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Electrodynamical Analysis  
of Open Lossy Metamaterial  

Waveguide and Scattering Structures  

L. Nickelson, S. Asmontas, T. Gric, J. Bucinskas and A. Bubnelis 
State Research Institute Center for Physical Sciences and Technology, Vilnius,  

Lithuania  

1. Introduction 

Large stream of articles devoted to the study of metamaterial waveguide and metamaterial 
scattering (reflecting) structures points that there is a need for development devices 
possessing unique characteristics, as multifunctionality, reconfigurability, certain frequency 
bandwidth, ability to operate at high-powers and high-radiation conditions. The importance 
of diffraction problems for scattering structures is based on their great practical utility for 
many applications, such as reflector antennas, the analysis of structures in open space, 
electromagnetic (EM) defence of structures, the scattering modeling for remote sensing 
purposes, high frequency telecommunications, computer network, invisibility cloaks 
technology and radar systems (Li et.al., 2011; Zhou et.al.; 2011, Zhu et al., 2010; Mirza et al., 
2009; Abdalla & Hu, 2009; Engheta & Ziolkowski, 2005). 

The technological potential of metamaterials for developing novel devices offers a very 

promising alternative that could potentially overcome the limitations of current technology. 

The metamaterial waveguide and scattering structures can operate as different devices that 

possess different specific qualities as well. In order to create a new microwave device it is 

necessary to know the main electrodynamical characteristics of metamaterial structures on 

the basis of which the device is supposed to be created.  

Here are presented electrical field distributions and dispersion characteristics of open 

metamaterial waveguides in subsections 1-3 and numerical analysis of the scattered and 

absorbed microwave powers of the layered metamaterial cylinders in the subsection 4.  

2. Analyses of electrical field and dispersion characteristics of square 
metamaterial lossy waveguides by the SIE method 

Here the open (without conductor screen) square metamaterial waveguides with sizes 

5x5·mm2 and 4x4· mm2 are investigated by our algorithms that were created on the base of 

the Singular Integral equations’ (SIE) method (Nickelson & Sugurov, 2005; Nickelson et al., 

InTech2011). Due to the fact that metamaterial is a substance with losses we have 

determined the complex roots of the dispersion equation by using of the Muller method in 

our researches (Nickelson et al., InTech2011). 
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Our computer programmes are written in MATLAB. They let us to investigate open 
absorptive waveguides with different shapes of cross-section (Gric & Nickelson, 2011). We 
have used the values of the complex relative permittivity ǆmet and the complex relative 
permeability Ǎmet of metamaterial from (Penciu et al, 2006) in suctions 1 and 2.  

2.1 Numerical investigations of square 5x5 mm
2
 metamaterial waveguide 

The dispersion characteristics and the 3D electric field distributions are presented here (Figs 

1.1–1.3). The characteristics are shown in Fig. 2.1 (Gric et al., 2010). The main wave (mode) is 

denoted with black points; the first higher mode is denoted with circles. The values of ǆmet 

and Ǎmet are different at every frequency. The real part of the permittivity is always negative 

at the all frequency range 75-115 GHz. The imaginary part of the permittivity is negative 

approximately when 90 ≤  f ≤ 100 GHz. The real part of the permeability is negative when 

100 ≤  f ≤ 105 GHz. The imaginary part of the permeability is always equal to zero or a 

positive number at the all mentioned frequency range. In the Fig. 2.1 are presented 

dependencies of the complex propagation constant h = h’- i h” on the frequency.  
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 (a) (b) 

Fig. 2.1. Dispersion characteristics of square 5x5 mm2 metamaterial waveguide  
(a) – the dependence of the normalized propagation constant, (b) – the dependence of the 
attenuation constant on frequencies. 

In Fig. 2.1(a) we see that dependencies of the normalized propagation constant h'/k on the 

frequency, where h'=2·π/ǌ and ǌ is the wavelength of microwave in the metamaterial 

waveguide, k=2 π f/c, k is the wavenumber in vacuum, f is an operating frequency, c is the 

speed of light in vacuum. The curves of the main mode and the first higher mode are not 

smooth. The magnitudes h’/k <1 for both modes (Fig. 2.1(a)). It means that the main and the 

first higher modes are the fast waveguide waves. In Fig. 2.1(b) are shown dependencies of 

the waveguide attenuation constant (losses) h” on the frequency. We see that the values of 

the main and higher mode losses are commensurate and the losses are not higher in the 

frequency range. The loss maximums of the main mode and the first higher mode are 

slightly shifted. The maximum of main mode losses is 0.32 dB/mm at f = 87.5 GHz and the 

wavelength of this mode is equal to 4.2·mm. The maximum of the first higher mode is 0.36 

dB/mm at f = 90 GHz and the wavelength of this mode is equal to 4·mm (Fig. 2.1). It is 

important to remark that the losses of the main mode are very low at the frequency range 
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from 105 GHz till 115 GHz. This feature could be used in practice for creation of feeder lines 

and specific devices that require low distortions in the signal transmission.  

 
 (a) (b) 

Fig. 2.2. The 3D electric field distribution of the main mode propagating in the square 5x5 
mm2 metamaterial waveguide. (a) – f= 95 GHz, (b) – f=110 GHz.  

The 3D electric field distributions of the main mode at f = 95 GHz and 110 GHz are shown in 
Fig. 2.2. The metamaterial has ǆmet = -23.75-i 18.75 and Ǎmet = 1.75+i 6.25 at f = 95 GHz. The 
metamaterial has ǆmet = -10.83-i0.02 and Ǎmet = 0.5 – i 0.01 at f = 110 GHz.  

We see that the waveguide losses are large at f = 95 GHz and they are low at f = 110 GHz 

(Fig. 2.1(b)). We present here the electric field line distribution at these two frequencies in 

order to compare how the losses influence on the field picture. The calculations of the 

electric fields in this section were fulfilled at the approximately 10000 points in every cross-

section. 

The metamaterial is an epsilon-negative media at f = 95 GHz and f = 110 GHz. In Fig. 2.2(a) 

we see the electric field is very small in the center of the waveguide cross-section. Such 

distribution can be explained by the large loss at f = 95 GHz and the EM wave does not 

deeply penetrate into the metamaterial. The refractive index of single negative metamaterial 

and the transverse propagation constants of waveguide made of the metamaterial are 

imaginary numbers. For this reason the electric field concentrates near the waveguide 

border. The tendency of the field to concentrate at the interface of the single negative 

metamaterial is the important feature of this kind metamaterial.  

The behaviour of the EM field components when approaching to the apex of the waveguide 

cross-section contour (waveguide edge) are an important point of an electrodynamical 

solution. We would like to note that the condition on the waveguide edge is satisfied in our 

solutions of considered electrodynamical problems. 

Examining the electric field lines near the upper right corner of the square waveguide we 

would like to note that the electric field lines are directed counter-clockwise on the right side 

of the corner and the lines are directed clockwise on the left side of the corner. The electric 
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field lines near the left bottom corner of the square waveguide are distributed in similar 

way. The lines are directed counter-clockwise on the right side of the corner and they are 

directed clockwise on the left side of the corner. The electric field lines are diverging of the 

left bottom corner while the lines are converging to the right upper corner. For this reason, 

we believe that there is an increased density of electric lines in the upper corner and the 

weaker density in the bottom corner (Fig. 2.2(a)). 

The same effect of no uniformity in the electric field distribution on the waveguide 
perimeter we can see for the circular waveguide (see below in section 2, Figs 2.2, 2.3).  

f = 95 GHz, square waveguide 5x5 mm2 

Ez [V/m] Ex [V/m] Ey [V/m] 

3.765·10-1 - i 6.411·10-1 1.5099-i 2.1941 -0.9943+i 1.9673 

Hz [A/m] Hx [A/m] Hy [A/m] 

-3.39·10-2 + i 7.51·10-2 -7·10-4 + i1.1·10-3 2.6·10-3 – i 3.9·10-3 

f = 110 GHz 

Ez [V/m] Ex [V/m] Ey [V/m] 

-1.2766·10-5 – i 1.6592·10-5 0.0134 + i 0.0211 -0.0291 + i 0.0702 

Hz [A/m] Hx [A/m] Hy [A/m] 

-3.0·10-3 - i 2.9·10-3 1.3048·10-4 –i 3.0558·10-4 5.9501 10-5+i 1.0936·10-4 

Table 2.1. The EM field components of the main mode at the point with coordinates 
x = 4 mm and y = 4 mm when f=95 GHz and f=110 GHz  

f = 95 GHz, square waveguide 5x5 mm2 

Ez [V/m] Ex [V/m] Ey [V/m] 

3.932·10-1 - i6.181·10-1 1.3730 - i1.8577 -9.535·10-1+ i 1.6598 

Hz [A/m] Hx [A/m] Hy [A/m] 

-3.20·10-2+ i6.36·10-2 -8·10-4 + i1.4·10-3 2.5·10-3- i3.4·10-3 

f = 110 GHz 

Ez [V/m] Ex [V/m] Ey [V/m] 

1.3083·10-6-i1.2678·10-5 -4.6·10-3 + i2.30·10-2 -2.63·10-2 + i4.31·10-2 

Hz [A/m] Hx [A/m] Hy [A/m] 

-1.9·10-3 - i2.4·10-3 1.0715·10-4 - i1.7759·10-4 -2.7720·10-5+i1.0632·10-4 

Table 2.2. The EM field components of the first higher mode at the point  
with coordinates x = 4 mm and y = 4 mm when f = 95 GHz and f = 110 GHz 

In tables 2.1 and 2.2 we demonstrate the values of complex EM field components of the main 

mode and the first higher mode at two frequencies. On the base of the table data we can say, 

that the both modes on these frequencies are hybrid modes. 

We do not classified the waveguide modes here in the usual way, e.g. the hybrid magnetic 

HEmn or the hybrid electric EHmn modes because the kind of mode of strong lossy 

waveguides may change when we change the frequency [Nickelson et al., 2011; Asmontas et 

al., 2010]. 
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 (a) (b) 

Fig. 2.3. The 3D electric field distribution of the first higher mode propagating in the square 

5x5 mm2 metamaterial waveguide. a) – f= 95 GHz, b) – f= 110 GHz. 

In Fig. 2.3(a) we see that the electric field at f = 95 GHz for the first higher modes is also 

concentrated near the metamaterial borders and the strongest field is at two diagonal 

corners of the cross-section, i.e. at the right upper corner and the left bottom corner. There is 

a strong asymmetry of the electric field distribution on the perimeter of waveguide. It 

happened probably by reason that the real and imaginary parts of permittivity are negative 

and relatively large at this frequency.  

In Figs  2.2(b)–2.3 (b) we see that the electric field distributions of the main and first higher 

modes have a more homogeneous picture in the waveguide cross-section at f = 110 GHz. 

This happened because the electric field penetrates deeper into the metamaterial at this 

frequency because the waveguide loss is small at f = 110 GHz (Fig. 2.1(b)). We can also see 

here some asymmetry of electric field lines on the waveguide cross-section. The projections 

of the vector electric fields on the waveguide sidewalls are depicted along the waveguide 

(Figs 2.2-2.3).  

2.2 Numerical investigations of square 4x4 mm
2
 metamaterial waveguide 

The dispersion characteristics of the square metamaterial waveguide are presented in Fig.2.4 

(Gric et al., 2010). We used the values of ǆrm and Ǎrm from (Penciu et al, 2006). In Fig. 2.4(a) 

the normalized propagation constant h'/k is shown. In Fig. 2.4(a) we see that the magnitude 

h' is less than the wave number k in the frequency range 85-108 GHz. It means that at these 

frequencies the main and the first higher modes are fast waves. The wavelengths of both 

modes differ slightly. The losses of both propagating modes in the metamaterial square 

waveguide change in very complicated way when the frequency increases. Mode losses 

have several maximums and minimums. We see that the losses of the main mode become a 

very small at the frequency 103.75 GHz.  
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 (a) (b)  

Fig. 2.4. The dispersion characteristics of the square 4x4 mm2 metamaterial waveguide  

(a) – the dependence of the normalized propagation constant, (b) - the dependence of the 

attenuation constant on frequencies.  

In Fig. 2.5 we see that the electric field is weak inside of square metamaterial waveguide of 

size 4x4 mm2 at f=92.5 GHz. The electric field lines concentrate in the two diagonal 

waveguide corners in other way in the comparison with the waveguide of size 5x5 mm2 at 

f=95 GHz. 

 

Fig. 2.5. The 3D vector electric field distribution of the main mode propagating in the open 

square 4x4 mm2 metamaterial waveguide at f=92.5 GHz. 

The 3D electric field distribution of the main mode at the frequency 92.5 GHz is depicted in 

Fig. 2.5. The permittivity of the metamaterial at f=92.5 GHz is -35-i2.5 and the permeability 

is 2.25+i0.25. The metamaterial is a single negative matter. The calculations of the electric 

fields were fulfilled at the approximately 160 points in every cross-section (Fig 2.5). 
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3. Investigations of the circular waveguides by the partial area method 

Here the open circular metamaterial waveguide is investigated by the partial area method 

(Nickelson et al., 2008). The presentation of longitudinal components of the electric Ezm and 

magnetic Hzm fields that satisfy to the Maxwell’s equations in the metamaterial medium is in 

the form: 

 Ezm =A1Jm(k +
⊥ r)exp(imφ),    Hzm =B1Jm(k +

⊥ r)exp(imφ) (3.1) 

where A1, B1 are unknown arbitrary amplitudes, Jm is the Bessel function of the m−th order, 

k +
⊥ is the transverse propagation constant of the metamaterial medium, r is the radius of the 

circular metamaterial waveguide, m is the azimuthal index characterizing azimuthal 

variations of the field, φ is the azimuthal angle. The presentation the electric field Eza and the 

magnetic field Hza components that satisfy to Maxwell’s equations in air are: 

 Eza =A2Hm(k −
⊥ r)·exp(imφ),    Hza =B2Hm(k −

⊥ r)·exp(imφ) (3.2) 

where A2, B2 are unknown arbitrary amplitudes, Hm is the Hankel function of the m−th 

order and the second kind, k −
⊥  is the transverse propagation constant of air medium.  

As far as the circular waveguide is researched in the cylindrical coordinate system we have 

to satisfy the boundary conditions for two components of the electric field (Eφ, Ez) and the 

magnetic field (Hφ, Hz) on the cylindrical interface metamaterial-air. The condition at 

infinity also is satisfied. The sign of k −
⊥  changes on the opposite one for the metamaterial 

hollow-core waveguide, when a hole is surrounded by a metamaterial medium. After 

substitution of expressions (1) and (2) in the transverse components expressed in terms of 

the longitudinal components (Kong, 2008) we obtain the expressions of all transverse EM 

field components. The result of solution is the dispersion equation in the determinant form. 

We determine complex roots of the dispersion equation by using of the Muller method.  

3.1 Investigations of the circular metamaterial waveguide (r=2.5 mm) by the partial 
area method 

We discovered the particularity in the electric field distribution on the cross-section of the 

open circular metamaterial waveguide at the operating frequency 95 GHz. We find that this 

waveguide could be used as a narrowband filter at frequencies 102-102.5 GHz. 

The circular metamaterial waveguide with r=2.5 mm was researched. The dispersion 

characteristics and the 3D electric and magnetic field distributions were calculated (see Figs 

2.1-2.5). The dispersion characteristics are presented in Fig. 3.1. The main mode is denoted 

with black points and the first higher mode is denoted with circles. 

In Fig. 3.1 (a) we see that the normalized propagation constants of the main and the first higher 
modes are fairly smooth except only one protrusion at frequencies between 97 GHz and 102 
GHz. There is a large peak of the main mode losses at frequency f = 101.25 GHz. At this 
frequency metamaterial is double negative with ǆr,met = -9.17 -i0.83 and Ǎr,met = -0.75. We see 
that losses of the main mode are very small at the frequency ranges 75-100 GHz and 102.5-115 
GHz. While the losses of the first higher mode are significantly higher at this frequency ranges 

www.intechopen.com



 
Metamaterial 

 

34

(Fig. 3.1(b)). Therefore the investigated circular metamaterial waveguide can be used as a filter 
at the frequencies 100-102.5 GHz and as a one mode lossless waveguide at the frequency 
ranges 75-100 GHz and 102.5-115 GHz. As we can see the first higher mode is a quickly 
attenuated wave because it has very large losses in all frequency range.  
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             (a)               (b) 

Fig. 3.1. The dispersion characteristics of the circular metamaterial waveguide with r=2.5 
mm (a) – the dependence of the normalized propagation constant, (b) – the dependence of 
the attenuation constant on frequencies. 

The 3D electric field distributions of the main mode were calculated at frequencies 95 GHz 
and 110 GHz (Fig. 3.2 and 3.3) as well as the first higher mode at the same frequencies (Fig. 
3.4 and 3.5). The electric field inside the circular metamaterial waveguide is much smaller 
than outside of waveguide for this reason we have increased the electric field strength lines 
inside of the waveguide in order to see them (Figs 3.2(b) – 3.5(b)).  

Because the metamaterial has more losses at 95 GHz than at 110 GHz, so the electric field 
inside of waveguide is weaker at 95 GHz (see tables 3.1, 3.2) compare to the inner electric 
field at 110 GHz. On this reason we increased the electric field strength lines at 95 GHz in 
the 143 times and at 110 GHz in the 14 time. The calculations of the electric fields were 
fulfilled at the approximately 10000 points in every cross-section. 

f = 95 GHz, waveguide diameter 5mm
Ez [V/m] Ex [V/m] Ey [V/m]
-2.5897·10-5+i2.7266·10-4 -2.8425·10-5+i1.9342·10-5 4.5991·10-6-i3.3487·10-5 
Hz [A/m] Hx [A/m] Hy [A/m]
2.5111·10-7-i2.0158·10-7 -2.3843·10-8-i2.8570·10-8 2.5496·10-6 +i1.8364·10-7 
f = 110 GHz 
Ez [V/m] Ex [V/m] Ey [V/m]
0.0067 +i0.0067 -0.0027 + i0.0027 -7.8928·10-4 -i7.8928·10-4 
Hz [A/m] Hx [A/m] Hy [A/m]
3.1409·10-12 -i1.1109·10-5 -3.3354·10-6-i3.3354·10-6 7.1930·10-5 -i7.1930·10-5 

Table 3.1. The electromagnetic field components of the main mode at the point 
with coordinates r = 2 mm, φ = 45° when f = 95 and f = 110 GHz  
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 (a) (b)  

Fig. 3.2. The 3D electric field distributions of the main mode of circular metamaterial 

waveguide with r=2.5 mm at f = 95 GHz. (a) – the electric field strength lines outside the 

waveguide (b) – the 143 times were increased electric field strength lines inside the 

waveguide. 

In In Figs 3.2–3.5 we see that the electric field is irregular on the waveguide perimeter of the 

cross-section while the cross-section of the waveguide is a circle. We see that and the most 

part of the electric field localizes on the border and outside of the waveguide. The electric 

field is strongest outside the waveguide when φ is 0 or π radians. The electric field has the 

minimum values and the electric field lines are directed clockwise or counter-clockwise to 

the right and left of the points with φ equal to π/2 or 3π/2 radians (Figs 3.2(a)–3.5(a)). We 

see that at the points when the electric field outside of the metamaterial waveguide has the 

maximum value the field inside of the waveguide is minimal. In Figs 3.2(b)–3.5(b) we see 

that the maximum electric field inside the metamaterial waveguide is when φ is equal to 

π/2 or 3π/2 radians. The length of the circular waveguide in z-direction (the Figs 3.2– 3.5) is 

three times longer than wavelength of microwave in the waveguide in our calculations. 

f = 95 GHz, waveguide diameter 5 mm 

Ez [V/m] Ex [V/m] Ey [V/m] 

1.6760·10-4 -i3.3526·10-4 3.5399·10-5-i1.2553·10-5 -2.7112·10-5-i1.2042·10-6 

Hz Hx Hy 

-1.8851·10-7-i1.9128·10-7 4.6704·10-8+i8.1377·10-8 -3.1731·10-6-i1.4861·10-6 

f = 110 GHz 

Ez [V/m] Ex [V/m] Ey [V/m] 

-5.3·10-3 -i1.22·10-2  4.1·10-3 -i2.1·10-3 -3.2013·10-4 +i9.6358·10-4 

Hz Hx Hy 

-1.0713·10-5+i9.0740·10-7 7.1766·10-6+i9.3919 -1.3582·10-4+i5.6938·10-5 

Table 3.2. The EM components of the first higher mode with coordinates at the point with 

coordinates r = 2 mm , φ = 45° when f=95 and f=110 GHz  
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 (a) (b)  

Fig. 3.3. The 3D electric field distributions of the main of circular metamaterial waveguide 
with r=2.5 mm at f = 110 GHz. (a) – the electric field strength lines outside the waveguide  
(b) – the 14 times were increased electric field strength lines inside the waveguide 

 
 (a) (b)  

Fig. 3.4. The 3D electric field distributions of the first higher mode of circular metamaterial 
waveguide with r=2.5 mm at f = 95 GHz (a) – the electric field strength lines outside the 
waveguide (b) – the 143 times were increased electric field strength lines inside the 
waveguide  

We can see that the electric field along the waveguide changes periodically (Figs 3.2–3.5). 
Comparing Figs 3.2(a) and 3.3(a) we see that the main mode’ electrical field at 110 GHz is 
large and have a little different distribution in longitudinal direction in comparison with the 
electrical field at 95 GHz. Since the waveguide losses of the main mode at frequencies 95 
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GHz and 110 GHz are small (please, compare with losses of square waveguide (Fig.2.1)), for 
this reason the electric field amplitudes vary slightly in the longitudinal direction. 
Comparing Figs 3.4 and 3.5 we see that the larger is the electrical field outside of the 
waveguide at the point with a certain angle φ the smaller is the electrical field inside of 
waveguide at the point with the same φ. The last statement is true for all the investigated 
cases. The electric field amplitude of the first higher mode became smaller in longitudinal 
direction with increasing of coordinate z (Figs 3.4(b) and 3.5(b)). We observe in this case, the 
fast wave attenuation. It happened because the losses of the first higher mode at 95 GHz and 
110 GHz are enough large in comparison with the main mode (Fig. 3.1(b)).  

The electrical field inside of the waveguide is very small at all frequencies. However the 
observable electric field strength lines appear at the waveguide boundary.  

We would like to note that the boundary conditions on the border of waveguide are 
satisfied, i.e. the tangential components of electric and magnetic fields are equal on the 
interface air-metamaterial. For this reason when the electric field lines has a tangential 
character outside the waveguide (Figs 3.2(a), 3.3(a)) the same character of tangential 
components has to be on the interface of the metamaterial side. The direction of electric field 
lines changes with removing deeper in the metamaterial from the interface. 

 
 (a) (b)  

Fig. 3.5. The 3D electric field distributions of the first higher mode of circular metamaterial 
waveguide with r=2.5 mm at f = 110 GHz (a) – the electric field strength lines inside the 
waveguide (b) – the 14 times were increased electric field strength lines outside the 
waveguide. 

Comparing dispersion characteristics of square and circular waveguides (Figs 2.1 and 3.1) we 
see that they are different due to the boundary conditions, which have a strong influence on 
the dispersion characteristics in our frequency range. As an additional example, the dispersion 
characteristic (2πf· SQRT(ǆr,met Ǎr,met) of plane EM wave propagating in the same metamaterial 
only when the one has the infinite dimensions is strongly different in comparison with the 
waveguide dispersion characteristics. The relatively small losses of the EM wave in the infinite 
metamaterial are only at the frequencies between 102.5 GHz and 105 GHz. 
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We would like to draw attention to the fact that the feature of the irregular distribution of 
electric field lines in the cross-section of square and circular metamaterial waveguides at 95 
GHz is very similar. 

3.2 Investigations of the circular metamaterial waveguide (r = 2 mm) by the partial 
area method 

3.2.1 The metamaterial rod waveguide 

We have investigated circular metamaterial waveguides by our algorithm that was created 
using the partial area method (Nickelson et al., 2008).  

In Fig. 3.6 the dispersion characteristics of the metamaterial waveguide are presented. In 
Fig. 3.6 (a) the normalized propagation constant h'/k of the main mode and the first higher 
mode is shown. The main mode is denoted with black points and the first higher mode is 
denoted with circles. 
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   (b)                (c)  

Fig. 3.6. The dispersion characteristics of the circular metamaterial waveguide with r=2 mm 
(a) – the dependence of the normalized propagation constant, (b), (c) – the dependence of 
the attenuation constant on frequencies. 
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In Fig. 3.6 (b) losses of the main mode are shown. In Fig. 3.6 (c) losses of the first higher 
mode are presented. We show the losses of the modes in the different scales because the 
losses are not commensurate. We see (Fig. 3.6 (a)) that the main mode is a slow mode and 
the first higher mode can be a slow mode or a fast mode dependent on the frequency range.  

There are two frequency ranges 75-97.5 GHz and 100-115 GHz when losses of the main 
mode are extremely small. On the other side there are frequency ranges, for example f=95 - 
101.25 GHz and f=107.5-115GHz when losses of the first higher mode are large.  

 
 (a) (b)  

Fig. 3.7. The 3D vector electric field distributions of the main mode of circular metamaterial 
waveguide with r=2mm (a) – inside; (b) – inside and outside it. 

We have calculated the 3D vector electric field distributions of the main mode propagating 

in the open circular metamaterial waveguide. The calculation was fulfilled inside and 

outside the waveguide in 1500 points. The electric field distributions were calculated at 

frequency f=95 GHz. At this frequency the metamaterial is single-negative. At this 

frequency ǆr,met = -23.75- i18.75 and Ǎr,met = 1.75+ i1.625. 

In Fig. 3.7(a) an enlarged picture of the electric field lines inside the metamaterial waveguide 

is shown. We see that the strongest electric field is in the thin surface layer which is located 

at the interface metamaterial-air. In Fig. 3.7(b) the electric field lines inside and outside of 

the metamaterial waveguide are shown. In Fig. 3.7(b) we see that the electric field inside the 

waveguide is significantly weaker than outside it. We also clearly see that the electric field 

distributions are periodically repeated in the longitudinal direction. 

3.2.2 The metamaterial hollow-core waveguide 

The dispersion characteristics of the metamaterial hollow-core waveguide with the radius of 

the hole (in the metamaterial medium) equal to 2 mm are presented in Fig. 3.8.  

In Fig. 3.8 (a) dispersion characteristics of the main and the first higher modes are presented. 
Both modes are the fast ones. Their electromagnetic energy concentrates in the hollow-core 
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air area. There are the frequency ranges where modes propagate with very small losses. We 
can see that losses of the main mode in the frequency range 75-90 GHz and 104-115 are very 
low and they can be large in the frequency range 91.25-103.75 GHz. The first high mode’ 
losses change abruptly. The losses can be very low at some frequencies approximately 75- 87 
GHz, 106 and 111 GHz. 

Losses of the first high mode are low and this mode can easily propagate and it can 
modulate the amplitude of the main mode in devices that were created on the base of the 
metamaterial waveguide with r=2 mm. There is also good possibility to create a devise on 
the base of the first high mode in the range f=95-105 GHz.  

We have calculated the 3D vector electric field distributions of the main mode propagating 
in the hollow-core metamaterial waveguide. The electric field distributions were calculated 
at frequency f = 95 GHz. The calculations of the electric fields were fulfilled at the 
approximately 10000 points in every cross-section. 
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 (b) (c)  

Fig. 3.8. The dispersion characteristics of the hollow-core metamaterial waveguide with r=2 
mm (a) – the dependence of the normalized propagation constant, (b)& (c) – the dependence 
of the attenuation constant on frequencies. 
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In Fig. 3.9 we see that the electric field inside the air hole is significantly weaker than outside 

in the metamaterial media. We also clearly see that the electric field distributions are 

periodically repeated in the longitudinal direction. As the waveguide losses exist only in the 

metamaterial and the most part of EM energy propagates into air hole then we see no 

decrease in the amplitude of the electric field with a change in coordinate z (please, compare 

with Figs 3.4(b), 3.5(b)). 

 

Fig. 3.9. The 3D vector electric field distribution of the main mode of the hollow-core 
metamaterial waveguide with r=2 mm at frequency 95 GHz.  

4. Conclusions on sections 2&3 

1. The open lossy metamaterial waveguides with different shapes of the cross-section 
were investigated by using of our computer programs that have written in MATLAB 
language. The computer codes were based on the method of singular integral equations 
and the partial area method. 

2. We have calculated the dispersion characteristics (the propagation and attenuation 
constants) at the frequency range 75-115 GHz as well as the 2D and 3D electromagnetic 
field distributions. We took the electromagnetic parameters of metamaterial close to 
practice. Our computer algorithms can be useful working out microwave devices on the 
base of waveguides made of strong lossy materials.  

3. We discovered the special feature of the open lossy metamaterial waveguides. 
Propagation and attenuation constants depend on the waveguide sizes in an 
unpredictable complex manner. E.g., the circular metamaterial waveguide with r=2.5 
mm (Fig. 3.1) and r=2 mm (Fig. 3.6).  

4. The microwave signals propagating on the open metamaterial waveguides (r=2.5 mm) 
are absorbed at the narrow 2.5 GHz frequency range. This waveguide can be used as a 
band-stop filter at f1=100-102.5 GHz when the losses in the passing frequencies 75-100, 
102.5-115 GHz are 100 times less than losses at f1.  
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5. Investigated EM fields of square and circular waveguides have irregular distributions 
on the waveguide perimeter. Investigated EM field lines for the main and first higher 
modes of the squire waveguides are concentrated near the metamaterial borders and 
the strongest field is at two diagonal corners of the cross-section. The electric field lines 
are diverging of the one corner while the lines are converging at the other corner.  

5. Dispersion characteristic analysis of circular anisotropic metamaterial 
waveguide with the effective metamaterial permittivity and permeability near 
to zero 

5.1 Introduction 

In the past several years many specialist focused on the experimental and theoretical 
investigations of the zero-refractive index (or zero-index) metamaterials. These 
metamaterials attracted researches due to their unconventional constitutive parameters and 
anomalous effects to work out novel electromagnetic devices. Zero- index metamaterial may 
have the epsilon-near-zero (ENZ) or mu-near-zero (MNZ) properties simultaneously or in 
turn, one after another at different frequencies.  

Zero-index metamaterials are dispersive (electromagnetic parameters dependence on a 
frequency) media. The constitutive parameters of anisotropic dispersive metamaterials can 
be described by expressions that involve the plasma frequencies. The metamaterial on 
frequencies near to plasma resonances is called a plasmonic metamaterial.  

Zero-index metamaterials are used in different devices as a transformer to achieve the 
perfect impedance match between two waveguides with a negligible reflection or to 
improve the transmission through a waveguide bend as well as for the matching of 
waveguide structure impedance with the free space impedance (when the metamaterial 
epsilon and mu are simultaneously very close to zero). Plasmonic metamaterial provides 
manipulating of the antenna phase fronts and enhancing the antenna radiation directivity. 
In a Zero-index metamaterial waveguide can be observed a super-tunneling effect. ENZ 
metamaterials may allow reducing of waveguide sizes and can be used as a frequency 
selective surface (Bai et al., 2010; Ko&Lee, 2010; Lopez-Garcia et al., 2011; Luo et al., 2011; 
Wang & Huang, 2010; Oraizi et al. 2009; Zhou et al., 2009, Liu et al., 2008). 

5.2 Analysis and simulation of phase constant dependencies 

Here we presented the phase constant (real part of the waveguide longitudinal propagation 
constant) of propagating modes on the circular anisotropic metamaterial waveguide when 
the metamaterial permittivity and permeability may take values close to zero at certain 
frequencies. Further we call a plasmonic waveguide. 

The solution of Maxwell’s equations for the circular anisotropic metamaterial waveguide 
was carried out by the partial area method (Nickelson et al., 2009). The computer program 
for the dispersion characteristic calculations has created in MATLAB language. Computer 
program allows take into account a very large material attenuation (Nickelson et al., 2011; 
Asmontas et al., 2010). In this section constitutive parameters of the uniaxial electrically and 
magnetically anisotropic metamaterial were taken from the article (Liu et al., 2007). In the 
mentioned article was considered an anisotropic dispersive lossless metamaterial slab. For 
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this reason there were given only the real parts of the permittivity ǆr,ij = (ǆxx, ǆxx, ǆzz) and 
permeability Ǎr, ij =(Ǎxx, Ǎxx, Ǎzz) tensor components. 

The tensor components of the relative permittivity and the relative permeability are 

described by following formulae (Liu et al., 2007): 

 ǆxx=1- ǚ2epxx/ ǚ2,     ǆzz=1- ǚ2epzz/ ǚ2, (5.1) 

 Ǎxx=1- ǚ2mpxx/ ǚ2,     Ǎzz=1- ǚ2mpzz/ ǚ2, (5.2) 

here ǚ=2πf is the angular frequency of microwaves, f is the operating frequency. The electric 

plasma frequencies of metamaterial are ǚepxx= 2πfepxx, fepxx=(12)1/2 GHz, ǚepzz=2πfepzz, 

fepzz=2.5 GHz. The magnetic plasma frequencies of metamaterial are ǚmpxx= 2πfmpxx GHz, 

fmpxx = (6)1/2 GHz and ǚmpzz=2πfmpzz GHz, fmpzz=2 GHz. The values of angular frequencies 

are taken from (Liu et al., 2007). The magnitudes of tensor components ǆxx, ǆzz, Ǎxx, Ǎzz are 

real numbers. In Fig. 5.1(a,b) are presented their dependencies on the frequency.  

 
(a)        (b) 

Fig. 5.1. Dependences of the relative (a) permittivity and (b) permeability tensor components 
of the metamaterial on the frequency. 

We see that the permittivity components ǆxx and ǆzz have negative values from 1.5 to ~3.5 GHz 

and from 1.5 to ~2.5 GHz, respectively. The permeability components Ǎxx and Ǎzz have 

negative values from 1.5 to~2.5 GHz and from 1.5 to ~2 GHz, respectively. We realize that all 

tensor components are negative at the frequency range from 1.5 GHz to ~2 GHz. Absolute 

values of tensor components are less than 1 at the frequency range from ~2.5 GHz to 4 GHz. 

The values of tensor components become equal to zero at the operating frequency f equal to 

the metamaterial electric fepxx=3.46 GHz, fepzz= 2.5 GHz or magnetic fmpxx =2.45 GHz, fmpzz=2 

GHz plasma frequencies. 

In Figs. 5.2–5.7 are shown dispersion characteristics (phase constants) of open circular 

waveguide made of the uniaxial electrically and magnetically anisotropic metamaterial. The 

calculations are performed for the left-handed (extraordinary) circularly polarized 

microwaves when exp(+imφ), m=0, 1, 2,…is the wave (mode) azimuthal periodicity index, φ 

is the azimuthal coordinate. We investigated only modes with the index m=1, because it is 
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known the main mode of open circular dielectric waveguide specify by m=1 and the main 

mode of a dielectric waveguide is a hybrid mode HE11 (Nickelson et al., 2009). 

Here is presented the phase constant h‘ (the real part of longitudinal propagation constant) 
dependencies of plasmonic metamaterial waveguides with radii r equal to 0.1 mm, 1 mm, 3 
mm, 5 mm, 7 mm, 10 mm and 15 mm. The phase constant h‘ is equal to 2π/ǌw, where ǌw is 
the wavelength of certain mode. Our aim is to investigate how an increase in the plasmonic 
waveguide radius affects on the eigenmode numbers, mode cutoff frequencies and a shape 
of dispersion characteristics.  

The analysis of Figs 5.2-5.5 shows that there are three main frequency areas where localize 
dispersion curves.  

A shape all dispersion characteristics Figs 5.2-5.5 are unusual in the comparison with 
traditional dispersion characteristics of open cylindrical waveguides made of dielectrics, 
semiconductors or magnetoactive semiconductor plasma (Nickelson et al., 2011; Asmontas 
et al., 2009; Nickelson et al., 2009). Because the dispersion characteristic branches of 
analyzed plasmonic waveguides are vertical.  

 
          (a)              (b)  

Fig. 5.2. The phase constant dependencies of propagating modes on the anisotropic 
metamaterial waveguide with (a) r=0.1 mm and (b) r=1 mm. 

We see that there is a single mode with the cutoff frequency close to f=1.5 GHz. The cutoff 
frequency of this mode shifted in the direction of lower frequencies with increasing of the 
waveguide radius. This first single mode is special one because the mode does not match 
any of plasma fepxx, fepzz, fmpxx, fmpzz frequencies. We can observe how a shape of the 
dispersion characteristic changes in the vicinity of the cutoff frequency.  

We would like to draw your attention to the fact that the anisotropic metamaterial is 
described by the negative tensor components ǆxx, ǆzz, Ǎxx, Ǎzz in the frequencies less than 2 
GHz (see formulae 5.1 and 5.2). It is mean that the first mode propagates in the waveguide 
when the metamaterial is double negative (DN). This wave is particularly important because 
small changes in frequency produce large changes in phase. 

We can watch a package of dispersion branches closed to cutoff frequency 2.5 GHz. We see 
that the left lateral dispersion branch of the package is a special eigenmode, i.e. this one is 
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separated by a larger distance from other eigenmodes. The vertical branch of the left lateral 
mode is located at the magnetic plasma fmpzz frequency equal to 2 GHz. We can distinguish 
also the right lateral dispersion branch of the package. The mode with this dispersion 
characteristic is also more specific one. i.e. this mode is separated by a larger distance from 
other modes. The vertical branch of this mode is located about 2.7 GHz and shifted on the 
higher frequency side with increasing of a radius. 

 
         (a)               (b)  

Fig. 5.3. The phase constant dependencies of propagating modes on the anisotropic 
metamaterial waveguide with (a) r=3 mm and (b) r =5 mm. 

 
           (a)                  (b) 

Fig. 5.4. The phase constant dependencies of propagating modes on the anisotropic 
metamaterial waveguide with (a) r=7 mm and (b) r=10 mm. 

A dense bunch of dispersion curves located between the extreme left and right curves that 

were previously described. The number of curves increases rapidly at increasing of 

waveguide radius. It is interesting to note that all dispersion branches of the dense bunch 

are within the frequency band of 2-2.5 GHz. Apparently the dense bunch of dispersion 

characteristics related to plasma fmpzz and fepzz frequencies. The cutoff frequencies of all 

dispersion characteristics of the dense bunch are the same and equal to f~2.46 GHz. The 

dispersion curves fan out from a point with a value equal to fmpxx. 
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Second dense bunch of dispersion curves is at the electric plasma frequency fepxx~3.46 GHz. 
The number of curves increases rapidly at increasing of waveguide radius. All dispersion 
characteristics are within the frequency band of 2.5 GHz and 3.46 GHz. 

  
          (a)              (b)  

Fig. 5.5. The phase constant dependencies of propagating eigenmodes on the open 
plasmonic metamaterial waveguide with (a) r=10 mm (b) r=15 mm. 

The dispersion characteristics on the right side of the bunch are more vertical. The greatest 
number of modes can be excited at the electric plasma frequency fepxx~3.46 GHz in the 
comparison with other plasma frequencies. The cutoff frequencies of dispersion 
characteristics of this dense bunch are the same and equal to f~3.46 GHz. We did not find 
the plasmonic metamaterial waveguide eigenmodes in the frequency range from 3.5 GHz 
till 2000 GHz. 

We expanded the searching of eigenmodes on frequencies below f=1 GHz for the plasmonic 
waveguide with r= 15 mm. In Fig. 5.5 (b) is shown eigenmodes dispersion characteristics of 
plasmonic metamaterial waveguide in the frequency range from 5 MHz till 3.5 GHz. We 
present here more detailed calculations of the dispersion characteristics of the plasmonic 
waveguide eigenmodes with the radius equal to 15 mm (Figs. 5.6 and 5.7). Here are 
presented the new dispersion characteristic branches of waveguide eigenmodes in the band 
of frequency from 5 MHz till 600 MHz (Fig. 5.6 (a)). We see that the dispersion curves have 
the clear expressed cutoff frequencies and they have an opposite slope in the comparison 
with dispersion curves of open ordinary waveguides (Nickelson et al., 2011; Asmontas et al., 
2010). 

It should be stressed that these very low frequency dispersion characteristics have obtained 
by solving of Maxwell’s equations with certain boundary conditions. These low frequency 
modes are also the metamaterial waveguide eigenmodes. 

In the Fig. 5.6 (b) is shown the dispersion characteristic of a singular mode on a larger scale. 
We see that this mode from 1.35 till ~1.45 GHz is a static mode, because no dependence on 
the frequency. We can observe the anomaly dispersion closed to f~ 1.45 GHz and the very 
strong dispersion in the frequency band over ~1.47 GHz. We can see the dispersion curves 
in the area of cutoff frequencies on a larger scale 1.9-2.5 GHz in Figs 5.7(a) and (b). We can 
note the anomalous dispersion hook of eigenmodes in the band f=1.9-2 GHz. 
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 (a) (b)  

Fig. 5.6. Low frequency branches of phase constants of open plasmonic metamaterial 

waveguide with r=15 mm at frequencies: (a) f=0.005-0.06 GHz and (b) f=1.35-1.55 GHz. 

 

 (a) (b)  

Fig. 5.7. Frequency branches of phase constants of waveguide with r=15 mm at frequencies: 

(a) 1.9-2.5 GHz and (b) 2.3-2.45 GHz. 

6. Conclusions 

1. The open anisotropic metamaterial waveguides with seven different radii were 

investigated by using of our computer programs that have written in MATLAB 

language. The algorithm is based on the partial area method. 

2. We discovered the anomalous dispersion of the analyzed plasmonic waveguide 

eigenmodes (Figs. 3.2-3.5). 

3. We find a mode with the cutoff frequency close to f=1.5 GHz with some anomalous 

features, e.g. the small changes in the frequency produce the very large changes in 

phase. This property could be useful in practical realizations. 
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7. Microwave scattering and absorption by layered metamaterial-glass 
cylinders 

In this section we are going to give our calculation results for a single-layered cylinder and a 
twelve layered cylinder. The single–layered cylinder consists of a metamaterial core which is 
coated with an acrylic-glass layer. The twelve-layered cylinder consists of a conductor core 
which is covered with 12 metamaterial and acrylic-glass alternately layers. The acrylic-glass 
material is an external layer of each cylinder. The calculation of the scattered (reflected) and 
absorbed powers are based on the rigorous solution of scattering boundary problem 
(Nickelson & Bucinskas, 2011). The solution of mentioned electrodynamical problems and 
expressions of absorbed and scattered powers are given in article (Bucinskas et al., 2010).  

The number and thickness of layers is not limited in the presented algorithm. The central 
core of multilayered cylinder can be made of different isotropic materials as a metamaterial, 
a ceramic matter or a semiconductor as well as of a perfect conductor. The isotropic coated 
layers can be of strongly lossy (absorbed) materials. 

The signs of the complex permittivity and the complex permeability can be negative or 
positive in different combinations.  

Here are presented the scattered and absorbed power of layered cylinder dependent on the 
hypothetic metamaterial permittivity and permeability signs and losses. We used for 
calculations our computer programs which are written in FORTRAN language. 

The extern radius of both (single- and twelve-layered) cylinders is the same and equal to 2 
mm. We show here our results only in the frequency range from 1 till 120 GHz. We present 
dependencies of the scattered and absorbed powers by the cylinders at the incident 
perpendicularly (the angle Ǚ = 0o, Fig. 7.1) and parallel (the angle Ǚ = 90o, Fig. 7.1) polarized 
microwaves. An incident angle of microwave is θ= 90o here. 
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Fig. 7.1. N-layered metamaterial-glass cylinder model and designations 

We admitted that acrylic-glass material is a non-dispersive and weakly lossy one with the 
complex permittivity εg = ǆg’-iǆg” = │εg│exp(-i ǅg) = 3.8 – i 0.0005, i.e. the phase of the 
complex glass permittivity is ǅg=arctan(εg’/εg”) =1.3·10-4 [rad] and the glass permeability is 
equal to Ǎg =1. 
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The complex metamaterial permittivity is εmet = ǆ’met - iǆ”met = │εmet│exp(-i ǅmet). The complex 
permeability is Ǎmet = Ǎ’met-iǍ”met = │εmet│exp(-i ǅmet). The metamaterial ǆmet and Ǎmet are the 
same for the single-layer and twelve-layer cylinders. The module of the metamaterial 
permittivity is |ǆmet|=20 and the metamaterial permeability is |Ǎmet|=2. The phase of 
metamaterial permittivity is ǅǆ,met=0.7854 [rad] and the phase of permeability is ǅǍ 

,met=0.6981 [rad] for the single-layer and twelve layer cylinders.  

We present here the absorbed power by the acrylic-glass layer (Fig. 7.3) and the absorbed 

power by the metamaterial (Fig. 7.4) for the single-layer cylinder. The total absorbed power 

by single-layered cylinder is equal to the sum of absorbed powers by metamaterial and 

acrylic-glass. And we show here the total absorbed power by all layers of the twelve-layered 

cylinder. 

In Figs 7.2-7.6 are presented the averaged scattered or absorbed power values per oscillation 
period for the unit length of the metamaterial-glass cylinder. 

The absorbed and scattered power calculations were fulfilled using by formula (28) in 
(Bucinskas et al., 2010)]. The integral of the formula has a positive sign when we calculate 
the scattered power. And this integral has a negative sign when we calculate the absorbed 
power. For this reason the scattered power has a positive value and the absorbed power has 
a negative one (see Figs 7.2-7.6). 

We presented here the dependencies of scattered and absorbed powers of the single-layered 

cylinder on signs of ǆ’met , ǆ”met, Ǎ’met and Ǎ”met, i.e. when metamaterial is double positive 

(DP), ε- single negative (SN) or Ǎ - single negative (SN), double negative (DN). 

7.1 Numerical analysis of the scattered and absorbed microwave power of the single-
layer cylinder 

In this subsection we investigate the scattered and absorbed powers of the incident 

microwave by the cylinder consists a core of metamaterial which is covered with a single-

layer of acrylic-glass. The external cylinder radius is R1=2 mm and the cylinder core has 

radius R2=1.8 mm, so the thickness of the glass layer is 0.2 mm.  

Nowadays there is a huge interest to the composite materials with untraditional values of 

the complex permittivity εmet and the complex permeability μmet. We analyzed here the 

scattered and absorbed powers for four versions of hypothetic metamaterial parameter 

signs. The complex metamaterial permittivity εmet=s1│εmet│exp(-s2iǅmet,ǆ) was taken for two 

combinations of signs, when s1=s2=±1. It is known that each metamaterial is intended for use 

in a specific frequency range and has a specific value of the effective permittivity and 

permeability at the certain frequency. For this reason we took the absolute values of real and 

imaginary parts of permittivity εmet and permeability μmet constant at all frequencies in our 

calculations. And the major impact makes the sizes’ relation of wavelength and cylinder 

layers. 

In figures 7.2-7.4 of this section are analyzed how the signs of the complex metamaterial 

permittivity and permeability influence on the scattered and absorbed powers when the 

plane perpendicularly or parallel polarized microwave impinges on the metamaterial-glass 

cylinder (Fig. 7.1).  
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Designations in Figs 7.2-7.4 correspond: the curve 1 is for a DP material when s1=s2=s3= 

s4=+1 (line with black squares); the curve 2 is for a SN material when s1=s2=+1, s3= s4=-1 

(line with empty squares); the curve 3 is for a SN material when s1=s2=-1, s3= s4=+1 (line 

with black triangulars); the curve 4 is for a DN material when s1=s2=s3=s4=-1 (line with 

empty triangulars).  

The scattered and absorbed dependences of the metamaterial-glass cylinder when the 

incident microwave has the perpendicular or parallel polarization are shown in Figs 7.2-7.4. 

In Fig. 7.2 is presented the dependence of total scattered power WS on the microwave 

frequency f at two polarizations. We see that the character of curves for all metamaterial sign 

versions (curves 1-4) is the same at the perpendicular polarization. A comparison of curves 

1-4 (Fig. 7.2(a)) shows that only curve 3 that describes by the metamaterial permittivity and 

permeability signs s1=s2=-1, s3=s4=+1 is the most different in comparison with other three 

cases. At the beginning the scattered power grows till the maximum value after that 

decreases till the minimum and later increases again with increasing of frequency. The total 

scattered power maximums of all curves are in the frequency range about 44-53 GHz. 

Curves 1 and 4 practically coincide with each other. The lowest scattered power is for the 

curve 3 at the frequencies about 1-35 GHz and the total scattered power minimum exists for 

the curve 2 approximately at the frequency 80 GHz. 
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(a) (b) 

Fig. 7.2. Scattered power of metamaterial-glass cylinder on the frequency of incident (a) - 

perpendicular and (b) - parallel polarized microwaves.  

The total scattered power of the incident perpendicularly and parallel polarized microwaves 

(Fig. 7.2(a, b)) are different. The scattered microwave power curves for the incident parallel 

polarized microwave have two maximums in the frequency range 1-120 GHz. The first 

position of the scattered power maxima are in the narrow frequency interval about 10-15 

GHz and the second position of the maxima is in the interval 85-100 GHz. The largest 

scattering is at the lower frequencies. The maximum scattering is higher for the incident 

parallel polarized microwave in comparison with the incident perpendicularly polarized 

one. While the total scattered power curves for the incident perpendicularly polarized 

microwave (Fig. 7.2(a)) have only one maximum. 
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In Fig. 7.3 is presented the absorbed microwave power Wa,glass by the coated glass layer at 
two microwave polarizations. We see that the behavior of the microwave power absorption 
strongly depends on the signs s1, s2, s3, s4 of the permittivity and the permeability. The 
absorption is especially different at the higher frequencies. We see that the absorption power 
of the glass layer is larger at higher frequencies. 

In Fig. 7.3(b) is presented the absorbed power by the coated glass layer for the incident 
parallel polarized microwave. There are some small distortion “hooks” of the absorbed 
power at the low frequencies. The absorbed power by glass layer increases with increasing 
of frequencies (curves 1, 3, 4) for frequencies that are larger than 20 GHz. The absorbed 
power is approximately constant when the SN metamaterial core permittivity and 
permeability have signs s1=s2=+1, s3=s4=-1. 
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(a) (b) 

Fig. 7.3. Absorbed power by the acrylic-glass layer on the frequency of incident (a) - 
perpendicular and (b) - parallel polarized microwaves.  
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Fig. 7.4. Absorbed power by metamaterial core on the frequency of incident (a) - 
perpendicular and (b) - parallel polarized microwaves 
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In Fig. 7.4(a) is given the absorbed power by the metamaterial core of the cylinder for the 

perpendicular microwave polarization. We see that the Wa,met magnitudes have the 
pronounced wave-like nature dependent on the frequency. The metamaterial core 
absorption has the largest absolute value when the metamaterial permittivity has some 
negative values and the permeability has some positive values (curve 3). In Fig. 7.4(b) is 
given the metamaterial core

 
absorbed power Wa,met for the incident parallel polarized 

microwave. We see that the absorbed powers have maximum values at about 5 GHz and 
their values vary slightly after 20 GHz with increasing of frequency. The absorption by the 
metamaterial is the largest at the low frequencies (curves 1 and 2) when the metamaterial 
has the positive permittivity. The comparison of absorbed powers in figures 7.3 and 7.4 
shows that dependencies are absolutely different.  

7.2 Numerical analysis of the scattered and absorbed microwave power of twelve-
layer cylinder 

In this subsection we present the total scattered power and the total absorbed power of 
incident microwave by the cylinder that consists of conductor core covered with 12 
metamaterial and glass alternately layers. Designations in Figs 7.5 and 7.6 correspond: the 
curve 1 is for a DP material when s1=s2=s3= s4=+1 (line with black squares) and the curve 2 is 
for a DN material when s1=s2=s3= s4=-1 (line with empty triangulars).  

In Figs 7.5 and 7.6 the permittivities and permeabilities metamaterial and acrylic-glass are 
the same as in the previous subsection. We see that the total scattered and absorbed powers 
strongly dependent on the polarization of incident wave. The characteristics of 
perpendicular polarized wave (Figs 7.5(a) and 7.6(a)) and the parallel polarized wave (Figs 
7.5(b) and 7.6(b)) are completely different. Particularly noticeable the correlation between 
the total scattered and absorbed powers for the parallel polarized wave of the twelve-
layered cylinder. We see that extremums of the total scattered and absorbed powers 
coincide in the frequency scale. For example, when the scattered power of cylinder has a 
maximum (Fig. 7.5(b)) then the absorbed power has a minimum (Fig. 7.6(b)) at f~10 GHz.  
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Fig. 7.5. Total scattered power of twelve layer metamaterial-glass cylinder on the frequency 
of incident (a) - perpendicular and (b) - parallel polarized microwaves 
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Fig. 7.6. Total absorbed power by the twelve layered metamaterial-glass cylinder on the 

frequency of incident (a) - perpendicular and (b) - parallel polarized microwaves. 

The comparison of scattered power of single- and twelve-layered cylinders shows that 

dependencies for the perpendicular polarized microwave are very similar. The scattering 

power maximum is at ~45 GHz and the minimum is at ~80 GHz (Figs 7.2(a) and 7.5(a)). 

The scattered powers of single- and twelve-layered cylinders for the parallel polarized 

microwave are different (Figs 7.2(b) and 7.5(b)). We see that the scattered power of single-

layered cylinder has only two maximums in the considered frequency range while the 

twelve-layered cylinder dependency has four maximums. The first scattered power 

maximum of twelve-layered cylinder has a sharp pike and is more than twice larger in 

comparison with the single-layered cylinder (Figs 7.2(b) and 7.5(b)).  

Comparing Figs 7.3(a), 7.4(a) and 7.6(a) for perpendicular polarized microwave we see 

that the absorbed power determined mainly due to metamaterial losses. The absorbed 

power extremums of the twelve layered cylinder (Fig. 7.6 (a)) shifted to the higher 

frequencies in the comparison with single-layered cylinder (Fig. 7.4(a)) for the DP 

metamaterial (curve 2). 

Comparing curves for single- and twelve–layered cylinders (Fig. 7.4(a), curve 4 and Fig. 7.6 
(a), curve 2) when the metamaterial is SN we can note that their lineaments are different at 
the low frequencies.  

The dependencies of absorbed parallel polarized microwave power for single-layered and 

twelve-layered cylinders in general are alike. The first minimum of absorbed power is 

shifted from ~5 GHz (Fig. 7.4(b)) till 10 GHz (Fig. 7.6 (b)) i.e. with growing of the number of 

layers the minimum shifted to the side of higher frequencies. The absorbed power 

dependency of twelve layered cylinder has a wavy behavior in the frequency range from 20 

GHz till 120 GHz in a comparison with the single-layered one.  

www.intechopen.com



 
Metamaterial 

 

54

8. Conclusions 

1. We found that the scattered power dependences have wave behaviors. The minimal 
scattering from the metamaterial-glass cylinder are observed for the every metamaterial 
with some sign combinations of the permittivity and the permeability at the special 
frequency range (Figs 7.2). 

2. We found that the largest absorbed power by the coated acrylic-glass layer is observed 
for the case when the metamaterial is a single negative material with the negative 
permittivity. The absorbed power of the glass layer increases with increasing of 
frequency in the range 1-120 GHz for both microwave polarizations (Figs 7.2). 

3. The metamaterial core absorbed power of the parallel polarized incident microwave has 
the minimum value at low frequencies and slightly dependent on the frequency at the 
range 20-120 GHz (Fig. 7.4(b)). 

4. The comparison of single- and twelve- layered cylinder characteristics shows that the 
absorbed power extremums shift to the direction of higher frequencies when the 
number of layers becomes larger (Figs 7.4 and 7.6). 
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