
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IntechOpen

https://core.ac.uk/display/322415228?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


8 

Nanoparticles Based on  
Modified Polysaccharides 

Hassan Namazi1,2,*, Farzaneh Fathi2 and Abolfazl Heydari2 

1Research Center for Pharmaceutical Nanonotechnology,  
Tabriz University of Medical Science, Tabriz,  

2Research Laboratory of Dendrimers and Nanopolymers, University of Tabriz, Tabriz  
Iran 

1. Introduction 

Nanoparticles may be comprised of several kind materials being classified as non-
degradable and biodegradable. Biodegradable systems have an advantage over non-
degradable systems in that they are non-toxic, biotolerabl, biocompatible, biodegradable, 
and water-soluble. Among these systems, the role of natural polysaccharides in developing 
prepared nanoparticles has significantly increased (Zhang et al., 2011; Yang et al., 2008a; 
Aumelas et al., 2007; Leonard et al., 2003). 

On the other hand, polysaccharides are the most abundant macromolecules in the 
biosphere. The complex carbohydrates constituted of monosaccharides joined together by 
glycosidic bonds are often one of the main structural elements of plants and animals 

exoskeleton (cellulose, carrageenan, chitosan, chitin, etc.) or have a key role in the plant 

energy storage (starch, paramylon, etc.) (Aminabhavi et al., 1990). Polysaccharides have a 

large number of reactive groups, a wide range of molecular weight, varying chemical 

composition, which contribute to their diversity in structure and in property. The 
amphiphilic nature imparted upon polysaccharides after modification gives them a wide 

and interesting application spectrum, for instance as rheology modifiers, emulsion 
stabilizers, surface modifiers for liposomes and nanoparticles and as drug delivery vehicles 

(Sinha and Kumria, 2001; Gurruchaga et al., 2009; Chen et al., 2003a; Durand et al., 2002; Gref 

et al., 2003). Recently, the hydrophobically modification of polysaccharides has been 

received increasing attention because they can form self-assembled nanoparticles for 

biomedical uses. In the aqueous phase, the hydrophobic cores of polymeric nanoparticles 

are surrounded by hydrophilic outer shells. Thus, the inner core can serve as a nano-
container for hydrophobic drugs. Starch, chitosan, dextran, cyclodextrin, cellulose and 
pullulan are polysaccharides that have been modified with various reactants and after the 

modification step the nanoparticles based on modified polysaccharides were prepared with 

using various methods (Onyuksel et al., 2003; Aumelas et al., 2007; Ragauskas et al., 2007; 

Kwon, 2003; Namazi and Dadkhah, 2010; Namazi. and  Mosadegh, 2011). 

Nanoparticles are defined as particulate dispersions or solid particles with a size in the 
range of 10-1000nm (P., 1988; Hamidi et al., 2008). Depending upon the method of 
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preparation, nanoparticles, nanospheres or nanocapsules can be obtained. These nano-sized 
objects, e.g., “nanoparticles”, take on novel properties and functions such small size, 
modified surface, improved solubility and multi-functionality. The drug is dissolved, 
entrapped, encapsulated or attached to a nanoparticle matrix. Nanoparticles based on 
modified polysaccharides have been prepared most frequency by these methods: solvent 
evaporation method, spontaneous emulsification or solvent diffusion method, self-assembly 
of hydrophobically modified and dialysis method (Kim et al., 2001; Aumelas et al., 2007; Sun 
et al., 2006; Couvreur, 1998). Modified polysaccharide could be used as stabilizers to produce 
stable hydrophilic nanoparticles by the o/w emulsion/evaporation technique. Modified 
polysaccharides were shown to exhibit surface active properties and to act as efficient 
emulsion stabilizers. Surface modified colloidal carriers such as nanoparticles are able to 
modulate the biodistribution of the loaded drug when given intravenously, but also to 
control the absorption of drugs administered by other routes (Durand et al., 2004). 

This review presents the several mechanisms to prepare polysaccharides-based 
nanoparticles after discusses about modification of polysaccharides with various agents. 
Also characterization of nanoparticles such as size particles, surface coverage, colloidal 
stability and enzyme degradability have been described and also provided are examples of 
use of the polysaccharide nanoparticles and their derivatives as medical applications. 

2. Polysaccharides 

Polysaccharides with polymeric carbohydrate structures, formed from repeating units joined 
together with glycosidic bonds. Their structures are often linear, but may contain various 
degrees of branching. In nature, polysaccharides have various resources from algal origin, 
plant origin, microbial origin and animal origin .Polysaccharides have a general formula of 
Cx(H2O)y where x is usually a large number between 200 and 2500. Considering that the 
repeating units in the polymer backbone are often six-carbon monosaccharides, the general 
formula can also be represented as (C6H10O5)n where 40≤ n ≤3000 .(Aminabhavi et al., 1990) 

2.1 Starch 

Starch is made up of two types of polymers: amylose and amylopectin. Amylose is a linear 
homopolymer of ǂ-1,4-linked glucose. Amylose may have a low level of branching with a ǂ-
1,6-linkage (Fig 1). Amylose makes up ~35% of starch. In solution amylose forms hydrogen 
bound with other amylase molecules to yield rigid gels. Amylopectin is highly branched 
form of “amylose”. The linear ǂ-1,4-linked glucose backbone is branched at every ~20 
residues by an ǂ-1,6-linkage which is extended by ǂ-1,4-linked linkages (Namazi and 
Dadkhah, 2008; Della Valle et al., 1998; Namazi et al., 2009; Namazi and Dadkhah, 2010) 
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Fig. 1. Chemical structure of the starch 
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2.2 Chitosan and chitin 

Chitosan is a linear polysaccharide composed of randomly distributed ǃ-(1-4)-linked D-
glucosamine (deacetylated unit) and N-acetyl-D-glucosamine (acetylated unit) (Fig 2). It has 
a number of commercial and possible biomedical uses. Chitosan is produced commercially 
by deacetylation of chitin, which is the structural element in the exoskeleton of crustaceans 
(such as crabs and shrimp) and cell walls of fungi (Thanou et al., 2005; Tharanathan and 
Ramesh, 2003; Yuan and Zhuangdong, 2007). Chitin (C8H13O5N)n is a long-chain polymer of 
a N-acetylglucosamine, a derivative of glucose (Fig 2), and is found in many places 
throughout the natural world. It is the main component of the cell walls of fungi, the 
exoskeletons of arthropods such as crustaceans (e.g., crabs, lobsters and shrimps) and 
insects, the radulas of mollusks, and the beaks of cephalopods, including squid and 
octopuses. In terms of structure, chitin may be compared to the polysaccharide cellulose 
and, in terms of function, to the protein keratin. Chitin has also proven useful for several 
medical and industrial purposes (Kumar, 2000; Kurita, 2001). 
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Fig. 2. Chemical structure of the chitosan and chitin 

2.3 Dextran 

Dextran is a polysaccharide consisting of glucose molecules coupled into long branched 
chains, mainly through a 1,6- and some through a 1,3-glucosidic linkages as shown in Fig 3. 
Dextrans are colloidal, hydrophilic and water-soluble substances, inert in biological systems. 
It is used medicinally as an antithrombotic (anti-platelet), to reduce blood viscosity, and as a 
volume expander in anemia (Bertholon et al., 2006; Durand et al., 2004). 
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Fig. 3. Chemical structure of the dextran 

2.4 Pullulan 

Pullulan is a polysaccharide polymer consisting of maltotriose units, also known as ǂ-1,4- ; 
ǂ-1,6-glucan (Fig 4). Three glucose units in maltotriose are connected through an ǂ-1,4-
glycosidic bond, whereas consecutive maltotriose units are connected to each other by an ǂ-
1,6 glycosidic bond. Pullulan is produced from starch by the fungus Aureobasidium 
pullulans (Bataille et al., 1997; Glinel et al., 1999). 
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Fig. 4. Chemical structure of the pullulan 

2.5 Cyclodextrins 

Cyclodextrins (CDs), also using the name cycloamyloses, cyclomaltoses, or Schardinger 

dextrins, are natural macrocycles connected through ǂ-(1-4)-linked glucose units in a rigid 
4C1 chair conformation. CDs can be produced through the enzymatic degradation of starch 

derived from potatoes, corn, rice or other sources. The number of glucose units per CD ring 

varies from 6-13, (Saenger et al., 1998; Larsen, 2002; Ueda, 2002; Hennink et al., 2009; Namazi 

and Kanani, 2009) as the enzyme produces a range of oligosaccharides. Because of steric 

factors, cyclodextrins constructed from less than six glucose units such as the five-

membered cyclic oligomer, cyclomaltopentaose, has been obtained by chemical synthesis in 

small quantities.(T. Nakagawa et al., 1994) A chemical synthesis for other CDs has been 

reported, but it is too tedious for commercial production of cyclodextrins.(Ogata and 

Takahashi, 1995) The most common CDs contain 6, 7, and 8 D-glucose units and are known 

as ǂCD, ǃCD, and ǄCD, respectively,(Saenger, 1980) (Figure 5), while greater cyclodextrins 

have been reported as well.(Larsen et al., 1998; French et al., 1965; Fujiwara et al., 1990; 

Miyazawa et al., 1995) 

 

Fig. 5. Chemical structure of the cyclodextrins 

2.6 Cellulose 

Cellulose is an organic compound with the formula (C6H10O5)n, a polysaccharide consisting 

of a linear chain of several hundred to over ten thousand ǃ(1→4) linked D-glucose units (fig. 

6). Cellulose is the structural component of the primary cell wall of green plants, many 

forms of algae and the oomycetes. Some species of bacteria secrete it to form biofilms. 

Cellulose is the most common organic compound on Earth (Hinrichsen et al., 2000; Riedel 

and Nickel, 1999; Gassan and Bledzki, 1999). 
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Fig. 6. Chemical structure of the cellulose 

3. Modified polysaccharides (MP) for preparation of their nanoparticles 

Amphiphillic polysaccharides consisting of hydrophilic and hydrophobic fragments have 

been modified because they can form self-assembled nanoparticles and they show unique 

physicochemical characteristics such as a nanoparticle structure and thermodynamic 

stability. Natural biopolymers have various advantages, such as availability from replenish 

able agricultural or marine food resources, biocompatibility, and biodegradability, therefore 

leading to ecological safety and the possibility of preparing a variety of chemically or 
enzymatically modified derivatives for specific end uses. Recently, there has been 

considerable interest in developing modified derivatives of polysaccharides for 

biodegradable nanoparticles. These nanoparticles have shown the following advantages for 

biomedical applications such as drug protection and ability to control the drug release. 

Polysaccharides have a number of positive characteristics such biotolerability, 

biodegradability, protein rejecting ability, receptor interaction through specific sugar 
moieties, and abundance of functional groups for modification or functionalization 

(Couvreur et al., 2004). The amphiphilic character imparted upon polysaccharides after 
hydrophobic modification gives them a wide and interesting use spectrum, for instance as 

rheology modifiers, emulsion stabilizers (Chen et al., 2003a; Durand et al., 2002), surface 
modifiers for liposomes and nanoparticles (Vyas and Sihorkar, 2001) and as drug delivery 

vehicles (Rodrigues et al., 2003; Leonard et al., 2003). 

3.1 Modified starch 

Starch is one of the polysaccharide that it has been modified with various reactants for 
preparation of nanoparticles. The use of starch nanoparticles is receiving a significant 
amount of notice because of the plentiful availability of natural polymer, inexpensive, 
renewability, biocompatibility, biodegradability and nontoxicity. Chemical modification of 
starch has been widely studied for producing modified starch by way of chemical reaction 
with hydroxyl groups in the starch molecule. Starch esters are a kind of modified starches 
which are synthesized with various reactants such as acid anhydrides octenyl succinic 
anhydride (OSA), dodecenyl succinic anhydride (DDSA) fatty acids and fatty acid chlorides 
(Tukomane and Varavinit, 2008; Wang et al., 2007a; Borredon et al., 1999; Fowler et al., 2002). 
Hydroxyethyl starch was esterified with the long chain fatty acids under mild reaction 
conditions using DCC and DMAP (Mader et al., 2007). The synthesis of modified 
hydrophobic starch using fatty acids was done by means of potassium persullphate as 
catalyst in DMSO (Abraham and Simi, 2007). Several substituted starches were prepared by 
acylation of starch with fatty acid chlorides in organic solvents, such as pyridine or 
dimethylacetamide (Kapusniak and Siemion, 2007; Wang et al., 2008). Hydrophilic  
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Starch Grafting agent References 

Amylopectin (from waxy corn) Lactic acid (Hong-Wei Lua and 
Li-Ming Zhanga, 
2011) 

Modification: Amylopectin and aqueous lactic acid (LA) were added to a three-necked 
flask equipped. After the stirring at 75 oC for 30 min, the temperature of the reaction 
system was thermostated to be 100 oC.Then a required amount of Sn(Oct)2 was added to 
the flask. Then the product was further purified by Soxhlet extraction to remove 
completely the unreacted LA monomer as well as PLA homopolymer that may be formed 
during the reaction. 
 

Amylopectin-rich waxy 
maize starch 

Stearic acid 

Cl

O

16

(Dufresne et al., 2004; 
Dufresne et al., 2006) 

Modification: Chemical modification of the nanoparticles was performed in a round-
bottomed reaction flask under a nitrogen atmosphere while constantly stirring with 
amagnetic stir bar. The stearate modification was performed by the reaction of dry starch 
nanocrystals with stearic acid chloride in methyl ethyl ketone. 

Amylomaize starch n-Butanol (Lim and Kim, 2009) 

Modification: The amylomaize starch (0.5%, w/v) was dispersed DMSO solution with 
heating and stirring in a boiling water bath, and then magnetic-stirred at room 
temperature for 24 h. An aliquot of the starch solution was allowed to gravimetrically 

pass through a membrane filter into the bottom compartment filled with n-butanol. The 
precipitate in the butanol layer was collected by centrifugation, and then washed three 
timesin the n-butanol. 

Cassava starch Monochloroacetic acid (MAC) 
ClCH2COONa 

(Wu et al., 2011) 

Modification: Cassava starch in anhydrous ethanol was placed in a glass reactor. An 
aqueous solution of sodium hydroxide was added drop wise to the starch–solvent 
mixture under stirring until the whole amount of sodium hydroxide were added. Then, 
the solution of MAC was added drop wise to the starch–solvent–sodium hydroxide 
mixture under ultrasonic irradiation. 

Waxy corn starch O

Cl

n

 

(Fowler et al., 2004; 
Namazi and 
Dadkhah, 2010) 

Modification: Starch esterification was carried out in two steps. In the first step, starch 

nanocrytstals dispersed in the reaction medium were alkali treated at room temperature 

with mechanical stirring under an atmosphere of N2 for 10 min and in the second step, 0.5 

mol equivalents of the required acid chloride was added drop wise and the reaction 

mixture was stirred for 20 min. 

Cassava starch CH3(CH2)7CH=CH(CH2)7COOH (Abraham and Simi, 

2007) 

Modification: For the graft copolymerization, about 1g starch was dissolved in 10 ml 

DMSO and was taken in a round bottom flask. Oleic acid, weighing was added and 

potassium per sulphate was the catalyst. 
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Hydroxyethyl starch 
(HES) 

Fatty acid (Mader et al., 2007) 

Modification: HES was dried for 2 h before dissolving in 20 mL of dry DMSO. To the 
solution were added the fatty acid, DCC, and DMAP, and they dissolved for 24 h. The 
formed precipitate (dicyclohexyl urea, DCU) was removed by filtration, and the filtrate 
was added to 200 mL of precipitating solvent mixture. 
 

Potato starch (Namazi and 
Dadkhah, 2008; 
Dufresne et al., 1996) 

Modification: A mixture of starch nanoparticle (1 g) and CL (2 mL) was first added to 
flask. A determined amount of Sn(Oct)2 of total amount of reagents was then introduced 
via a conditioned syringe. Polymerization was stopped by fast cooling to room 
temperature. 
 

Table 1. Functional molecules for modification of starch 

amylopectin was modified by grafting hydrophobic poly (lactic acid) chains (Hong-Wei Lua 
and Li-Ming Zhanga, 2011). Since 1950, considerable effort has gone into hydrophobically 
modified derivatives of hydrophilic polysaccharides(Namazi et al., 2011).  

Recent studies have been carried out to investigate the synthesis and the application of 
polysaccharide-based nanoparticles. In Table 1 functional molecule that used for 
modification of starch are listed which have been used for preparation of their 
nanoparticles. 

3.2 Modified chitosan and chitin 

Biopolymer chitosan with a lot of primary amino groups is a polysaccharide derived from 

deacetylation of chitin. Due to the excellent film-forming ability, biocompatibility, 

nontoxicity, high mechanical strength, cheapness of chitosan, it is used for synthesis and the 

application of polysaccharide-based nanoparticles (Payne et al., 2005; Kwon et al., 2003). 

Chitosan is one of the polysaccharides that modified with various groups such as 5ǃ-

cholanic acid, linoleic acid, Monomethoxy poly (ethyleneglycol) and etc. After modification 

process, modified chitosan are used for preparation of their nanoparticles. These groups are 

listed in Table 2.  

 Grafted chitosan has been studied by many researchers. These studies have been intensified 
since 1992 because chitin and chitosan show excellent biological properties such as 
biodegradation in the human body. Modification can marginally improve the solubility of 
chitosan. As a polymeric amphiphile, grafted-chitosan with monomethoxy poly 
(ethyleneglycol) can aggregate into core–shell nanoparticles in aqueous media because in 
the aqueous phase, the hydrophobic cores of chitosan nanoparticles are encircled by 
hydrophilic outer shells. Thus, the internal core can serve as a nano-container for 
hydrophobic drugs. Modified chitosan is appropriate for decreasing severe side effects such 
as cytotoxicity in usual tissue (Fang et al., 2006; Gorochovceva et al., 2005; Opanasopit et al., 
2006). 
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Chitosan Grafting agent References 
Glycol chitosan 5ǃ-Cholanic acid (Kwon et al., 2006; 

Kwon et al., 2004; 
Kwon et al., 2003) 

Modification: Glycol chitosan was hydrophobically modified with cholanic acid in 
methanol/water. To activate the carboxylic acid groups of cholanic acid, equal amounts 
of 1-ethyl-3-(3-dimethylaminopropyl) - carbodiimide ydrochloride and N-
hydroxysuccinimide were added.
Chitosan of 100 mesh Linoleic acid (Lu et al., 1994; 

Ichinose  
et al., 2000) 

Modification: Chitosan was dissolved in aqueous acetic acid solution and diluted of 
methanol. LA was added to the chitosan solution glucosamine residue of chitosan followed 
by a dropwise addition of 15 mL of EDC methanol solution (0.07 g/L) while stirring. 

chitosan ǂ-Cyclodextrin (Sakairi et al., 1998; 
Martel et al., 2001; 
Aoki et al., 2003) 

Modification: Sakairi prepared ǂ-CD linked chitosan using 2-O-formylmethyl-ǂ-CD by 
reductive N-alkylation and confirmed the host-guest complex with p-nitrophenol. 

Chitosan є-Caprolactone 

H2
C O

Cl
P O

O

N
N

(Albertsson  
et al., 1999;  
Yang et al., 2008b) 

Modification: The PCL-graft-chitosan copolymers were synthesized by coupling the 
hydroxyl end-groups on preformed PCL chains and the amino groups present on 6-O-
triphenylmethyl chitosan and by removing the protective 6-O-triphenylmethyl groups in 
acidic aqueous solution 

Biomedical grade chitosan Monomethoxy poly(ethyleneglycol) (Zhang et al., 2005; 
Yang et al., 2008b) 

Modification: Chitosan was completely dissolved in formic acid by stirring and a suitable 
amount of mPEG was added. After 15 min, enough formaldehyde solution was added to 
the above mixture and was stirred for 12 h. 

Table 2. Functional molecules for modification of chitosan 

3.3 Modified dextran 

The development of existing materials to prepare modified dextran is the subject of 
numerous researches due to their surface-active properties and potential pharmaceutical, 
biochemical and medical applications. Modified dextran gives a large range of properties, 
allowing the selection of the carrier which proves the most useful for a particular drug 
encapsulation and release. Dextran is one of the water-soluble polysaccharides that have 
been modified to obtain amphiphilic polymers capable of forming micellar structures and 
binding organics solutes in the hydrophobic domain. Also, it is amphiphilic block 
copolymers that can self- assemble in selective solvents to form micelles with a core and a 
shell containing insoluble and soluble blocks (Lu et al., 1994; Ichinose et al., 2000; Lu and 
Tjerneld, 1997). Core-shell type nanoparticles of a poly (DL-lactide-co-glycolide) (PLGA) 
grafted-dextran copolymer are prepared with varying graft ratio of PLGA. The DexLG 
copolymer was able to form nanoparticles in water by self-aggregating process (Song et al., 

www.intechopen.com



 
Nanoparticles Based on Modified Polysaccharides 

 

157 

2006). Dextran was chemically modified by the covalent attachment of hydrocarbon groups 
(aliphatic or aromatic) via the formation of ether links. According to the extent of 
modification, either water-soluble or water-insoluble dextran derivatives were obtained. 
The latter exhibited solubility in organic solvents like tetrahydrofuran or dichloromethane 
saturated with water (Bertholon et al., 2006; Durand et al., 2004; Leonard et al., 2003; Aumelas 
et al., 2007; Leonard et al., 2000; Osterberg et al., 1995). Biodegradable hydrogel nanoparticles 
were prepared from glycidyl methacrylate dextran (GMD) and dimethacrylate 
poly(ethylene glycol) (DMP). GMD was synthesized by coupling of glycidyl methacrylate to 
dextran in the presence of 4-(N,N-dimethylamino)pyridine (DMAP) using 
dimethylsulfoxide (DMSO) as an aprotic solvent (Kim et al., 2000; Vandijkwolthuis et al., 
1995). Dextran also was modified using click-chemistry. Each reaction step was done under 
aqueous conditions, including the introduction of azide functionalities to the backbone of 
the polysaccharide. The reaction consisted of the synthesis of 1-azido-2,3-epoxypropane, 
which was etherified onto the backbone of the polysaccharide using base-catalysis in 
water/isopropanol mixture at ambient temperature (Fringuelli et al., 1999; Seppala et al., 
2010). Modified dextran was synthesized by conjugating the various groups to dextran such 
as poly (lactic-co-glycolic acid, p-hexylbenzoyl chloride. These groups are listed in Table 3. 

Dextran Grafting agent References 

Dextran 
(average molecular  
weights: 77,000) 

Poly(lactic-co-glycolic acid) (Tiera et al., 2003) 

Modification: The DexLG graft copolymer was synthesized by conjugating the carboxylic 
acid end of PLGA and the hydroxyl group of dextran using DCC as a coupling agent. 

Dextran T40 ðMw < 40; 000 P-Hexylbenzoyl chloride (Tiera et al., 2003;  
Bertholon et al., 2006) 

Modification: Dextran was dissolved under stirring in 5 ml of water containing 1.8 g of 
triethylamine. The resulting solution was heated at 20 8C and 1.4 g of p-hexylbenzoyl 
chloride was added under vigorous stirring for 1h. 

Dextran 1,2- Epoxy-3-
phenoxypropan 

(Durand et al., 2002;  
Sun et al., 2006;  
Song et al., 2006) 

Modification: Water-soluble amphiphilic dextran, i.e. dextran with lowsubstitution ratio 
– here DexP15 – was obtaiobtained after reaction with 1,2- epoxy -3-phenoxypropane in 
1M NaOH as previously described. 

Dextran (Mw ) 30 200 Bile acid (Melo et al., 1999;  
Akiyoshi et al., 1993) 

Modification: modified dextran were obtained by reacting dextran (Mw) 30 200, 
Mw/Mn) 1.112) with a bile acid in the presence of N,N-dicyclohexylcarbodiimide as a 
coupling agent and 4-(N,N-dimethylamino)pyridine as a catalyst. 

Dextran 
methoxypolyethylene 

Glycol/poly 
(є-caprolactone) 

(Zhang et al., 2008;  
Cao et al., 2005) 

Modification: A series of amphiphilic copolymers, dextran-graft-methoxypolyethylene 
glycol/poly (e-caprolactone) (Dex-g-mPEG/PCL) were synthesized by grafting both PCL 
and mPEG chains to dextran, and subsequently the micellar self-assembly behavior of 
resultant copolymers was investigated. 

Table 3. Functional molecules for modification of dextran 
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3.4 Modified pullulan 

Due to their amphiphilic structure, modified pullulan has potential high surface and 

interfacial properties. They diffuse through the bulk phase and adsorb at the interface, 

inducing a sharp reduction in the surface or interfacial tension of a polymer solution (Muller 

et al., 2003). Like other polysaccharides pullulan have been used to modify with various 

groups for preparation of their nanoparticles (table 4). Pullulan which is partly modified by 

relatively higher hydrophobic groups such as cholesteryl groups, it shows unique 

association behavior. Cholesterol-bearing pullulans have been studied in detail by Akiyoshi 

and Sunamoto. It was designed as a self-aggregate to form monodisperse and stable 

nanogels due to the hydrophobic moieties in an aqueous solution. The nanogels formed 

complexes with various drugs and proteins by hydrophobic interaction and released them 

upon exposure to specific proteins (Akiyoshi et al., 1997; Akiyoshi et al., 1993; Cheng et al., 

2008). Hydrophobically-modified pullulans of moderate molar mass and differing in 

hydrophobic modification ratio, charge ratio and the nature of the hydrophobic chains were 

prepared (Bataille et al., 1997; Glinel et al., 1999; Fischer et al., 1998). Poly (DL-lactide-co-

glycolide)-grafted pullulan can form self-assembling nanospheres and controll adriamycin 

release. Pullulan acetate (PA) is the other important hydrophobized pullulan, which can 

form self-aggregation nanoparticles as well as its modified materialsn (Zhang et al., 2009; Na 

et al., 2007). 

 

Pullulan Grafting agent References 

Pullulan 

C(O)NH(CH2)6NHC(O)O

(Akiyoshi et al., 1998) 

Modification: Cholesterol-bearing pullulan forms a spherical andmonodisperse 
nanoparticle which is a self-aggregate of 10–12 CHP molecules. This nanoparticlehas 
several hydrophobic domains of four to five associated cholesteryl moieties. 

carboxymethylpullulan Alkyl bromide (octyl, decyl or 
dodecyl) 

(Bataille et al., 1997;  
Glinel et al., 1999) 

Modification: Hydrophobically-modified carboxymethylpullulans (HMCMPs) were 
obtained by a synthetic pathway adapted from that used by Della Valle for gellan and 
Fischer et al. for pectin. 

Pullulan with molecular 
weight 
of 50,000–100,000 (g/mol) 

Poly(DL-lactide-co-glycolide) (Jeong et al., 2006) 
 

Modification: Pullulan (1 g) was dissolved in DMSO (15 ml) for 3 h. Various amounts of 

PLGA were dissolved in DMSO (5 ml) with a 1.3 equiv. amount of DCC and DMAP. 

Pullulan (Mw = 200,000) Acetic anhydride (Na et al., 2007;  

Zhang et al., 2009) 

Modification: 2 g of pullulan, suspended in 20ml of formamide, was dissolved by 

vigorous stirring at 54 ◦C. To this solution, 6ml pyridine and 15 ml, 10ml or 7.5ml of acetic 

anhydride were added to change the acetylation degree. 

Table 4. Functional molecules for modification of pullulan 
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3.5 Modified cyclodextrins 

Modifications to the cyclodextrins(Namazi et al., 2005; Namazi and Kanani, 2009) lead to a 
wide range of photochemistry of cyclodextrin complexes, through which the improvement 
of guest reactivity occurs; in addition, light harvesting molecular devices and photochemical 
frequency switches may be constructed. A few amphiphilic ǃ-CD derivatives such as ǃ-
CDC6 modified on the secondary face with 6C aliphatic esters and 6-N-CAPRO-ǃ-CD 
modified on the primary face with a 6C aliphatic amide were demonstrated to give stable 
nanoparticles of high drug loading capacity and reduction of burst effect during the drug 
release process when nanoparticles are prepared directly from preformed drug/amphiphilic 
CD inclusion complex (Lemos-Senna et al., 1998). A new nanoparticle carrier system was 
obtained from amphiphilic cyclodextrin bearing fatty acids (with a chain length of either 6 
or 12 carbon atoms) grafted O2 and O3 position of the cyclodextrin. Nanoparticles with a 
mean diameter of several hundred nm were prepared by dispersion. Amphiphilic 
cyclodextrins (CDs) are obtained by the chemical per-modification of natural CDs (ǃ-CD or 
Ǆ-CD) by the selective substitution of aliphatic chains of varying length (2C to 18C), 
structure (linear or branched) linked with varying bonds (ester, ether, amide, thio, fluoro) of 
high purity. These CD derivatives were demonstrated to yield nanospheres or nanocapsules 
spontaneously using the nanoprecipitation technique with or without the presence of 
surfactants. Carboxymethyl-ǃ-cyclodextrin modified nanoparticles were fabricated for 
removal of copper ions from aqueous solution by grafting CM-ǃ-CD onto the magnetite 
surface via carbodiimide method. The grafted Carboxymethyl-ǃ-cyclodextrin on the Fe3O4 
nanoparticles contributes to an enhancement of the adsorption capacity because of the 
strong abilities of the multiple hydroxyl and carboxyl groups in CM-ǃ-CD to adsorb metal 
ions. Double hydrophilic copolymers with one polyethylene glycol (PEG) block and one ǃ- 
cyclodextrin (ǃ-CD) flanking block (PEG-ǃ-PCDs) were synthesized through the post-
modification of macromolecules. The self-assembly of PEG-ǃ-PCDs in aqueous solutions 
was studied by a fluorescence technique(Choisnard et al., 2006). 

3.6 Modified celullose 

Modified celullose have received wide applications for the stabilization of disperse systems, 
in particular suspensions and emulsions (Namazi and Rad, 2004). The most important types 
of associating polymers are water-soluble amphiphilic polymers, notably block or graft 
copolymers, with hydrophobic blocks or grafts. Cellulose is the most abundant 
polysaccharide available worldwide and exhibits attractive structure and single properties, 
which are quite attractive for both academic and industrial researchers. Recently, cellulose 
based polymers have been widely investigated for its positive characteristics such as safety, 
biodegradability, biocompatibility, and protein rejecting ability, and so on(Namazi and 
Jafarirad, 2008). However, there have been few reports on the utilization of self-assembled 
micelles based on amphiphilic cellulose derivatives as delivery carriers for poorly water-
soluble pharmaceutical active ingredients (Klemm et al., 2005; Cheng et al., 2008; Dong et al., 
2008). Poly (є-caprolactone) (PCL) and poly (L-lactic acid) (PLLA) are biodegradable 
polymers that are potential candidates as matrixes in biocomposites. Several studies have 
been conducted on the PCL and PLLA modification of soluble cellulose and its derivate 
(Nishio and Teramoto, 2003; Nishio et al., 2002; Burt and Shi, 2003). Modified cellulose was 
prepared with hydrophilic groups that it can be self-assemble into polymeric vesicle or as 
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nontoxic surfactants. Sulfate was firstly introduced as hydrophilic groups, then the 
hydrophobic groups for cellulose derivatives. The aqueous self-assembly of the modified 
cellulose was investigated using transmission electron microscopy (TEM) and dynamic laser 
scattering (DLS). Results showed that modified cellulose were capable of forming polymeric 
micelles in water with an average particle diameter ranging from 20 to 67 nm (Cheng et al., 
2008). Novel modified cellulose derivatives were synthesized long chain alkyl groups as 
hydrophobic moieties and quaternary ammonium groups as hydrophilic moieties. The 
results of measurements (DLS, TEM) revealed that modified cellulose can be self-assembled 
into cationic micelles in distilled water with the average hydrodynamic radius of 320–430 
nm (Zhou et al., 2011). 

4. Prepration methods and characterization of polysaccharide-based 
nanoparticle 

As for polysaccharide-based nanoparticles, Alonso et al. (Alonso et al., 2001) and Prabaharan et 
al. (Prabaharan and Mano, 2005) have made excellent reviews in 2001 and 2005, respectively, 
focusing on the preparation and application of chitosan nanoparticle carriers. Many studies 
have demonstrated that nanoparticles have a number of advantages over microparticles 
(Panyam and Labhasetwar, 2003). It has been reported that micro particles are less effective 
drug delivers than particle having size ranging in between nanometers for e.g. Nanoparticles 
having size range greater than 230 nm acquire in the spleen shown by body distribution 
studies (Kreuter, 1991). As time goes on, more polysaccharide-based nanoparticles emerge, 
which greatly enriches the versatility of nanoparticle carriers in terms of category and 
function. In this section, several mechanisms are introduced to prepare these nanoparticles, 
that is, emulsification solvent evaporation method, solvent diffusion method, self-assembly of 
hydrophobically modified, dialysis method and other methods. The select of method depends 
on a number of factors, such as, particle size, particle size distribution, area of application and 
etc. Particle size is the greatest important characteristics of nanoparticles. Some methods for 
the determining particle size are (Labhasetwar et al., 2003)  

a. Photon-correlation spectroscopy.  
b. Dynamic light scattering.  
c. Brownian motion and light scattering properties.  
d. Scanning or transmission electron microscopy (SEM or TEM). 

They determine the in vivo distribution, biological fate, toxicity and targeting ability of these 

delivery systems. In addition, they can influence drug loading, drug release and stability of 

the nanoparticles. 

4.1 Polysaccharides-based nanoparticles through emulsification solvent evaporation 
method 

Emulsification solvent evaporation is the most widely employed technique to prepare 

nanoparticles of polymers in the current literature on techniques using a dispersion of 
preformed polymers (Vanderhoff et al., 1979). In the conventional methods, two main 

strategies are being used for the formation of emulsions: the preparation of single-
emulsions, e.g., oil-in-water (o/w) or double-emulsions, e.g., (water-in-oil)-in-water, 

(w/o/w). 
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In a single emulsification solvent evaporation process, polymer dissolved in a volatile water-
immiscible organic solvent such as dichloromethane, chloroform, ethyl acetate, which is also 
used as the solvent for dissolving the hydrophobic surfactant. This solution is emulsified in 
an aqueous phase containing a surfactant or stabilizer (emulsifying agent) resulting in oil-in-
water (o/w) emulsion.(ODonnell and McGinity, 1997; I. et al., 2004; Lee, 2001) The 
coalescence of the organic droplets can be avoided by continuous stirring. Emulsification 
can also be enhanced by using sonication or microfluidization with a homogenizer, which 
reduces the droplet size of the organic dispersed phase. After the formation of stable 
emulsion, the organic solvent is evaporated either under stirring at room temperature or by 
rotary evaporation under reduced pressure to transform the nano-emulsion into a 
nanoparticle suspension. Formed nanoparticles are harvested from the aqueous slurry by 
lyophilization. 

For the water-soluble surfactants, a double-emulsion (water-oil-water) variation of the 

process is utilized. An aqueous solution of the active agent (internal water phase, w1) is 

emulsified into an organic solution containing the biodegradable polymer and lipophilic 

surfactant (oil phase, o) for resulting primary emulsification. Then, this emulsion (w1/o) is 

added to the large aqueous phase with emulsifier (external water phase, w2) to create 

w1/o/w2 double emulsion. The emulsifier amount is much higher in the first emulsion than 

in the second emulsion, because the droplet size of the first emulsion needs to be much 
smaller than in the second outer emulsion. The organic solvent is removed by evaporation 

or extraction and solid nanoparticles are formed. The nanoparticles are collected by 

centrifugation or filtration and are subsequently lyophilized. 

Wouessidjewe and coworks(Lemos-Senna et al., 1998) using this method for preparing 

nanospheres from an amphiphilic 2,3-di-O-hexanoyl-Ǆ -cyclodextrin (ǄCDC6). This 

preparation method involves in emulsifying an organic phase having the cyclodextrin in an 

aqueous phase containing Pluronic F68 as surfactant. This solution was dispersed in 

aqueous phase by using a high speed homogenizer. Afterward, the organic solvent was 

evaporated by mechanical stirring at room temperature. The influence of the process 

parameters, i.e. surfactant concentration and initial ǄCDC6 content, on the characteristics of 

nanosphere preparation, as well as on the nanosphere loading of a hydrophobic drug, 

progesterone, was calculated. Cyclodextrin nanospheres presenting a mean diameter 

varying from 50 to 200 nm were obtained, even in the presence of low surfactant 

concentration. 

Nanoparticles of dextran (Aumelas et al., 2007) could be simply prepared by the o/w 

emulsion solvent evaporation method, with using a low modified dextran (DexP15) as 

polymeric surfactant in the water phase and a highly modified dextran in the CH2Cl2 phase. 

After emulsification and solvent evaporation, core-shell particles with a dense dextran core 

and a dextran surface coverage are expected. Dextran segments originating from DexP15 

chains which are not embedded in the dextran core are assumed to extend freely toward the 

aqueous solution and to form a hydrophilic shell. The size of DexP130 nanoparticles prepared 

by o/w emulsion process decreases as the amount of DexP15 in the water phase increases. 

Unpredictably, dextran nanoparticles were also obtained without any polymeric surfactant 

in the aqueous phase. For comparison, when poly (lactic acid) was used instead of 

hydrophobically modified dextran, it was not possible to obtain nanoparticles without the 
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presence of surfactant in the aqueous phase. This specific result can be explained assuming a 

limited solubility of highly hydrophobized dextrans in water. This solubility can be due to 

the presence of a fraction of low substituted dextran molecules in the final product or to 

partitioning of the highly substituted sample. This water-soluble fraction could act as a 

stabilizer for the transient oil droplets. Generally speaking, the size of bare dextran 

nanoparticles, i.e. prepared in the absence of DexP15, increases with the substitution ratio of 

dextran, for example from 370 nm for DexP65 nanoparticles to 850 nm for DexP210 

nanoparticles. Other dextran particles, in the size range 150–250 nm, were obtained in the 

presence of DexP15. The colloidal stability of suspensions was also examined at various NaCl 

concentrations. For the targeted nanoparticles, surface coverage by hydrophilic loops is 

essential to provide a convenient colloidal stability in physiological conditions (especially 

with regard to the ionic strength). 

In the o/w emulsion process, we showed that the size of particles is strongly related to the 
concentration of surfactive polymer in the aqueous phase. In generally, parameters in the 
emulsification solvent evaporation process that affect particle size, zeta potential, 
hydrophilicity, and drug loading include: 

1. Homogenization intensity and duration. 
2. Type and amounts of emulsifier, polymer and drug. 
3. Particle hardening (solvent removal) profile (Zambaux et al., 1998). 

4.2 Polysaccharides-based nanoparticles through solvent diffusion method 

Spontaneous emulsification or solvent diffusion method is a modified version of solvent 
evaporation method. The different process variants are all based upon the use of solvents 
which are of limited water miscibility and capable of spontaneous emulsion formation. This 
method thus offers the advantage of the use of pharmaceutically acceptable solvents and 
does not require the use of high-pressure homogenizers for the formation of the o/w 
emulsion as the preliminary stage of nanoparticle formation (Allemann et al., 1998; Leroux et 
al., 1995). In this method, the water-miscible solvent along with a small amount of the water-
immiscible organic solvent is used as an oil phase. Due to the spontaneous diffusion of 
solvents an interfacial turbulence is created between the two phases leading to the formation 
of small particles. In this technique, the phase separation is accompanied by vigorous 
stirring. On the opposite with o/w, the size of nanoparticles obtained using the solvent-
diffusion method is poorly affected by the concentration of polymeric surfactant added to 
the aqueous phase. A reduction in particle size can be gained by increasing the 
concentration of water miscible solvent. 

Nanoparticles of dextran (Aumelas et al., 2007) could be prepared by solvent-diffusion 
method. Dextran nanoparticles of similar size were obtained with or without using stabilizer 
such as DexP15. This process avoids the use of any high energy input step. The colloidal 
stability of suspensions was also examined at various NaCl concentrations. The particular 
colloidal stability of DexC1052 nanoparticles up to high ionic strengths without DexP15 can be 
justified by assuming that the water-soluble fraction contained in that polymer is higher 
than in the others. Also this method was employed to prepare pullulan acetate (PA) 
nanoparticles.(Zhang et al., 2009) This technique had some advantages compared with other 
methods. It is a straightforward technique and the particle size increased from 185.7 nm to 
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423.0 nm with the degree of acetylation increasing from 2.71 to 3.0. Briefly, PA is readily 
soluble in dimethyl sulfoxide (DMSO), DMF, tetrahydrofuran (THF), dichloromethane, 
chloroform, acetone, and pyridine. To make nanoparticles by solvent diffusion method, only 
water-miscible solvents were considered because the solvents could diffuse into aqueous 
phase. The solvent selected to dissolve the polymer, as well as the type of polymer can 
influence the formation of nanoparticles, due to differences in the polymer-solvent and 
water–solvent interactions. It was supposed that the diffusion-stranding process might be 
altered, thus inducing changes in the mean size. Therefore, solvents are of primary 
importance in the formation of nanoparticles by the solvent diffusion method. In other 
study, five water-miscible solvents, i.e., DMSO, DMF, acetone, THF and pyridine were used. 
0.5% poly (vinyl alcohol) [PVA] or distilled water served as aqueous phase. PA2 could form 
nanoparticles in anyone of the five organic solvents added to water or 0.5% PVA. However, 
PA1 could do only in DMSO and DMF added to 0.5% PVA. Really, PA2 led to the smallest 
nanoparticles (185.7 nm), and the largest was PA1 nanoparticles (423.0 nm). 

4.3 Polysaccharides-based nanoparticles through self-assembly method 

The literature survey showed that several studies have been carried out to investigate the 

synthesis and the application of polysaccharide based self- aggregate nanoparticles as drug 

delivery systems. When hydrophilic polymeric chains are grafted with hydrophobic 

segments, amphiphilic copolymers are formed. Upon contact with an aqueous environment, 
polymeric amphiphiles spontaneously form micelles or micelle-like aggregates via 

undergoing intra- or intermolecular associations between hydrophobic moieties, primarily 

to minimize interfacial free energy. These polymeric micelles display unique characteristics, 

such as small hydrodynamic radius (less than microsize) with core-shell structure, unusual 

rheology feature, thermodynamic stability, depending on the hydrophilic/hydrophobic 

constituents. In specific, polymeric micelles have been recognized as a promising drug 
carrier, since their hydrophobic domain, surrounded by a hydrophilic outer shell, can serve 

as a preservatory for various hydrophobic drugs (Letchford and Burt, 2007). Usually, these 

hydrophobic molecules can be divided into linear, cyclic hydrophobic molecules, 

hydrophobic drug, polyacrylate family, etc. 

4.3.1 Linear hydrophobic molecules 

Poly (ǆ-caprolactone) (PCL) is biodegradable industrial polyester with excellent mechanical 
strength, non-toxicity, and biocompatibility. It has been frequently used as implantable 
carriers for drug delivery systems or as surgical repair materials. It is hopeful to combine 
chitosan with the biodegradable polyester to create amphiphilic copolymer applicable to 
drug delivery systems. In 2002 and 2003, (Gref et al., 2002; Lemarchand et al., 2003) 
synthesized amphiphilic dextran by coupling between carboxylic function present on 
preformed PCL monocarboxylic acid and the hydroxyl groups on dextran. The comb-like 
copolymers (dextran-PCLn) consisted of a dextran back bone on to which preformed PCL 
blocks were grafted. Nanoparticles of less than 200 nm were successfully prepared by using 
the new materials (Rodrigues et al., 2003). Further, bovine serum albumin and lectin were 
incorporated in the nanoparticles. Lectins could also be adsorbed onto the surface of the 
nanoparticles. Surface-bound lectin conserved its hemagglutinating activity, suggesting the 
possible application of this type of surface-modified nanoparticles for targeted oral 
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administration. Caco-2 cellular viability was higher than 70% when put in contact with the 
nanoparticles, even at concentrations as high as 660 mg/ml (Rodrigues et al., 2003). In 
addition, it was found that the modification of the surface with dextran significantly 
reduced the cytotoxicity towards J774 macrophages. Biodegradable amphiphilic PCL-graft-
chitosan copolymer was synthesized (Jing et al., 2006). The copolymers could form spherical 
or elliptic nanoparticles in water. 

Poly (ethylene glycol) has been employed extensively in pharmaceutical and biomedical 
fields because of its outstanding physicochemical and biological properties including 
hydrophilic property, solubility, non-toxicity, ease of chemical modification and absence of 
antigenicity and immunogenicity. Therefore, poly (ethylene glycol) is widely used as a 
pharmacological polymer with high hydrophilicity, biocompatibility and biodegradability. 
In recent years, derivative poly (ethylene glycol)-g-derivative chitosan to obtain 
nanoparticles has been studied by many researchers (Ouchi et al., 1998; Jung et al., 2006) 
(Park et al., 2008) (Yang et al., 2008b) (Opanasopit et al., 2007). The grafted poly (ethylene 
glycol) methyl ether onto N-Phthaloyl chitosan chains, aggregated to obtain sphere-like 
nanoparticles (an et al., 2004). When the chain length of poly (ethylene glycol) methyl ether 
was as high as 5×103 Da, the sphere size became as small as 80-100 nm. By simply adjusting 
the hydrophobicity/hydrophilicity of the chitosan chain, stable nanospheres could be 
obtained directly. Also methoxy poly (ethylene glycol)-grafted chitosan to develop 
polymeric micelles for the drug delivery to brain tumor was synthesized.(Jung et al., 2006) 
Methoxy poly (ethylene glycol)-grafted-chitosan conjugates by formaldehyde linking 
method was synthesized(Yang et al., 2008b). The conjugates formed monodisperse self-
aggregated nanoparticles with a roughly spherical shape and a mean diameter of 261.9 nm. 
A poorly water-soluble anticancer drug, methotrexate was physically entrapped inside the 
nanoparticles. Other group synthesized amphiphilic grafted copolymers, N-phthaloyl 
chitosan- grafted poly (ethylene glycol) methyl ether (Opanasopit et al., 2007). These 
copolymers could form micelle-like nanoparticles. The CMC of these nanoparticles in water 
was similar (28 μg/ml). The nanoparticles exhibited a regular spherical shape with core-
shell structure with sizes in the range of 100-250 nm. Camptothecin as a model drug was 
loaded into the inner core of the micelles. 

For modifying polysaccharides have been used some long-chain fatty acids such as hexanoic 
acid, decanoic acid, linoleic acid, linolenic acid, palmitic acid, stearic acid, and oleic acid. 
Choisnard et al. (Choisnard et al., 2006) prepared decanoate ǃ-cyclodextrin esters (DS, 2-7) 
and hexanoate ǃ-cyclodextrin esters (DS, 4-8) biocatalyzed by thermolysin from native  
ǃ-cyclodextrin and vinyl hexanoate or vinyl decanoate used as acyldonors. Both esters self -
organized into nanoparticles by a nanoprecipitation method. Chen et al. (Chen et al., 2003a) 
modified chitosan by coupling with linoleic acid through the 1-ethyl-3-(3-dimethylamino-
propyl)-carbodiimide-mediated reaction to increase its amphipathicity for enhanced 
emulsification. The micelle formation of linoleic acid-modified chitosan in the 0.1 M acetic 
acid solution was improved by o/w emulsification with methylene chloride, an oil phase, 
the self-aggregation concentration from 1.0 g/L to 2.0 g/L. The addition of 1 M sodium 
chloride promoted the self-aggregation of linoleic acid-chitosan molecules both with and 
without emulsification. The micelles formed nanosize particles ranging from 200 to 600 nm. 
The nanoparticles encapsulated a lipid soluble model compound, retinal acetate, with 50% 
efficiency. The similar group modified chitosan with linolenic acid (the DS 1.8%) using the 
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same reaction. The self-aggregated nanoparticles of linolenic acid-chitosan were also used to 
immobilize trypsin using glutaraldehyde as crosslinker. Results indicated that the activity of 
trypsin immobilized onto the nanoparticles increased with increasing concentration of 
glutaraldehyde up to 0.07% (v/v) and then decreased with increasing amount of 
glutaraldehyde. On the other side, particle size increased (from 523 to 1372 nm) with the 
increasing concentration of glutaraldehyde (from 0.03 to 0.1% v/v) (Liu et al., 2005). 

Water-soluble N-palmitoyl chitosan was prepared by swollen chitosan coupling with 

palmitic anhydride in dimethyl sulfoxide, which could procedure micelles in water (Jiang et 

al., 2006). The DS of N-palmitoyl chitosan was in the range of 1.2-14.2% and the CMC of N-

palmitoyl chitosan micelles was in the range of 2.0×10-3 to 37.2×10-3 mg/ml. The loading 

capacity of hydrophobic model drug ibuprofen in the micelles was about 10%. Also stearic 

acid grafted chitosan oligosaccharide by 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide-

mediated coupling reaction was synthesized (Hu et al., 2006). The CMC of the copolymer 

was approximately 0.06, 0.04, 0.01 mg/ml respectively. To increase the stability of the 

micelle in vivo and controlled drug release, the shells of micelles were cross-linked by 

glutaraldehyde. Paclitaxel was used as a model drug to incorporate into the micelles, and 

the surfaces of the micelles were further cross-linked by glutaraldehyde to form drug loaded 

and shell cross-linked nanoparticles. The higher drug entrapment efficiencies (above 94%) 

were observed in all cases. Zhang et al. (Zhang et al., 2007) developed self-assembled 

nanoparticles based on oleoyl-chitosan with a mean diameter of 255.3 nm. Doxorubicin was 

efficiently loaded into the nanoparticles with an encapsulation efficiency of 52.6%. The drug 

was rapidly and completely released from the nanoparticles at pH 3.8, whereas at pH 7.4 

there was a sustained release after a burst release. Amylose-conjugated linoleic acid 

complexes were synthesized to serve as molecular nanocapsules for the protection and the 

delivery of linoleic acid (Shimoni et al., 2005). 

Pluronic tri-block copolymers collected of poly (ethylene oxide)-poly (propylene oxide) - 

poly (ethylene oxide) show lesser critical solution temperature behaviors over a broad 

temperature range depending on the composition and MW. They self-assemble to 

procedure a spherical micellar structure above the lower critical solution temperature by 

hydrophobic interaction of the poly (propylene oxide) middle block in the structure. 

Pluronic/heparin composite nanocapsules, which displayed a 1000-fold volume transition 

(ca. 336 nm at 25 °C; ca. 32 nm at 37 °C), and a reversible swelling and de-swelling behavior 

when the temperature was cycled between 20 and 37 °C is prepared (Choi et al., 2006). 

Core/shell nanoparticles with the poly (lactide-co-glycolide) core and the polymeric shell 

made-up of pluronics and hyaluronic acid was synthesized (Yuk et al., 2005). 

4.3.2 Cyclic hydrophobic molecules 

Cholesterol is an essential lipid in animals, which not only participates the formation of cell 

membranes but also works as a raw material for the synthesis of bile acids, vitamin D and 

steroid hormones. Conjugating hydrophobic cholesterol to hydrophilic polysaccharides may 

form amphiphilic copolymer which may further form self-assembly nanoparticles in 

aqueous solution. cholesterol-modified chitosan conjugate with succinyl linkages was 

synthesized (Wang et al., 2007c). The conjugates formed monodisperse self-aggregated 
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nanoparticles with a roughly spherical shape and a mean diameter of 417.2 nm by probe 

sonication in aqueous media. Epirubicin, as a model anticancer drug, was physically 

entrapped inside the nanoparticles by the remote loading technique. Epirubicin-loaded 

nanoparticles were almost spherical in shape and their size increased from 338.2 to 472.9 nm 

with the epirubicin-loading content increasing from 7.97% to 14.0%. Also was prepared self-

aggregated nanoparticles of cholesterol-modified O-carboxymethyl chitosan (Wang et al., 

2007b). 

Various cholesterol-bearing pullulans with different MWs of the parent pullulan and DS of 

the cholesteryl moiety was synthesized (Nishikawa et al., 1996; Akiyoshi et al., 1997). 
Irrespective of the MW of the parent pullulan and the DS, all of cholesterol-pullulans 

provided unimodal and mono-disperse self-aggregates in water. The size of the self-

aggregate reduced with an increase in the DS of the cholesteryl moiety (hydrodynamic 

radius, 8.4-13.7 nm). However, the aggregation number of cholesterol-pullulans in one 

nanoparticle was almost independent of the DS. The polysaccharide density within the self-

aggregate (0.13– 0.50 g/ml) was affected by both the MW and the DS of cholesterol-
pullulans. The characteristic temperature to cause a structural change of the nanoparticles 

decreased with an increase in the DS and the ionic strength of the medium. Moreover, they 

also prepared thermo-responsive nanoparticles by self-assembly of two different 

hydrophobically modified polymers, namely, cholesterol-pullulan and a copolymer of N-

isopropylacrylamide and N-[4-(1-pyrenyl) butyl]-N-n-octadecylacrylamide via their 

hydrophobic moieties (Akiyoshi et al., 2000) , as well as hexadecyl group-bearing pullulan 
self-assembly nanoparticles (Kuroda et al., 2002).  

Bile acids such as deoxycholic acid and 5ǃ-cholanic acid are known to form micelles in water 

as a result of their amphiphilicity, which plays an important role in the emulsification, 

solubilization, and absorption of cholesterol, fats, and liphophilic vitamins in human body. 

Therefore, it is expected that the introduction of deoxycholic acid or 5ǃ-cholanic acid into 

chitosan would induce self-association to form self-aggregates. Covalently conjugated 

deoxycholic acid to chitosan via carbodiimide-mediated reaction to generate self-aggregated 

nanoparticles was prepared (Lee et al., 1998; Jeong et al., 1998). Adriamycin was physically 

entrapped inside the self- aggregates. The size of adriamycin-loaded self-aggregates 

increased with increasing the loading content of adriamycin (Lee et al., 2000). 

Chemically modified chitosan oligosaccharides with deoxycholic acid was reported (Chae et 

al., 2005). Owing to the amphiphilic characters, the deoxycholic acid-chitosan formed self-

aggregated nanoparticles in aqueous milieu. The particle size of the nanoparticles was in the 

range of 200-240 nm. Furthermore, deoxycholic acid-chitosan showed great potential for 

gene carrier with the high level of gene transfection efficiencies, even in the presence of 

serum. Deoxycholic acid-heparin amphiphilic conjugates with different degree of 

substitution of deoxycholic acid was synthesized (Park et al., 2004), which provided 

monodispersed self-aggregates in water, with mean diameters (120-200 nm) decreasing with 

increasing DS. Increasing DS enhanced the hydrophobicity of the self-aggregate inner core. 

However, chitosan -based self-aggregates were difficult to be widely applied for drug 
delivery systems because chitosan aggregates are insoluble in biological solution (pH7.4) 
and they are readily precipitated within a few days. Recently, water-soluble chitosan 
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derivatives have been used to increase their stability in biological solution and decrease the 
cytotoxicity induced by acidic solution, where chitosan is soluble. Covalently modified 
glycol chitosan with deoxycholic acid self-aggregates as a new drug delivery system was 
prepared (Kim et al., 2005) and investigated in detail the effect of deoxycholic acid attached 
to glycol chitosan on the formation, physicochemical characteristics, and stability of self-
aggregates in aqueous media. The same group (Kwon et al., 2003; Park et al., 2007) covalently 
attached the 5ǃ-cholanic acid to glycol chitosan through amide formation using 
carbodiimide as catalyzer. The 5ǃ-cholanic acid-glycol chitosan formed self-aggregates (210-
859 nm in diameter) in an aqueous phase by intra- or intermolecular association between 
hydrophobic 5ǃ-cholanic acids attached to glycol chitosan. 

FITC is a widely used hydrophobic fluorescein, the isothiocyanato of which can readily react 

with free amine to incorporate fluorescence labeling. Doxorubicin is an anti-tumor 
antibiotic, which can inhibit the synthesis of RNA and DNA and has a therapeutic effect on 

many tumors. FITC and doxorubicin themselves are hydrophobic cyclic molecules, which 

can be conjugated onto hydrophilic polysaccharides form amphiphilic copolymers. 

Hydrophobically modified glycol chitosans by chemical conjugation of FITC or doxorubicin 

to the backbone of glycol chitosan was prepared (Lee et al., 2006; Son et al., 2003). 

Biodistribution of self-aggregates (300 nm in diameter) was evaluated using tissues obtained 
from tumor-bearing mice, to which self-aggregates were systemically administered via the 

tail vein. Na et al. (Na et al., 2003) introduced vitamin H to pullulan acetate and prepared 

corresponding self-assembled nanoparticles (~100 nm) in order to improve their cancer-

targeting activity and internalization. Three samples of biotinylated pullulan acetate, 

comprising 7, 20 and 39 vitamin H groups per 100 anhydroglucose units, were synthesized. 

In addition, synthesized successfully N-succinyl-chitosan, which could be self-assembly of 
well-dispersed and stable nanospheres in distilled water with 50-100 nm in diameter (Zhu et 

al., 2006). Experimental results indicated that a hydrophobic domain formed within these 

nanospheres. The assembly mechanisms were believed to be the intermolecular H-bonding 

of N-succinyl-chitosan and hydrophobic interaction among the hydrophobic moieties in N-

succinyl-chitosan macromolecules. Park et al. (Park et al., 2006) described N-acetyl histidine-

conjugated glycol chitosan self-assembled nanoparticles as a promising system for intracyto-
plasmic delivery of drugs. 

4.3.3 Polyacrylate-based nanoparticles applicable as biomaterials 

Poly (methyl methacrylate) and poly (isobutyl cyanoacrylate) (PIBCA) all belong to 
polyacrylate family and they were widely used for biomaterials. Containing carboxylic ester 
groups in their structures, they are hydrophobic. The efficient uptake of injected 
nanoparticles by cells of the mononuclear phagocyte system limits the development of long-
circulating colloidal drug carriers. The complement system plays a major role in the 
opsonization and recognition processes of foreign materials. Since heparin is an inhibitor of 
complement activation, nanoparticles bearing heparin covalently bound to poly (methyl 
methacrylate) and evaluated their interactions with complement was prepared (Passirani et 
al., 1998a). Nanoparticles bearing covalently bound dextran instead of heparin were weak 
activators of complement as compared with cross-linked dextran or bare poly (methyl 
methacrylate) nanoparticles. In addition to the specific activity of bound heparin, the 
protective effect of both polysaccharides is hypothesized to be due to the presence of a 
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dense brush-like layer on the surface of the particles. Dextran nanoparticles were also 
eliminated very slowly over 48 h. bare poly (methyl methacrylate) nanoparticles were found 
to have a half-life of only 3 min. Both types of nanoparticles proved to be long-circulating. 
The potent capacity for opsonization of the poly (methyl methacrylate) core was hidden by 
the protective effect of either polysaccharide, probably due to a dense brush -like structure. 
In the case of heparin nanoparticles, the “stealth” effect was probably increased by its 
inhibiting properties against complement activation (Passirani et al., 1998b). 

PIBCA-chitosan nanoparticles by emulsion polymerization of IBCA in the presence of 

chitosan as a polymeric stabilizer at low pH were prepared (Yang et al., 2000). Nimodipine 

as a model drug was successfully incorporated into the nanoparticles with mean particle 

diameter of 31.6 nm and a positive charge. Also PIBCA-chitosan, PIBCA-dextran and 

PIBCA-dextran sulfate core-shell nanoparticles by redox radical or anionic polymerization 

of IBCA in the presence of chitosan, dextran or dextran sulfate was prepared (Bertholon et 

al., 2006). Bravo-Osuna et al. (Bravo-Osuna et al., 2006; Bravo-Osuna et al., 2007a; Bravo-
Osuna et al., 2007c; Bravo-Osuna et al., 2007b) developed PIBCA-thiolated chitosan 

nanoparticles by radical emulsion polymerization. The nanoparticles had mean 

hydrodynamic diameter around 200 nm and positive zeta potential values, indicating the 

presence of the cationic thiolated chitosan at the nanoparticle surface. Polysaccharide-coated 

nanoparticles by radical emulsion polymerization of IBCA in the presence of various 

polysaccharides (dextran, dextran sulfate, heparin, chitosan, hyaluronic acid, pectin) was 
synthesized (Chauvierre et al., 2003). They also measured the complement activation 

induced by different polysaccharide-coated nanoparticles and of the antithrombic activity of 

heparin. These nanoparticles maintained the heparin antithrombic properties and inhibited 
complement activation. This work demonstrated the hemoglobin loading on nanoparticle 

surface, rather than being encapsulated. With a size of 100 nm, these drug delivery systems 
made suitable tools in the treatment of thrombosis oxygen deprived pathologies 
(Chauvierre et al., 2004). In addition, they investigated for the first time the mobility of 

dextran chains on the PIBCA nanoparticles with electronic paramagnetic resonance. This 

technique opens an interesting prospect of investigating surface properties of 

polysaccharide-coated nanoparticles by a new physicochemical approach to further 

correlate the mobility of the polysaccharide chains with the fate of the nanoparticles in 

biological systems (Vauthier et al., 2004). 

4.4 Polysaccharides-based nanoparticle through dialysis method 

The preparation of nanoparticles was performed by a dialysis method without the use of 
any surfactant or emulsifiers. Dialysis offers a simple and effective method for the 

preparation of small, narrow-distributed polymer nanoparticle (Fessi et al., 1989; Jeong et al., 
2001; Kostog. M et al., 2010; Jeon et al., 2000). Polymer is dissolved in an organic solvent and 

placed inside a dialysis tube with proper molecular weight cut-off. Dialysis is performed 
against a non-solvent miscible with the former miscible. The displacement of the solvent 

inside the membrane is followed by the progressive aggregation of polymer due to a loss of 

solubility and the formation of homogeneous suspensions of nanoparticles. 

Paclitaxel-loaded HGC (PTX-HG C) nanoparticles were simply prepared by this method 

(Kwon et al., 2006). The incorporation of PTX into the HGC nanoparticles occurred 
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simultaneously during dialysis. The loading efficiency of PTX into HGC nanoparticles was 

determined by varying the feed weight ratio of PTX to HGC nanoparticles. When the feed 

ratio was less than 0.1, the loading efficiency was above 90%. Importantly, the PTX-HG C 

nanoparticles were well dispersed in an aqueous medium. However, if the feed ratio was 

above 0.1, the loading efficiency significantly decreased to about 42% and the excess of PTX 

molecules precipitated during dialysis. Thus, the maximum loading content of PT X into 

HGC nanoparticles was determined to 10 wt%. 

To make core-shell type nanoparticles, poly (DL-lactide-co-glycolide) (PLGA) grafted-

dextran (DexLG) graft copolymer was dissolved in DMSO and the core-shell type 

nanoparticles were prepared by dialysis method against water. The morphology of core-

shell type nanoparticles of DexLG copolymer was observed by SEM and the particle size 

was evaluated by DLS. Core-shell type nanoparticles of DexLG copolymer has spherical 

shapes in their morphology and particle size was around 50-200 nm. 

Starch ester nanoparticles were prepared by the dialysis method. Appropriate amount of 
graft polymer was dissolved in DMSO, the sample was dialysed against water using a 
dialysis membrane of MW 12,000 g mol–1 cut off. Starch nanoparticle formed was studied 
by atomic force microscopy. Nanoparticles in DMSO water solution were transferred to 
freshly cleaved mica sheet by drop and analyzed by tapping mode. Size of the particles was 
found to be in the range of 65–75 nm (diameter), and 17–19 nm (height). 

5. Medical applications of polysaccharide-based nanoparticles 

Polysaccharide-based nanoparticles have received considerable attention in recent years as 
one of the most promising nanoparticulate drug delivery systems owing to their unique 
potentials. Nanoparticle drug delivery systems are defined as particulate dispersions or 

solid particles with a size in the range of 10-1000nm and with various morphologies, 

including nanospheres, nanocapsules, nanomicelles, nanoliposomes, and nanodrugs, etc. 

The drug is dissolved, entrapped, encapsulated or attached to a nanoparticle matrix 

(Kommareddy et al., 2005; Lee and Kim, 2005). Drug delivery systems of nanoparticles have 

several advantages, such as high drug encapsulation efficiency, efficient drug protection 
against chemical or enzymatic degradation, unique ability to create a controlled release, cell 
internalization as well as ability to reverse the multidrug resistance of tumor cells (Soma et 

al., 1999). The use of starch nanoparticles is receiving a significant amount of attention due 
to their good hydrophilicity, biocompatibility and biodegradability. Starch nanocrystals 

have also been found to be excellent reinforcements (Elvira et al., 2002). Hydrophobic 

grafted and cross-linked starch nanoparticles were used for drug delivery and Indomethacin 
was taken as the model drug (Abraham and Simi, 2007). Hydrophilic amylopectin was 

modified by grafting hydrophobic poly (lactic acid) chains (PLA) for the fabrication of 

polymeric micelles for drug delivery. When these spherical nano-aggregates were used as 
the drug carrier, it was found that they had a good loading capacity and in vitro release 

properties for hydrophobic indomethacin drug (Brecher et al., 1997; Dufresne et al., 2006). 

A novel amphiphilic copolymer (dextran-g-polyethyleneglycol alkyl ether) was synthesized 
which resulted in polymeric micelle formation, encapsulating cyclosporine in the 
hydrophobic core and providing a hydrophilic corona (Na et al., 2003; Francis et al., 2003). 
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Nanoparticles of poly (DL-lactide-co-glycolide)-grafted dextran were synthesized for use as a 
nanoparticulate oral drug carrier. These nanoparticles were able to form nanoparticles in 
water by self-aggregating process, and their particle size was around 50 nm~300 nm. Core-
shell type nanoparticles of DexLG copolymer can be used as a colonic drug carrier (Tiera et 
al., 2003). Superparamagnetic chitosan–dextran sulfate hydrogels as drug carriers was 
synthesized. The 5- aminosalicylic acid was chosen as model drug molecule (Saboktakin et 
al., 2010). Dextran sulphate–chitosan nanoparticles were prepared to overcome the 
pharmacokinetic problems and to obtain the full benefits of the drug (Anitha et al., 2011). 
Self-assembled hydrogel nanoparticles composed of dextran and poly (ethylene glycol) was 
synthesized and prepared nanoparticles used for drug carrier with hydrophobic model drug 
in vitro (Kim et al., 2000).  

Hydrophobized pullulan has been used as drug delivery carrier, Specifically, cholesterol-

pullulan and a copolymer of N-isopropylacrylamide and N-[4-(1-pyrenyl)butyl]-N-n-

octadecylacrylamide via their hydrophobic moieties, as well as hexadecyl group-bearing 

pullulan self-assembly nanoparticles (Akiyoshi et al., 1998; Akiyoshi et al., 1993; Jung et al., 

2004). These hydrophobized pullulan self-associate to form colloidally stable nanoparticles 

with inner hydrophobic core. This hydrophobic core can only encapsulate hydrophobic 

substances like insoluble drugs and proteins (Gupta and Gupta, 2004). Amphiphilic 

polysaccharides composed of pullulan and poly (DL-lactide-coglycolide) (PLGA) were 

synthesized to give amphiphilicity and biodegradability as novel drug carriers. Due to its 

biodegradability, PLGA is commonly used for the controlled release of drugs (Jeong et al., 

2006). Hydrophobically modified glycol chitosan (HGC) nanoparticles showed potential as 

carriers for anticancer peptides and anticancer drugs because of their biocompatible in vivo 

(Kwon et al., 2003; Yoo et al., 2005). Modified chitosan derivatives, are emerging as novel 

carriers of drugs because of their solubility and biocompatibility in vivo (Sinha et al., 2004; 

Jiang et al., 2006; Chen et al., 2003b). Nanoparticles of carboxymethyl chitosan (CM-chitosan) 

as carriers for the anticancer drug, were prepared by gelification with calcium ions and 

Doxorubicin (DOX) was chosen as a model drug. 

6. Conclusions and future trends 

The literature survey showed that in the last decades a lot of attention has been focused to 

the combination of polysaccharides based polymers with inorganic nanoparticles, to benefit 

from the advantages of both organic and inorganic composite components. As this chapter 

showed the use of polysaccharides-based nanoparticles is receiving a significant amount of 

interests because of the plentiful availability of natural polymer, inexpensive, renewability, 

biocompatibility, biodegradability and nontoxicity. Therefore, a number of formulations of 

such bionanocomposites exhibits some excellent characteristics such as magnetic, optical, 

antimicrobial functionalities, size particles, surface coverage, colloidal stability, enzyme 

degradability and interesting applications of the polysaccharide based nanoparticles and 

their derivatives for biotechnological and biomedical applications was explained. The 

preparation of this kind of materials strongly relies on earlier steps of their production and 

modification steps which emphasises the relevance of preparative strategies that take in 

consideration their final applications. With this respect, we introduced various methods for 

the preparation of polysaccharides-based nanoparticles such as: solvent evaporation 
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method, spontaneous emulsification or solvent diffusion method, self-assembly of 

hydrophobically modified and dialysis method. On the other hand, the modified 

polysaccharides exhibit considerable potentials to utilize as stabilizers to produce stable 

hydrophilic nanoparticles through the o/w emulsion/evaporation technique. Modified 

polysaccharides were shown to exhibit surface active properties and to act as efficient 

emulsion stabilizers. Surface modified colloidal carriers such as nanoparticles are able to 

modulate the biodistribution of the loaded drug when given intravenously, but also to 

control the absorption of drugs administered by other routes. The amphiphilic character 

imparted upon polysaccharides after hydrophobic modification gives them a wide and 

interesting use spectrum, for instance as rheology modifiers, emulsion stabilizers, surface 

modifiers for liposomes and nanoparticles and as drug delivery vehicles. The recent 

attempts toward finding new methods for the earlier diagnosis of diseases and more 

effective therapies to synthesize the new generation of multifunctional nanostructured 

materials based on polysaccharides, modified polysaccharides and polysaccharide-based 

dendrimers is very fast emerging. As time goes on, more polysaccharide-based 

nanoparticles emerge, which greatly enriches the versatility of nanoparticle carriers agents 

in terms of category and function. 
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