalline 
structure of cellulose, e.g. XRD, FTIR, Raman spectroscopy, and 13C CP/MAS NMR. Among 
them FTIR is a more advanced tool for investigating the structure of cellulose. As mentioned 
above, since 1950s, some important work had been carried out by researchers and there are 
a number of literatures reporting on the IR/FTIR data of natural fibres [39].  

The hydrogen bonds in cellulose mainly distribute in crystal domains and amorphous 
domains. It is possible to establish relation between the OH-bands and the cellulose 
structure. In 1913, Nishikawa and Ono [40] firstly revealed the crystalline nature of cellulose 
with X-ray diffraction. Cellulose has four polymorphic crystalline structures from cellulose I 
to cellulose IV. However, cellulose I and cellulose II have been most extensively studied. 
The other crystalline structures are still in question and yet to be studied further. According 
to Gardner-Blackwell model [41], hydrogen bonds for cellulose I include two intramolecular 
bonding, namely, O(2)H---O(6) bonding and O(3)H---O(5) bonding and one intermolecular 
bonding, O(6)H---O(3) (Figure 9a). Based on the Kolpak-Blackwell model [42], hydrogen 
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bonds in cellulose II contains three intramolecular bonds: O(2)H---O(6) bonding, O(3)H---
O(5) bonding and O(2)H---O(2) bonding, and two intermolecular bonding: O(6)H---O(2) and 
O(6)H---O(3) (Figure 9b). The IR assignments for OH regions in cellulose I and II are 
summarized in Table 2. 
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                                         (a)                                                                                      (b) 

Fig. 9. Hydrogen-bonding network: (a) parallel to the bc plane  (cellulose I ); (b) in the centre 
chains (Cellulose II) 

Peak wavenumber  
(cellulose I) (cm-1) 

Peak wavenumber  
(cellulose II) (cm-1) 

Bonds 

 3175 OH stretching 
3230-3310  O(6)H---O(3) 

 3308 OH Inter H-bond 
 3309 OH Inter H-bond 
 3315 OH Intra H-bond 

3340-3375  O(3)H---O(5) 
 3374 OH Intra H-bond 

3405-3460  O(2)H---O(6) 
 3486 OH Intra H-bond 

Table 2. Correlation of bonds and celluloses (structure) [43], [44] 
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Hatakeyama and his coworkers firstly studied the hydrogen bond in the amorphous 
regions of cellulose. These studies focus on investigating the effect of temperature on the 
formation of interchain hydrogen bonds [45], and the effect of hydrogen bonds on the 
temperature dependence of the dynamic modulus and the mechanical loss tangent [46]. In 
1996, Kondo and Sawatari systematically examined the formation of hydrogen bonds in 
amorphous cellulose. The substituted amorphous cellulose derivatives, 6-O-, 2,3-di-O-, and 
tri-O-substituted methylcellulose, were used to model the components of amorphous 
cellulose. An artificial spectrum for amorphous cellulose was then quantitatively 
constructed by using compound IR spectra in order to investigate hydrogen bond 
formation in cellulose. The typical absorption wavenumber for the real and artificial 
spectra were summarized in Table 3. 

Peak 
wavenumber  
(real) (cm-1) 

Peak 
wavenumber  
(artificial) (cm-1) 

Absorbance Bond stretching 

669 671 W OH out-of-phase bending 

899 892 M Nonsymmetric out-phase 
ring  

1040 1040 S C-O  
1070 1075 S Skeletal vibrations C-O  
1108 1108 S Nonsymmetric in-phase ring  
1159 1154 S Nonsymmtric bridge C-O-C  
1374 1375 M CH bending 
1420 1425 W CH2 symmetric bending 
2892 2903 M CH  
3420 3457 S OH  

Table 3. Absorption wavenumber between the real and synthesized IR spectra of amorphous 
cellulose [43, 47] 

The traditional two-phase cellulose model describes cellulose chains as containing both 
crystalline (ordered) and amorphous (less ordered) regions. A parameter termed the 
crystallinity index (CI) has been used to describe the relative amount of crystalline material 
in cellulose. The CI of celluloses has been measured using several different techniques 
including XRD, solid-state 13C NMR, infrared (IR) spectroscopy and Raman spectroscopy. 
The determination of CI using FTIR spectroscopy is the simplest method. It should  
be noted that this method gives only relative values, because the spectrum always  
contains contributions from both crystalline and amorphous regions. In 1958, O'Connor 
[49] proposed Lateral Order Index (LOI, A1420/A893) to calculate the CI for cellulose.  
Later, Nelson and O’Connor [49-50] introduced Total Crystallinity Index (TCI, A1375/A2900) 
to evaluate the CI of cellulose. The absorbance ratio A1420/A893 was defined as an empirical 
CI. The absorbance at 1420 and 894 cm-1 are sensitive to the amount of crystalline  
versus amorphous structure in the cellulose, that is, broadening of these bands reflects 
more disordered structure. As for TCI, various reports seem not to show a coherent result 
[51-52].  
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4. Chemical composition of natural fibres by using FTIR    

Compositional variation and physical organization at the microscopic level determine the 
ability to perform a desired function for most materials. Lignocellulosic fibres from different 
lignocellulosic materials appear quite different, but the chemical composition is fairly 
similar although with different magnitudes of constituents. The major compositions of 
lignocellulosic fibres are cellulose, hemicellulose and lignin (see Figure 10), while the minor 
constituents include minerals, pectin, waxes and water-soluble components. The application 
of infrared spectroscopy in lignocellulosic fibres has a long history: The infrared 
spectroscopy was used to investigate the hydroxyl groups of cellulose in the 1930’s [53] and 
significant efforts were made in the 1950’s to assign the different absorption maxima in the 
IR spectrum of cellulose [54-59]; The absorption maxima in the IR spectra of lignin were 
investigated from 1940’s [60-61] through 1950’s [62-64]; The characteristic absorption 
maxima of hemicellulose were studied during the 50’s [65-66].  

 
Fig. 10. IR spectra of cellulose, hemicellulose and lignin of natural fibres [60] 

FTIR has been commonly used to characterize natural fibres with various treatments, e.g. 
grafting [67-68], coupling [69-71], mercerization [72-74]. With the aid of FTIR, researchers 
are able to obtain much more in-depth information of natural fibres after various 
modifications. FTIR is also an efficacy technique for the surface and interface 
characterizations of lignocellulosic fibres [75]. This allows further interpretation of the 
nature of adhesion between lignocellulosic with other substances. For example, Felix and 
Gatenholm [76] modified the lignocellulosic fibers with polypropylene–maleic anhydride 
copolymer. The spectrum of untreated fibres from the spectrum of treated fibres showed 
two peaks: one located at 1739 cm-1 and one at 1746 cm-1, and the FTIR analysis indicated 
that the reaction between fibres and copolymer can be divided into two main steps: the 
copolymer is firstly converted into the more reactive anhydride form and then esterification 
takes place on the surface of cellulose fibres.   
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FTIR has recently been found most promising to examine the change of the chemical 
compositions of natural fibres (hemp fibres) due to inherent defects. An example of the 
results is given in Figure 11. A scrutiny of the IR spectra from 1370cm-1 to 1330cm-1 shows 
that the band at 1368cm-1 and 1363cm-1 almost disappears in dislocation regions (Figure 
11a). These two bands, assigned as the in-plane CH bending, may be from hemicelluloses or 
cellulose, the near disappearance of these may be due to the removal of the hemicelluloses 
in dislocation regions. Hemicelluloses can form a linkage between cellulose and lignin, and 
lignin-carbohydrate complex with lignin by ether bonds [77]. The removal of hemicelluloses 
in dislocation regions may cause the decrease of transfer of shear stress under tensile 
loading and loss of lignin as well. 
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                                   (a)                                                                           (b) 

Fig. 11. FTIR spectra of hemp fibres from 1370 cm-1 to 1330 cm-1(a) and from 1330 cm-1 to 
1215 cm-1 (b) with and without dislocation [32]  
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Fig. 12. Deconvolved FTIR spectra without dislocation (a) and dislocation regions (b). (Solid 
curves=calculated data; dotted curves=experimental data) [32] 

www.intechopen.com



 
Fourier Transform Infrared Spectroscopy for Natural Fibres 

 

57 

The S ring (CH2 rocking at C6 in cellulose) and G ring stretching (C–C plus C–O plus C O 
stretch and COH bending at C6 in cellulose) could normally be observed in bands at 1325, 
1314, 1259, 1245 and 1232cm-1 respectively for the hemp fibres without dislocation. Due to 
the overlapping of bands, only two peaks can be seen in Figure 11b. Lignin is composed of 
three basic units, namely p-hydroxyphenyl (H), guaiacyl (G) and syringyl (S) [78]. Guaiacyl 
(G) and syringyl (S) are the main units of lignin, but the ratio of S/G varies from one to 
another plant. It was reported recently by del Río et al. [79] that S/G values calculated upon 
FTIR were in agreement with those calculated upon Py-GC/MS at the bands of 1271cm-1 
and 1327cm-1 respectively. However, the study on hemp fibre showed that the bands at 
1271cm-1 and 1327cm-1, assigned as G-ring stretching and S ring stretching respectively, 
were shifted to lower wavenumbers: for the hemp fibres without dislocations (Figure 12a), 
the G ring and S ring stretching appear at the bands of 1259cm-1 and 1325cm-1 and for the 
dislocation regions at 1261cm-1 and 1325cm-1 (Figure 12b). 

 
(a) 

 
(b) 

Fig. 13. FTIR spectra of various types of composites  
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The different molar contents of G-lignin and S-lignin of the hemp with and without 
dislocations gave rise to the ratio of S/G 0.9 for the former and 1.1 for the latter fibres. The 
lignin network in the parts without dislocations would be more rigid than that in dislocation 
regions. The lower absorbance in dislocations means that the lignin was removed from 
dislocation regions, and such the cellulose content in dislocations would be higher than that 
without dislocations.  

FTIR can further be used to investigate the interfacial properties of natural fibre composites 
[80]. For example, Figures 13a and b exhibits the spectra for different types of composites 
containing 40% aspen fibres. The highest absorbance value corresponds to the untreated 
composites and the lowest value to that of composites modified with maleated 
polypropylene. The FTIR examination on the interface of wood fibre-reinforced 
polypropylene composites has also confirmed the efficacy of the technique [81]. The spectra 
are able to illustrate that the coupling agent was located around the wood fibers rather than 
randomly distributed in the polypropylene matrix, and the compatabilizer was attached to 
the wood fibers either by ester or hydrogen bonds. 

5. Morphologies of natural fibres by using FTIR 

FTIR spectroscopic imaging is the complete synthesis of FTIR spectroscopy with sample 
visualization and greatly extends the capabilities of conventional FTIR spectroscopy. Figure 
14 illustrates a general configuration of an FTIR imaging micro- spectrometer. Spectral data 
can be represented as a picture, showing chemical information simultaneously from 
thousands of pixels. The main advantages of FTIR imaging are noninvasiveness, fast data 
collection and the ability to create visually appealing display. FTIR imaging not only 
provides new scientific capabilities, but it is also a compact and informative way to present 
results. It can collect more than 10,000 spectra in a few minutes. FTIR imaging has been  

 
Fig. 14. Schematic of a typical FTIR imaging spectrometer [82] 

www.intechopen.com



 
Fourier Transform Infrared Spectroscopy for Natural Fibres 

 

59 

found to be a remarkable tool for biological and materials analysis. It can be used 
extensively to investigate the chemical composition of stem [83-85] and cell wall structure 
[86] of natural fibres, and natural fibre composites [87]. 

FTIR imaging in conjunction with pyrolysis molecular beam mass spectrometry (py- MBMS) 
can work as a rapid analysis tool to evaluate difference in the chemical composition, for 
example, from the bark to the pith of wood stern (Figure 15) [85], and the data can 
statistically be processed to establish the correlation of the change in chemical features and 
the distance across the xylem (Figure 16).  

 
Fig. 15. (a) Visible image of the bark, cambium, and xylem of the control aspen stem. The 
area in the box was selected for FT-IR spectral analysis. (b) Spectral image of a portion of the 
outer bark [o], inner bark [I], cambium [c], xylem [x] showing the relative concentration of 
phenolic in these anatomical features [85] 

 
Fig. 16. PLS model predicting the distance from the bark to pith based on changes in the 
chemical composition. (Filled circles=calibration and open circles =test set) [85] 
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Fig. 17. Total IR absorbance full-spectral images of the two W fibres (W1 and W2) and the 
two H fibres (H1 and H2), showing the 25 pixel positions for each fibre used for evaluating 
the average orientation spectra as well as the three pixel positions for each fibre selected for 
evaluating the orientation of the different wood polymers in the fibres [86] 

FTIR spectroscopy imaging has also been used to examine the orientation of the main wood 
compositions in transverse and longitudinal directions of wood fibres. For example, the 
examination by using FTIR on spruce fibres (Figures 17 and 18) [86] is able to illustrate that 
1) glucomannan and xylan show a predominant orientation in the S2 layer of cell wall,  
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2) hemicelluloses are arranged in parallel with the cellulose microfibrils and accordingly 
more or less in parallel with the longitudinal axis (the S2 layer of the cell wall) of fibres, 3) 
only a little degree of orientation can be observed for lignin and 4) the variation in the 
molecular orientation along the fibres seems to be uniform in the pore-free regions. These 
results gave rise to a conclusion that all of three main components within fibres may have a 
clear anisotropic behaviour under mechanical stress, that is, their properties will be different 
in the longitudinal direction (along the fibre axis) and the transverse direction.  

FTIR can be used to examine the structure of natural fibre based composites, such as, 
examining the surface distribution of polyacrylamide (PAM) or the in-plane distribution of 
cellulose within a paper sheet [87].  

 

  

Fig. 18. Average orientation spectra of the two W fibres (W1 and W2) and the two H fibres (H1 
and H2): cellulose 1160 cm-1, 1316 cm-1, 1370 cm-1 and 1424 cm-1, glucomannan 810 cm-1, xylan 
1734 cm-1, 1460 cm-1 and 1240 cm-1 and lignin 1508 cm-1 [86] 

6. Conclusions  

FTIR offers scientists an excellent range of solutions for understanding natural fibres and 
their related modification technologies and products, such as chemical compositions, 
microstructures, fibre architectures, characterisation of interface, and properties of both 
natural fibres and related composites. 
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FTIR is a powerful technique to examine the formation of inter- and intra- molecular 
hydrogen bonds in cellulose. The detailed database allows the establishment of strong 
correlation between the nature of hydrogen bonds and physical (e.g. solubility, hydroxyl 
reactivity, crystallinity) and mechanical properties of cellulose. The capability of accurate 
examination of hydrogen bonds has lead to an ever increasing uses of FTIR for investigating 
the defects (e.g. dislocation of hemp fibre) or deterioration (e.g. perturbation) of natural 
fibres and change of materials after modification.  

The structure of cellulose has a profound influence on the course of chemical reactions of 
cellulose materials and the resulted properties. The molecular orientation and crystallization 
and formation of microfibrils not only vary from one plant to another, but could also change 
due to various environmental or other physical effects. FTIR is able to examine the nature of 
molecular chains, crystallinity and their correlations with various bonds. 

In commons with other materials, the chemical composition at microscopic level determines 
the ability to perform various functions for the usefulness of natural fibres. FTIR has been 
mostly successful in accurate analysis of both major (cellulose, hemicellulose and lignin) and 
minor (mineral, pectin, waxes) constituents of natural fibres. Change in chemical 
compositions, interface and hence properties of natural fibres and composites could also be 
effectively identified by using FTIR. 

FTIR is the most interesting and versatile of all analytical techniques and are well placed to 
become the technology of the century.   
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