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1. Introduction 

A wide variety of diseases, including cirrhosis, unresectable hepatic malignancy, ischemia, 

metabolic and auto-immune disorders, and hepatitis, whether caused by viral agents or 

drugs/toxins, can trigger hepatic insufficiency and failure, a life-threatening situation for 

which liver transplantation is the only definitive therapy [1-4]. Over 16,000 patients are 

currently awaiting the availability of a liver from a compatible donor [5], and many of these 

patients will die without ever receiving a transplant, due to the current shortage of available 

donor organs [6]. Furthermore, even when a patient is fortunate enough to find a compatible 

donor and receive a liver transplant, several factors can still thwart the ultimate success of 

this procedure. Operative damage, immune rejection towards the new organ, relapse of the 

pre-existing liver disease, and life-long side effects due to immunosuppression are among 

the most common complications [7, 8]. Furthermore, after liver transplantation, several long-

term morbidities can arise, such as cardiovascular and retinal complications, 

lymphoproliferative disorders, and chronic renal failure [8-10]. Additionally, it is anticipated 

that the number of patients in need of liver transplantation will increase in the next decade, 

due to the obesity epidemic and the higher incidence of Hepatitis C infection. Therefore, 

new therapeutic approaches that can eliminate the need for partial or complete liver 

transplantation are urgently needed. 

A valuable alternative to entire or partial liver transplantation is the delivery of cells capable 
of restoring normal organ physiology [11-19]. The use of cell therapy possesses several 
inherent advantages over organ transplantation: the procedure could be performed in a 
much less invasive way, the purified cell populations may be less immunogenic [20], and 
the use of autologous cells could be implemented [21]. 

Hepatocyte transplantation has been considered one of the most promising alternatives to 
liver transplantation, as these cells offer the benefit of being fully functional and are 
therefore able to quickly replace damaged hepatocytes upon delivery [22]. Also, the ability 
to cryopreserve and store hepatocytes gives the advantage of having a source of cells 
available when required. However, accessibility of hepatocytes at the required numbers for 
clinical intervention is still problematic, as human livers are required for their isolation, and 
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the harvesting and storing procedures are difficult and inefficient [23]. Additionally, 
differentiated hepatocytes have limited proliferation capabilities, and in vitro culture may 
alter their physiological and functional characteristics [24], making it difficult to obtain an 
adequate number of hepatocytes of sufficient quality for transplantation [25]. Further 
compounding these difficulties, it has been shown that, following transplantation, only a 
small percentage of the infused hepatocytes actually survive and durably engraft within the 
liver [26-30].  

A better alternative to the use of adult hepatocytes is exploiting the presence, within the 
liver, of hepatic stem/progenitor cells (HpSCs), and the intrinsic ability of these cells to 
extensively expand, differentiate into all mature liver cells, and reconstitute the liver when 
transplanted, with minimal immunogenicity[31, 32]. HpSCs are found in the Canals of 
Hering in adult livers, and in ductal plates of the fetal liver. They can be easily isolated by 
immunoselection using an antibody against the epithelial cell adhesion molecule (EpCAM) 
and, they comprise approximately 0.5-5% of the liver parenchyma depending on age [33]. 
Although there is controversy regarding the cell surface markers that define this cell 
population, positivity for EpCAM, NCAM, or CD133, and negativity for AFP are currently 
considered to be the most accepted markers. The potential of these cells has been clearly 
demonstrated in numerous murine studies, and a few studies in humans have confirmed 
the presence and regenerative properties of HpSCs in the presence of viral hepatitis, 
cirrhosis or inborn metabolic disorders [34-37].  

In the last decades, alternative sources of stem cells have raised great hope for improving 
the treatment of liver diseases. In particular, the demonstration that cells within the bone 
marrow contributed, at different levels, to liver parenchymal cells opened the possibility of 
using autologous cells to treat liver disorders/diseases [38-52]. Amongst these, 
mesenchymal stem cells (MSC) have been considered an ideal cell source because of their 
ease of isolation and expansion, their immunomodulatory properties, and their broad 
differentiation potential [53, 54]. 

2. Mesenchymal stem cells 

Mesenchymal stem cells (MSC), also referred to as marrow stromal cells or stromal 
precursor cells, were first described in the 1960s by Friedenstein, and shown to belong to the 
bone marrow stromal microenvironment that supports hematopoietic stem cells and 
controls the process of hematopoiesis[55]. These cells were also shown to be able to 
differentiate into multiple lineages of mesenchymal tissues, including bone, cartilage, fat, 
tendon, and muscle [56-58]. Numerous culture methods and purification procedures such as 
plastic adherence, Ficoll gradient centrifugation, or cell-sorting using surface markers have 
all been used to enrich for bone marrow-derived MSC, with each laboratory preferring its 
own method of isolation. This makes the comparison of results obtained by various 
laboratories very difficult, since each lab is likely studying somewhat different cell 
populations, despite the fact that all of these cells have collectively been referred to as MSC. 
According to the International Society for Cellular Therapy, MSC should have several 
characteristics in addition to adherence to plastic. They must express CD105, CD73, CD90, 
but not express CD45, CD34, CD14, CD11b, CD79 or CD19 and HLA-DR surface markers. 
Furthermore, they must be able to differentiate into osteocytes, chondrocytes, and 
adipocytes [59]. Although MSC constitute a very small percentage of the nucleated cells 
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present in the BM, between 0.001 and 0.01%, these cells can be expanded exponentially 
while maintaining their original phenotype and differentiation potential, making it possible 
to easily obtain adequate numbers for cell-based therapies. These characteristics make MSC 
ideal agents for cell replacement therapies 

2.1 Properties of Mesenchymal stem cells 

In keeping with the original findings of Friedenstein, MSC are still most often isolated from 
the bone marrow. In humans, these “BM-MSC” are usually collected from the superior iliac 
crest of the pelvis; however, they can also be obtained from the tibial and femoral marrow 
compartments [60], and the thoracic and lumbar spine [61]. In larger animals, BM-MSC are 
isolated from the same areas. In contrast, in small animals such as mice, a bone marrow 
aspiration is not possible, so BM-MSC are harvested by flushing the mid-diaphysis of the 
tibia or femur [61]. 

In stark contrast to hematopoietic stem cells, MSC can easily be expanded in culture for 
many passages without losing their phenotype or pluripotency capability [60]. Indeed, 
Bruder et al. demonstrated that human BM-MSC can readily be propagated in vitro until 
passage 38±4; after that passage the cells turn flat and very broad, indicating they have 
reached senescence [62]. Moreover, by plating these cells at a low density and consistently 
passaging them before they have reached confluence, it is possible to accelerate their growth 
rate and increase their expansion capacity [63]. 

Over the past several years, studies have provided compelling evidence that MSC’s 

differentiation capacity far exceeds that originally reported by Friedenstein. Indeed, in vitro 

and in vivo transplantation studies have now shown that MSC have the capacity to 

differentiate not only into mesodermally-derived cell types such as bone [64], cartilage [65], 

tendon [66], muscle [67], cardiomyocytes [68] and adipose tissue [69], but, even more 

remarkably, can also give rise to cells that developmental biology classifies as being derived 

from ectoderm (neurons and astrocytes [70, 71]) and endoderm (pancreatic beta cells [72] 

and hepatocytes [73]). This extraordinary multipotentiality has generated a great deal of 

interest in applying MSC to tissue repair/regeneration as well as cell therapy approaches for 

a variety of diseases/injuries. 

In addition to their broad differentiation potential, MSC also appear to possess the intrinsic 
ability to migrate, or home, to sites of injury following systemic infusion. Importantly, from 
the standpoint of developing a clinically viable and safe cell-based therapeutic, MSC appear 
to selectively engraft and differentiate into tissue-specific cells that are missing or defective 
due to the disease in question, while contributing very little, if at all, to normal/healthy 
tissue [74-77]. For the past several years, scientists have attempted to elucidate the 
mechanism by which MSC are selectively attracted to sites of injury. During pathological 
conditions, several cytokines/chemokines are produced, which will stimulate MSC to 
express: 1) integrins, by which MSC will bind to endothelial cells, and 2) 
cytokine/chemokine receptors, by which MSC will migrate towards the inflammatory site. 
This complex network of signaling allows MSC to establish cell-cell contact and mediate 
rolling with endothelial cells. Additionally, they also transmigrate into the extracellular 
matrix by interacting with integrins and fibronectin stimulated by MSC-secreted ligands. 
Despite these insights, however, more information is required for a complete understanding 
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of this process. This understanding could then be used to develop means of enhancing MSC 
engraftment after transplantation [78].  

The ability of MSC to reprogram to cells specific to other organs/tissues suggested that MSC 
would have to replace a significant percentage of the damaged cells within a 
diseased/injured organ to exert a beneficial effect. However, controversy arose in the MSC 
field when a series of studies were published demonstrating a reproducible therapeutic 
improvement in the absence of detectable MSC engraftment. These findings sparked 
additional studies that have now shown that MSC can also mediate tissue repair by acting 
as “trophic factories”, releasing specific cytokines and growth factors that modulate the 
activity of tissue-specific cells, suppress local inflammation, and inhibit fibrosis and 
apoptosis, thereby facilitating endogenous tissue regeneration [79]. Adding to the 
complexity of the functions/effects of MSC, it was recently discovered that MSC can 
transfer mitochondria or mitochondrial DNA to cells that have been damaged by ischemia 
and reperfusion. By transferring mitochondria or mitochondrial DNA, MSC can rescue the 
cells that have non-functional mitochondria, rescuing these cells and enabling regeneration 
of the tissue [80]. In recent years, it was also shown that MSC express an array of miRNA’s, 
small non-coding RNA’s that are involved in gene regulation [81]. It is believed that a single 
miRNA can regulate several different target genes and a single gene can be regulated by 
multiple miRNA’s. Studies to date have provided evidence that miRNA’s are involved with 
stem cell differentiation, hematopoiesis, immune response, neurogenesis, stress responses, 
and the development of skeletal and cardiac tissue [82-84]. These regulatory miRNA’s have 
now been shown to be present inside microvesicles that are secreted by MSC, which are 
then transferred to neighboring cells to regulate their activities. This pathway provides yet 
another means by which MSC can communicate with injured cells. Following secretion of 
the microvesicles, the miRNA’s contained therein can then enter the injured cell and induce 
differentiation and/or production of soluble mediators, and stimulate cell-cycle re-entry; the 
net result of these myriad actions being tissue regeneration [85]. 

Upon arrival at the site of injury, MSC also fulfill another vital function, which is to 
modulate the inflammatory microenvironment present within the damaged/diseased tissue. 
MSC possess an extraordinary ability to modulate immune cells, exerting these effects by 
releasing soluble factors and by cell-cell contact. MSC are known to inhibit proliferation and 
maturation of cytotoxic T cells, helper T cells, B cells, dendritic cells, and NK cells, as well as 
to inhibit NK-mediated cytotoxicity. These broad-ranging actions enable MSC to interfere 
with each component of the adaptive immune system. MSC can also stimulate the 
differentiation of Tregs, which can further dampen the immune response. MSC are known 
to release a host of soluble factors, which have been associated with their immuno-
modulatory properties including transforming growth factor-┚, prostaglandin-E2, inducible 
NOS, nitric oxide, IL-10, HLA-G, hepatocyte growth factor, and indoleamine 2,3-
dioxygenase. By dampening the ongoing inflammation and/or aberrant immune reaction 
present within the damaged/diseased tissue, MSC facilitate the process of repair/recovery, 
further adding to the promise of using these cells for regenerative medicine [78].  

In addition to the inherent properties of MSC that make them well suited for cellular 
therapy, it is important to realize that MSC can easily be genetically manipulated in vitro, 
with both viral and non-viral vectors, to enhance their immunosuppressive properties [86, 
87], to deliver a protein that is missing/defective in the patient, to induce apoptosis of tumor 
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cells, to promote cell proliferation, to guide their migration to a specific site within the body, 
and even to direct their differentiation towards a specific cell lineage [88-90], making the 
range of clinical applications for which MSC could be used almost limitless. 

2.2 Sources of Mesenchymal stem cells 

In addition to their presence in the bone marrow, these MSC have also been identified in, 

and isolated from, several other tissues including cord blood (CB-MSC), cord matrix 

(hWJSCs), amniotic fluid (AF-MSC), placenta, adipose tissue (AT-MSC), brain, liver, lung, 

and kidney [91-93]. The presence of these cells in several organs/tissues raises the 

possibility that they could have a crucial function in organ homeostasis, and/or repairing 

the tissue, and suggests that MSC isolated from these tissues may have a unique 

transcriptional or proteomic signature that renders these cells biased in terms of homing or 

differentiation towards the organ of origin. Differences also exist in the cytokine/chemokine 

molecules produced by MSC from various sources and in their differentiation capabilities 

[94, 95]. Using fetal liver MSC (FL-MSC) as an example to illustrate these differences, FL-

MSC exhibit much more rapid growth kinetics than BM-MSC, due, at least in part, to a 

greater abundance of transcripts involved in cell cycle regulation, DNA repair and 

chromatin regulation. In addition, analysis of telomerase activity and telomere length 

revealed that fetal liver MSC telomeres are longer and these cells possess greater telomerase 

activity than adult sources of MSC. As a result, these cells are more expandable and they 

become senescent later in culture [96]. Fetal liver MSC also express more primitive genes, 

such as Oct-4, Nanog, and SSEA-3 than their adult counterparts, but transcripts involved in 

differentiation towards more mature cells are reduced relative to MSC from other sources. 

More importantly from the standpoint of clinical utility, fetal liver MSC also exhibit reduced 

immunogenicity compared to adult BM-MSC, perhaps due to expression of higher levels of 

HLA-G1 [97]. In addition to reduced immunogenicity, fetal liver MSC also demonstrated an 

enhanced immunomodulatory function than BM-MSC when tested for their ability to inhibit 

T cell proliferation [98]. Despite all the promising characteristics of these cells, very few 

studies have examined their utility/potential in vivo. In one of these studies, rabbit fetal liver 

MSC were tested for their engraftment, proliferation and differentiation capabilities 

following in utero transplantation. Two routes of administration were analyzed, intrahepatic 

and intra-amniotic. Both approaches were safe for both the mother and the fetal recipient, 

but only the intrahepatic route resulted in the formation of donor-derived hepatocytes in the 

liver. While the levels of hepatocyte production were low, the engraftment persisted for at 

least 16 weeks after transplantation [99].  

Despite their many unique characteristics and promise of offering MSC primed for repair of 
specific tissues, the inherent difficulty in obtaining organ-specific MSC such as those 
derived from liver, will likely preclude their widespread use in a clinical setting. Ideally, for 
cellular therapies, one would like a readily available source of cells that could be used as off-
the-shelf therapeutics. MSC are present in significant numbers in discardable tissues such as 
cord blood, placenta and amniotic fluid, and these MSC have the ability to be expanded and 
frozen without loss of viability or differentiative potential, making MSC from these tissues 
an attractive option. Indeed, both AF-MSC [100] and CB-MSC [101] were shown, upon 
transplantation in vivo, to give rise to hepatocytes, suggesting they have definite potential as 
cellular therapeutic for treating liver diseases. Having considered these two very different 
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MSC examples, a summary of the properties of the main sources of MSC that are currently 
being tested for therapeutic purposes appears in Table I, to provide a better overall picture 
of the similarities and differences inherent to MSC isolated from various tissues. 

 

Table 1. 
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2.3 Mesenchymal stem cells for treating liver disease 

2.3.1 In vitro models to study Mesenchymal stem cell differentiation 

One could convincingly argue that the best way to study the differentiation potential of 

MSC is to perform studies in vitro, as studies of this nature allow for creation of a carefully 

controlled microenvironment which greatly facilitates the delineation of the 

pathways/mechanisms by which MSC commit to specific lineages and undergo 

reprogramming. In contrast to in vivo studies, where the researcher has little or no control 

over the myriad local and systemic cues and factors present within the recipient, performing 

in vitro studies enables the researcher to definitively establish the true multipotential 

capability of MSC at the single cell level, or at the level of a clonally-derived population. 

Indeed, in vitro studies have now revealed that MSC are able to transdifferentiate into cells 

of the three germ layers, including neuronal and glial cells [102-105], cardiomyocytes [106-

110], endothelial cells [111-113], and insulin-producing beta cells [114, 115]. The discovery of 

this tremendous potential has prompted researchers to perform microarrays studies to 

understand the molecular mechanisms responsible for the commitment and differentiation 

of MSC along each of these lineages [116-118]. It is hoped that understanding these 

pathways will pave the way for the development of methods for efficiently driving MSC 

differentiation down specific lineage pathways to create the cell type required for therapy. 

These studies also provided vital information regarding key genes and signaling pathways 

that are directly involved in maintaining MSC in an undifferentiated state, helping to 

characterize this cell population and providing clues as to methods for expanding these cells 

for longer periods of time while maintaining their multipotency.  

While these findings were exciting and highlighted the vast potential of MSC for cellular 

therapy, the most important ability, from the standpoint of therapies for the liver, would be 

the ability to differentiate into hepatocytes. Accordingly, several protocols have now been 

developed for the in vitro differentiation of both murine and human BM-MSC into 

hepatocytes [1, 119-125]. These MSC-derived hepatocytes exhibit the same morphology and 

antigenic profile as native hepatocytes, and they appear to be functional, based upon uptake 

of low-density lipoprotein, urea production and storage of glycogen. These initial findings 

with BM-MSC have now been extended to include MSC derived from adipose tissue, 

amniotic fluid, CB, and Wharton’s Jelly, with adipose-derived MSC showing the greatest 

propensity to differentiate in vitro to putative functional hepatocytes. It was initially 

hypothesized that CB-MSC might harbor an innate capacity to differentiate into 

hepatocytes, since they constitutively express early as well as more mature hepatic markers 

and functions [126]. However, this initial assumption was not realized. After several studies, 

it became clear that CB-MSC differentiate only partially, displaying early and some mature 

hepatic markers/functions but lacking the expression of other proteins that are critical for 

liver development [123, 126]. While this discovery initially reduced the enthusiasm for the 

use of CB-MSC as therapeutics for liver disease, it is important to realize that the immature 

nature of the hepatocytes they form could still enable them to treat disorders such as 

metabolic liver disease, in which generation of fully functional mature hepatocytes is not 

required, as long as the transplanted cells produce adequate levels of the missing/defective 

enzyme for correction. This limited differentiation capacity does, however, likely preclude 

their use for treating conditions such as acute hepatic failure. 
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Only a few groups have analyzed in vitro differentiation of hWJSCs. Zhang et al applied a 
one-step protocol with HGF and FGF-4 and found that, after 21 days, cells expressed 
hepatocyte markers such as Albumin, AFP, and CK-18 [127]. In other studies, Lin et al. 
induced differentiation of the cells by co-culturing them with mice liver tissue previously 
treated with thioacetamide, a chemical used to induce chronic fibrosis of the liver. Two days 
after induction, hWJSCs expressed hepatic markers, providing evidence that, with the 
appropriate stimuli, hWJSCs can very rapidly reprogram to adopt a hepatocytic fate. AF-MSC 
were also tested for their ability to differentiate in vitro into hepatocytes. The differentiation 
process employed by these investigators consisted of two steps: first, the MSC were treated for 
1 week with EGF and FGF to commence induction along the hepatic lineage; and second, a 
maturation step, during which the cells were treated with dexamethasone and oncostatin-M 
for 2 weeks. The MSC-derived cells obtained at the end of this 2-stage induction protocol 
expressed several hepatic markers/functions, including albumin production, uptake of low 
density lipoproteins, glycogen storage, and urea production, promoting the investigators to 
cautiously refer to them as hepatocyte-like cells [100, 128, 129].  

Collectively, the results of these in vitro studies provide compelling evidence that MSC 
derived from a variety of sources all possess the ability to give rise to what appear to be 
functional hepatocytes, albeit at varying levels. This suggests that MSC could represent 
viable cellular therapeutics for treating liver disease, and thus provide a much-needed 
alternative to whole or partial liver transplantation.  

2.3.2 In vivo models to study Mesenchymal stem cell differentiation 

Despite all the knowledge that can be gained from performing in vitro studies, they are 
inherently limited by the need to supply all of the requisite factors to observe the desired 
differentiation or reprogramming. This becomes problematic when one wishes to 
discover/investigate novel properties of MSC, since, in most cases, these factors are not yet 
known. Adding to this problem is the lack of suitable assays to rigorously establish that the 
“hepatocyte-like cells” generated in vitro are, in fact, bona fide hepatocytes that perform all 
of their required physiologic functions. For this reason, scientists are forced to resort to in 
vivo transplantation studies in the hopes that the required mediators/factors conditions are 
present within the microenvironment of the target organ, and can coax the transplanted 
MSC to reprogram towards the desired cellular fate. Performing studies in vivo also has the 
advantage of ensuring that all of the appropriate cues are present to influence migration and 
homing of MSC to the tissue/organ in question; an essential issue to consider if the ultimate 
goal is to develop therapies using MSC. Transplantation in vivo also provides the 
opportunity to examine the ability of the MSC-derived cells to seamlessly integrate into the 
existing cytoarchitecture and adopt appropriate behavioral characteristics. Ideally, studies of 
this nature would be performed with human MSC and their derivatives, to ensure the 
clinical translation of the results obtained. Due to ethical and practical issues, however, 
studies of this nature can clearly not be performed in human subjects. Thus, at the present 
time, investigators can only test the ability of human stem cells to engraft/differentiate 
within a xenogeneic setting, using suitable small or large animals as recipients. 

2.3.2.1 Mesenchymal stem cells differentiate in vivo into hepatocytes 

The exciting in vitro findings discussed above suggested that MSC could serve as cells for 
repairing the injured or failing liver. Importantly, MSC can be grown quite readily in culture 
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for extended periods of time without any seeming loss of differentiation capacity. This has 
two important implications for their use in cellular-based liver therapies. The first of these is 
that a very small marrow aspirate could be taken from the patient and adequate cells 
obtained for transplantation, through extensive expansion in vitro following isolation. 
Secondly, by virtue of their ability to be expanded in culture without loss of in vivo potential, 
MSC could be harvested from the patient’s own marrow even if the liver disease present 
was the result of an underlying genetic defect, since MSC are quite amenable to genetic 
modification/correction using a wide range of viral and non-viral vector systems. Following 
genetic manipulation, a pure population of genetically corrected autologous MSC could 
thus be propagated to generate sufficient numbers of cells to achieve meaningful levels of 
engraftment following transplantation. Based on these promising characteristics, MSC have 
now been tested in a wide variety of injury/disease model systems for their ability to 
generate hepatocytes and correct these liver defects. Using MSC isolated from a variety of 
mouse, rat, and human tissues, investigators have now provided evidence that MSC can 
mediate varying degrees of correction/repair of the liver following injury due to partial 
hepatectomy [126, 130-133], treatment with the toxin CCl4 [134-145], injury induced by allyl-
alcohol [146, 147], and treatment with 2-acetylaminofluorene [139].  

Unfortunately, these studies are confounded by the problem of each group of investigators 
using MSC defined in different ways, ranging from specific antigen profile to simple plastic 
adherence. The use of differing definitions for “MSC” can likely explain, at least in part, the 
differing outcomes, even when using a similar injury model system. One thing that is quite 
clear from these studies looked at as a whole, however, is that MSC appear to be able to 
exert beneficial effects in a wide range of injuries and disease states within the liver. Another 
issue that needs clarification is whether fusion plays a major role in the beneficial effects, 
since the fusion of donor MSC with host hepatocytes has not yet been addressed in detail in 
any of these injury/disease models.  

Another issue that has complicated interpretation of the data generated from these studies 
in liver, as well as those conducted looking at the potential of MSC to mediate repair in 
other organ systems, is the observation that a therapeutic benefit is often observed in the 
absence of any evidence of engraftment of the transplanted MSC within the damaged organ. 
Instead, it appears that the transplantation of MSC somehow stimulates the host’s liver to 
repair itself without the donor cells actually having to persist long-term within the recipient. 
These findings led to a great deal of debate as to whether MSC can actually generate 
hepatocytes or if, perhaps, all the effects they produce are simply mediated through release 
of soluble factors. Meticulously executed in vitro studies have now provided definitive 
evidence that MSC can under appropriate conditions be reprogrammed into cells with all of 
the characteristics of functional hepatocytes that can currently be assessed in culture [37, 
135, 148-151]. Thus, it is now presumed that if these hepatocyte induction protocols work 
well in cultured MSC, in vivo organ-specific microenvironment of the recipient liver is likely 
to be even better suited for inducing the transplanted MSC to differentiate into hepatocytes. 
Therefore, it seems safe to presume that the beneficial effects of MSC thus far observed in 
animal injury models have been mediated, at least in part, by MSC differentiating to 
hepatocytes. 

However, the other capabilities of MSC cannot be ignored and may be equally important in 
the observed therapeutic effects. A variety of evidence from animal studies has now 
indicated that both MSC’s direct differentiation and their indirect effects through secretion 
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of factors which stimulate the regeneration of endogenous cells are likely to play important 
roles in promoting tissue recovery [79, 152-156]. In support of this conclusion, MSC were 
shown to provide significant therapeutic benefit during acute hepatic failure by releasing 
chemotactic cytokines that reduce leukocyte infiltrates and hepatocytes death and increase 
hepatocyte proliferation [156, 157]. For example, recent studies by Tsai et al. showed that the 
direct injection of MSC into rats with CCl4-induced liver fibrosis resulted in a significant 
reduction in the liver fibrosis. However, although MSC engrafted, they did not differentiate 
into albumin- producing cells, but secreted cytokines that promoted liver regeneration and 
thereby restored liver function [144]. 

In addition, other studies have now revealed an additional property of MSC that may 
indicate that they are ideally suited for treatment of liver diseases involving fibrosis: the 
ability to enhance fibrous matrix degradation, likely through the induction of 
metalloproteinases [136, 158-164]. Moreover, other researchers have found that MSC are able 
to prevent liver fibrosis by suppressing the function of activated hepatic stellate cells, 
inducing their apoptotic death and diminishing collagen synthesis [155]. Studies like those 
by Lin et al. have shown that MSC may utilize multiple mechanisms to exert their effects, 
both engrafting and differentiating into albumin-producing cells, and producing 
metalloproteinases that significantly reduced the collagen deposits in a rat model of chronic 
liver fibrosis [165]. However, these promising results must be interpreted carefully and with 
tempered enthusiasm, because other studies have suggested that under different conditions, 
transplanted MSC may actually contribute to the myofibroblast pool and thus enhance the 
fibrotic process within the liver [159, 166-169]. This has led to the current feeling within the 
field that the effect of MSC will probably vary with the nature of the liver injury/disease 
that is being treated, the specific experimental model in which the therapy is being tested, 
and perhaps even the time frame of MSC application, such that MSC could be beneficial if 
administered at certain stages of disease progression and harmful if administered at other 
stages. Thus, it appears that the therapeutic potential of MSC may have to be investigated 
for each specific disease/injury to be treated to delineate the optimal time frame and 
population to be administered to achieve the desired effect, ensuring they provide benefit 
rather than harm. 

2.3.2.2 The fetal sheep model 

All of the afore-mentioned studies exploring the therapeutic properties of MSC in model 
systems generated by inducing an external stress, such as chemical- or radiation-induced 
injury or by depleting a specific cell type in the recipient, e.g., partial hepatectomy, have 
provided compelling evidence that MSC represent valuable cellular therapeutics for liver 
disease. However, they have also revealed that whether MSC will exert their beneficial or 
harmful effects is dictated largely by the presence of activated cells and the 
microenvironment within the injured or diseased organ at the time of transplantation. What 
is clear is that the microenvironmental conditions that surround MSC play a crucial role in 
determining the fate adopted by MSC in vitro and in vivo. The cloning of Dolly the sheep 
certainly represents the most dramatic example of the power that the microenvironment can 
exert on cell fate [170]. The microenvironment, in this case the cytoplasm of an enucleated 
egg, induced the nucleus taken from an adult somatic cell to completely reset its 
developmental gene expression clock and reveal its true potential. To fully exploit the vast 
therapeutic potential of MSC, a deep understanding of the mechanisms that control the cell 
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fate and their efficient application to drive differentiation towards the hepatocytic lineage 
are urgently needed; such understanding will require an adequate model system. 

The ideal experimental model would allow transplantation of human MSC, which could 
then engraft and differentiate/reprogram under normal physiological conditions, in the 
absence of injury/insult. Additionally, such a model should allow the generation of a broad 
spectrum of differentiation states of the donor-derived cells in the desired tissue at adequate 
levels to enable delineation of the mechanisms that participated in their generation. 
Irrespective of the source of donor cells and mechanisms involved in reprogramming, 
however, the first key step for proper function is for the cells to reach the target organ. The 
circulatory system provides an efficient stem cell distribution system throughout life. 
During fetal life, a series of well-established migratory processes, likely employing the 
circulatory system, ensure that adequate numbers of appropriate stem/progenitor cells 
reach the target tissues/organs when needed. This carefully regulated migration is 
accomplished by the dynamic expression of an array of adhesion molecules and release, by 
the tissue, of specific chemokines/chemoattractants that alert the circulating stem cells when 
and where they are most needed. Once the stem cell reaches the target tissue, the permissive 
milieu induces the entering stem cells to proliferate and differentiate to produce the 
required type(s) of cells. The existence of this highly permissive milieu is very likely 
associated with the continuous need for new cells during fetal development.  

With these permissive aspects of the developing early gestational-age fetus in mind, we 
reasoned that it might represent a perfect platform in which to study the properties of 
human MSC. The transplanted MSC could piggy-back on the naturally occurring migratory 
pathways, and thus be efficiently disseminated throughout the fetus to the various 
developing tissues. Once there, they would then be naturally influenced by the host 
proliferation/differentiation environment to adopt a specific cellular fate, assuming that the 
transplanted cells harbor the potential in question. By performing the transplant at a point 
in development when all the organs had begun to differentiate but there was still a need for 
exponential growth and differentiation, we hypothesized that the fetal milieu would 
support the possibility of reprogramming of cellular fate through a bombardment of 
proliferation/differentiation stimuli without forcing the transplanted cells to adopt a 
specific fate by damaging/inducing regeneration within a particular organ. If the 
supposition that the appropriate microenvironmental influence can induce a cell with a 
mature phenotype to regress into an undifferentiated state, directly reprogram a cell to an 
alternate fate, and/or induce a primitive stem cell to start differentiating into a new lineage, 
then the fetus should represent an ideal model system in which to examine the full potential 
of MSC, and other adult stem cells.  

In addition to providing a unique signaling environment that can drive migration and 
differentiation of the transplanted MSC, the fetus also represents a unique recipient from an 
immunological perspective. In contrast to other model systems routinely used to study stem 
cell transplantation and the therapeutic potential of MSC, the fetal sheep recipient has an 
immature, but functioning immune system. In early immunologic development, before 
thymic processing of mature lymphocytes, the fetus appears to be largely tolerant of foreign 
antigens [171, 172]. Therefore, if the transplant is performed at the appropriate stage of 
development, the fetus is able to support the engraftment/differentiation of MSC (and other 
adult stem cells) in the absence of irradiation or other myeloablative therapies. Furthermore, 
exposure to foreign antigens during this period often results in sustained tolerance, which 
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can become permanent if the presence of antigen is maintained [100, 173]. By taking 
advantage of this so-called “window of opportunity” and performing the transplant during 
the “pre-immune” stage of development, it is possible to reach significant levels of 
allogeneic sheep cells and xenogeneic human cells within the fetal sheep, in the absence of 
irradiation or other myeloablative therapies [174-180], to create a lifelong chimera [181], and 
induce stable, donor-specific immune tolerance.  

In addition to the unique characteristics of the fetus itself as a recipient, there are several 
additional advantages of selecting sheep as an animal model: 1) sheep are fairly close in size 
to humans during development and throughout life, which should greatly facilitate, or even 
eliminate the need for, scale-up of the protocol for clinical human therapies once promising 
results have been obtained in the fetal sheep model, 2) the physiology and developmental 
processes are similar and therefore, sheep have been for decades the model to study normal 
fetal growth and fetal abnormalities [182-185], 3) in contrast to mice and rats, sheep are 
outbred, and thus present a diverse genetic background, just like humans, 4) the 
development of sheep immune system has been extensively studied and it closely parallels 
that of humans [186-194], 5) the long lifespan and large size allows the study of cellular fate 
in the same animal for several years after transplantation, which provides critical answers 
about long-term efficacy and safety of the therapy in question. Collectively, these properties 
make the fetal sheep an ideal model in which to test the therapeutic potential of MSC and 
obtain results that could readily be translated into clinical studies. 

2.3.2.2.1 Results obtained in fetal sheep model 

In order to investigate the in vivo differentiation potential of human MSC in the absence of 

injury/selective pressure, we isolated several clonal MSC populations from adult BM by 

magnetic sorting, using an antibody against Stro-I [195]. Although the antigen recognized 

by this antibody has not yet been identified, we found that by triple-labeling BM cells with 

antibodies against Stro-I, CD45 and GlyA and selecting for Stro-1+CD45-GlyA- cells, we can 

reliably obtain a homogenous population that is highly enriched, both phenotypically and 

functionally, for MSC. This selected population has therefore been used for all of our studies 

to examine human MSC differentiative potential.  

To rigorously test whether MSC could generate significant numbers of hepatocytes in vivo, 
we examined the ability of clonally-derived human MSC from adult BM to generate 
functional albumin-producing hepatocytes in vivo following transplantation into fetal sheep 
recipients, comparing two routes of administration, intraperitoneal (IP) and intrahepatic 
(IH) [40]. Human hepatocytes formed after transplantation of BM-MSC into fetal sheep were 
then identified by HEP-1 staining, coupled with human-specific fluorescence in situ 
hybridization. Our results showed that, although MSC efficiently generated significant 
numbers of hepatocytes by both routes of administration, the IH injection resulted in a 5-
fold increase in the number of hepatocytes generated, when compared to the IP route (12.5% 
± 3.5% versus 2.6% ± 0.4%) [196]. In addition to higher levels of hepatocytes, the route of cell 
administration also exerted a marked effect on the pattern of distribution of the generated 
hepatocytes. Sheep that received an IP injection exhibited a preferential periportal 
distribution (in acinar zone 1) of donor-derived hepatocytes that produced high levels of 
albumin [40], while IH-transplanted animals contained donor-derived (human) hepatocytes 
dispersed throughout the parenchyma (acinar zone 2) that expressed minimal amounts of 
albumin. Previous results have demonstrated that localization of the hepatocyte within the 
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liver is strictly associated with the levels of synthesis of certain plasma proteins, such as 
albumin. Hepatocytes localized in the periportal area of the liver produce higher levels of 
albumin, compared to hepatocytes situated in other lobular zones [197-199]. These studies 
thus provided compelling evidence that MSC represent a valuable source of cells for liver 
repair and regeneration and demonstrate that, by altering the site of injection, generation of 
hepatocytes occurs in different hepatic zones, and the resultant hepatocytes exhibit differing 
functionality, just like their naturally-occurring counterparts. These results are highly 
relevant for designing a potential cellular therapy for liver regeneration, as depending on 
whether the overall goal of the therapy is to provide hepatocytes to restore the liver 
architecture or to achieve normal levels of a secreted therapeutic protein into the circulation, 
different routes of injection would likely be needed. However, if one wishes to achieve 
functional repopulation of the liver, it is possible that a transplantation approach combining 
both routes of administration would be the most effective. 

In other studies, we evaluated the ability of MSC derived from the fetal kidney to form 
hepatic cells in vivo and in vitro [200]. Like their BM counterparts, these cells gave rise to 
significant numbers of human albumin-producing hepatocyte-like cells upon in utero 
transplantation into fetal sheep. Furthermore, after culture in specific inducing media, cells 
with hepatocyte-like morphology and phenotype were obtained, suggesting that 
metanephric-derived MSC could also serve as a source of cells with hepatic repopulating 
ability. Similar results were also obtained in the fetal sheep model, using a novel, adherent 
MSC-like cell population isolated from umbilical cord blood, which the authors termed 
unrestricted somatic stem cells, or “USSC” [201]. This cord blood-derived MSC population 
was capable of giving rise to albumin-producing human parenchymal hepatic cells at levels 
of >20% in the recipient liver, in the absence of any injury or genetic defect. Importantly, cell 
fusion was not required for hepatocyte formation in any of these studies, demonstrating 
that, at least in this model, human MSC isolated from several different sources all had the 
ability to directly reprogram to functional hepatocytes. 

Another key aspect to assessing the utility of stem cell therapy for regenerative medicine for 
the liver, and for other organs as well, is the mechanism whereby the transplanted cells 
replace/repopulate the recipient liver [40]. Indeed, there has been a great deal of 
controversy about the mechanism by which MSC reprogram and differentiate into other cell 
lineages, such as hepatocytes. Several researchers have shown that cell fusion could be one 
of the mechanisms by which MSC appear to give rise to hepatocytes, rather than true 
reprogramming/transdifferentiation [202]. Furthermore, evidence suggests that the means 
by which the transplanted MSC contribute to the recipient liver is strictly dependent on the 
model system employed. For example, an animal model in which proliferation of 
endogenous hepatocytes has been arrested, such as those using chemical-induced injury, 
will require replication of the transplanted cells and therefore, favoring transdifferentiation 
of the transplanted MSC. On the other hand, in an animal model that promotes proliferation 
of endogenous and MSC-derived hepatocytes, both mechanisms are possible, but fusion 
seems to be favored.  

Using the fetal sheep model made it possible for us to show that MSC could give rise 
directly to cells within the liver without the need for first forming hematopoietic elements 
[41]. In more recent studies, we have now shown that the ability to directly contribute to 
liver repopulation without the need for a hematopoietic intermediate enables the 
transplanted MSC to rapidly begin contributing to the growing liver, producing cells with 
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hepatic markers within as little as 24 or 48 hours post-transplantation [41]. The findings of 
these more recent studies confirmed our prior findings regarding the lack of a need for 
fusion, and furthered our understanding of the mechanism of hepatic repopulation by 
demonstrating that the generation of hepatocytes occurs independently of the transfer of 
either mitochondria or membrane-derived vesicles between the transplanted donor cells and 
the cells of the recipient liver [41]. These findings thus provide strong evidence to support 
genetic reprogramming and differentiation of the transplanted stem cells. The lack of fusion 
as a requirement for liver repopulation was in contrast to the results of numerous other 
studies employing injury models, raising the possibility that the efficacy and mechanism of 
stem cell repair will likely depend upon not only the stem cell population being 
transplanted, but also the nature of the injury/defect within the liver, and therefore the 
conditions within the hepatic microenvironment at the time of stem cell transplantation. 

Therefore, we performed studies to begin delineating the mechanism(s) of hepatocyte 
formation following transplantation of human MSC in the fetal sheep model, which we felt 
would be ideal for this analysis given the robust generation of human-derived hepatocytes. 
We labeled human BM-MSC with CFSE, which irreversible stains the plasma membrane 
[203, 204], or DiD, which labels all cell membranes, membrane-derived vesicles, and 
intracellular organelles such as mitochondria [205-207]. Consequently, pre-immune fetal 
sheep were IP injected with either CSFE-positive MSC alone or CFSE-positive MSC in 
combination with DiD-positive MSC. After transplantation, peripheral blood and peritoneal 
lavage were assayed for the presence of the cells. At 20h post-transplant, cells were already 
present in the peripheral blood, and all transplanted cells had exited the peritoneum by 96h. 
Confocal microscopic analysis for the presence of CFSE+ or DiD+ cells revealed that the 
transplanted cells initially appeared in the liver at 25h post-transplant, and their numbers 
then increased, reaching a maximum at 40h post-transplant. The next step was to evaluate if 
the cells, once in the liver, commenced proliferation before or after initiating differentiation 
towards tissue-specific cells. At all time points after transplantation, 95% of the CFSE+ or 
DiD+ cells were also positive for Ki67, indicating that the cells had already begun, or simply 
continued, to proliferate upon arrival to the liver. These results confirmed that the higher 
levels of the cells observed at later time points was likely due to the proliferation of the 
initial MSC that engrafted in the liver and not a result of more cells engrafting in the organ. 
These studies have important clinical implications, since they suggest that, independently of 
the low initial percentage of MSC engraftment into a certain tissue, the real contribution of 
the cell to that tissue does not only depend on the initial engraftment levels but also on the 
tissue’s intrinsic proliferative capacity. Following engraftment of transplanted cells into the 
liver, hepatoblasts were generated that, due to their intrinsic proliferative capacity [208], 
continued proliferating and further contributing to the chimeric tissue [196]. In contrast, if 
one were developing a therapy for which the transplanted cell needed to differentiate into a 
quiescent cell, such as a terminally differentiated neuron, the contribution of that cell to the 
tissue would be limited to the initial levels of engraftment. 

We next examined the timeline of MSC differentiation into organ-specific cell types in the 
liver, identifying differentiation of the transplanted cells by their simultaneous positivity for 
CFSE or DiD and ┙-Fetoprotein, since during normal fetal liver development, hepatocytes 
acquire the expression of this protein [209, 210]. At 25h post-transplant, cells that were 
positive for CFSE or DiD, were already expressing ┙-fetoprotein, indicating that the 
transplanted MSC were not only present in the tissue at this first time point of analysis, but 
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they were already differentiated into a hepatocyte-like phenotype. These results thus 
showed, for the first time, that transplanted MSC engraft within the recipient liver, proliferate, 
and rapidly commence hepatocytic differentiation. To begin unraveling the mechanism by 
which MSC seemingly gave rise to hepatocytes in the fetal liver, we performed fluorescence in 
situ hybridization (FISH) using a human- and a sheep-specific probe, coupled with confocal 
microscopy for the CFSE or DiD labels. The complete lack of hybridization of the nuclei of 
CFSE+ or DiD+ cells to the sheep probe conclusively demonstrated that the transplanted 
human MSC gave rise to hepatocytes independent of fusion or membrane vesicle/organelle 
transfer, and by true reprogramming/transdifferentiation [211]. In fact, we observed a 
sequential differentiation program, in which cells gradually expressed markers of 
differentiation, from the most undifferentiated cell to the mature fully differentiated cell type 
in the organ in question. Understanding the complete pathway of differentiation could 
ultimately make it possible to provide a cell driven to a precise point in differentiation to 
correct of a disease by providing exactly the cell type most needed. 

Despite the significance of our findings in the fetal sheep model, it is important to note that, 

even when using an optimal route of injection, the overall levels of liver engraftment may 

still be too low to achieve cure in many clinical situations. While the fetus has long been 

presumed to be immune-naïve, recent studies in mice have suggested that this may not be 

the case, since syngeneic hematopoietic stem cells engraft at higher levels than allogeneic 

cells of the same phenotype following in utero transplantation. Thus, it is possible that some 

rudimentary immune surveillance exists within the fetus and limited the levels of 

engraftment within the liver. MSC are well known for their immune-evading and 

immunomodulatory properties, but studies in murine and swine models have provided 

evidence that MSC are not completely invisible to the recipient’s immune system, nor 

immune-inert. Indeed, upon in vivo administration, MSC are able to trigger immune 

responses, resulting in rejection of the transplanted cells [212-216]. Based on these prior 

studies, we hypothesized that further reducing the immunogenicity of the MSC prior to 

transplant might enable us to achieve even higher levels of engraftment and hepatocyte 

generation, both in this “pre-immune” fetal model and, perhaps, even in recipients with a 

more developed/mature immune system. To test this hypothesis, we genetically modified 

human MSC to stably express proteins known to exert potent immunomodulatory/immune-

evading properties. The proteins we selected were derived from the ubiquitously prevalent 

human cytomegalovirus (HCMV). This virus is well known to possess multiple immune 

evasive strategies, which enable it to enter a state of latency in which it is invisible to immune 

surveillance, only to re-emerge when conditions are favorable, such as during the period of 

immuno-suppression following bone marrow or solid organ transplant, and wreak havoc on 

the immuno-compromised patient. HCMV accomplishes its immuno-evasion due largely to its 

unique short region (US) proteins. We therefore used a retroviral vector to genetically modify 

MSC to stably express members of the HCMV US protein family that are known to specifically 

reduce cytotoxic T cell recognition by different mechanisms, and compared the 

immunogenicity and immunomodulatory properties of these “US-MSC” to unmodified MSC 

and to MSC transduced with an empty control vector. Our results revealed that MSC 

expressing US6 (MSC-US6) and US11 (MSC-US11) exhibited the most pronounced reduction 

in HLA-I expression and accordingly, induced the lowest level of human or sheep PBMNC 

proliferation in mixed lymphocyte reactions. Moreover, as there are controversial reports 
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regarding whether reduction in HLA-I expression by HCMV US proteins renders infected cells 

more susceptible to NK killing [217, 218], we next examined whether forced expression of US6 

or US11 predisposed MSC to NK lysis. To our surprise, expression of US6 or US11 protein did 

not increase the ability of NK cells to target MSC. Moreover, expression of US11 actually 

protected MSC from NK cytotoxic effects [219]. Based on these promising in vitro results, we 

transplanted MSC-US6, MSC-US11 and MSC-E (control cell line transduced with the empty 

vector) into fetal sheep recipients by IP injection. Tissues were collected at 60 days post-

transplant and analyzed for engraftment and hepatocytic differentiation of the transplanted 

cells. Using both quantitative PCR and immunofluorescence, we determined that expression of 

either the US6 or the US11 HCMV protein on the transplanted MSC led to significantly 

enhanced levels of liver engraftment compared to those seen with MSC-E. However, although 

the increased levels of engrafted cells translated into increased levels of cells expressing 

HEPAR-I, many of these did not express albumin or Ov-6 [220]. This suggests that the 

hepatocytes generated by transplantation of these genetically modified cells were of a broad 

range of differentiation, not immature and not completely mature at the time of tissue 

collection. These results clearly show that by enhancing the immuno-evasive MSC properties, 

the levels of engraftment and hepatocyte generation can be significantly increased to provide a 

more successful regenerative therapy, even in the context of a fetal recipient whose immune 

system is presumed to be largely immature. 

3. Clinical trials 

Despite the promising results obtained in animal models, the use of MSC to treat liver 

diseases is still in its infancy, and very few clinical trials using these cells have been 

performed. Several concerns still exist over this therapy regarding the best administration 

route, and the possibility of cellular fusion, with the inherent risks that may accompany the 

presence of hepatocytes that are potentially genetically unstable within the environment of a 

diseased liver. In 2007, Mohamadnejad et al. reported that infusion of BM-derived MSC via a 

peripheral vein was found to be well tolerated and to have a definite therapeutic effect, since 

the quality of life of all 4 transplanted patients was improved by 12 months post-infusion, 

and the model for end-stage liver disease (MELD) scores for 2 of the 4 patients improved 

significantly during the course of the trial.  

Another 8 patients with end-stage liver disease due to different etiologies received 30-50 

million BM-derived MSC injected into a peripheral vein or the portal vein. Treatment was 

well tolerated by all patients, and liver function improved as verified by MELD scores. 

However, both of these trials lacked a control arm, and the number of patients was very 

small. Another study examining the safety and efficacy of umbilical cord-derived MSC (UC-

MSC) in 45 patients with decompensated liver cirrhosis demonstrated that both patients that 

received UC-MSC and those in the control arm that received saline suffered no significant 

side-effects or complications. However, in patients treated with UC-MSC there was a 

significant reduction in the volume of ascites when compared with control. Also, UC-MSC 

therapy significantly improved liver function, as evidenced by the increase of serum 

albumin levels, decrease in total serum bilirubin levels, and decrease in the sodium model 

for end-stage liver disease scores [151]. Forty patients with end-stage liver failure due to 

chronic hepatitis C were selected for a controlled study in which 10 received autologous 
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bone marrow-derived mesenchymal stem cells that were pre-induced to the hepatic lineage 

in vitro prior to transplant. Three groups were included in this trial: one in which 10 patients 

received the MSC by an intrasplenic route, another in which the 10 patients received cells by 

intrahepatic route, and a control group consisting of the remaining 20 patients. Patients in 

all groups were followed up using clinical and laboratory parameters and evaluated by 

MELD scores, fatigue scale, and performance status. Both transplanted groups, regardless of 

administration route, showed significant improvement when compared to the control [172]. 

Another phase 1 trial, in which four patients with decompensated liver cirrhosis were 

included, demonstrated that, after infusion of approximately 32 million bone marrow 

derived MSC through a peripheral vein, MELD scores of 2 patients improved by the end of 

follow-up as well as the quality of life of all four patients [173] 

Collectively, these studies provide hope that BM-derived cells may prove to be a valuable 
resource for cell-based therapies for liver disease. However, the results of these studies must 
be interpreted with some trepidation, given the limited number of patients enrolled in each 
trial and the lack of appropriate controls in some of the studies. Furthermore, since the cells in 
these trials were autologously-derived, there was no way for the investigators to assess the 
actual engraftment, persistence, or differentiative potential of the transplanted cells, leaving 
the mechanism responsible for the observed clinical improvements open to speculation.  

4. Conclusion 

Presently, chronic liver disease constitutes one of the leading worldwide causes of death. It 
can be triggered by a wide array of insults, including, but not limited to hepatitis infection, 
alcohol consumption, exposure to toxic chemicals, and congenital defects. Currently, the 
only definitive treatment for chronic liver disease is whole or partial liver transplantation. 
Due to the limited availability of donor livers and the severe morbidity and mortality 
associated with this treatment, there is an urgent need for new therapeutic approaches. 
While hepatocyte transplantation represents an option, the limited availability of donor 
livers and the inability to maintain and expand hepatocytes in culture precludes this option 
from becoming a clinically viable treatment option. MSC offer several advantages such as: 
extensive expansion in vitro, multipotent differentiative capacity, the ability to selectively 
and efficiently migrate to sites of injury following systemic infusion, their potent 
immunomodulatory and trophic properties, and the ease with which they can be genetically 
modified, making it possible to use autologous cells, even in the case of underlying genetic 
disease. MSC can be isolated from a wide range of human tissues and, despite subtle 
differences, they all share the same beneficial characteristics, making MSC transplantation a 
promising approach for liver repair/regeneration. However, in order to maximize MSC 
capabilities for improving/recovering the liver mass and/or function depending on the 
particular disease/injury, several issues must still be resolved: selection of the most 
therapeutic MSC source; standardization of the protocols for unequivocally isolating the 
desired MSC population from each tissue; more complete in vitro and in vivo 
characterization of the differentiative potential of the cells; and further optimization of the 
route, cell dose, timing, and degree of desired MSC differentiation. Once these questions 
have been answered, the knowledge gained during in vitro and in vivo studies in animal 
models could be safely and efficiently translated into humans to develop an appropriate and 
successful therapy for chronic liver disease. 
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