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1. Introduction  

Maintenance of ploidy is crucial to the fate of daughter cells in any reproduction process. 
Improper genetic material segregation leads in general to mitotic catastrophe and 
subsequent cell death, but may also lead to the formation of aneuploid cells. Chromosomal 
unbalance, or aneuploidy, has been one of the main concerns in human reproduction for 
decades. About 20 % of all human oocytes are aneuploid and this percentage is believed to 
increase with ovarian aging, which is one of the major detrimental factors in pregnancy 
achievement (Battaglia et al., 1996; Younis, 2011). Besides age, oocyte-related aneuploidy is 
linked to spindle morphology abnormalities, non-disjunction of chromosomes in meiosis I 
and II, and related to toxic compounds exposure (Hassold and Hunt, 2001; Wang and Sun, 
2006). Most embryos, that are formed from aneuploid oocytes, are non-viable and do not 
result in pregnancy. However, viable aneuploidic embryos can be produced but in many 
cases carry genetic disorders, such as monosomies for chromosomes X and 21, autosomal 
trisomies [for instance, Patau syndrome (trisomy 13), Down syndrome (trisomy 21)] and 
triploidy. The latter is associated with tumor development (Hitzler and Zipursky, 2005). 

Imbalance in chromosome number is thought to result in the failure of the 
organization/assembly or disassembly of the mitotic or meiotic spindle, which is in charge 
of the correct segregation of the genetic material to the daughter cells (oocytes and polar 
bodies in the case of female gametogenesis). Indeed, chromosomes that are not organized 
correctly on the microtubule spindle apparatus may be lost or inappropriately segregated 
during cell division, which results in aneuploidy. Abnormalities in spindle organization and 
chromosomal dynamics are predominant in aging oocytes and are regarded as the major 
factors responsible for infertility, miscarriage and to some extent, birth defects. For these 
reasons the cell cycle is considered to be tightly controlled through many checkpoints, in a 
manner to avoid "madness" at the helm, which would drive to genomic instability. Then, 
any failure in cell cycle regulation is called to promote accumulation alteration in genomic 
material and in some cases, may lead to aneuploidy.  
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Studies of human aneuploidy have been hampered by the lack of a suitable animal model. 
Most studies so far have been performed using the mouse model, which in many aspects 
does not allow direct comparison with humans (Alvarez Sedo et al., 2011; Neuber and 
Powers, 2000; Schatten and Sun, 2011). It may be underlined that mouse model is a poor one 
regarding the methods of centrosome inheritance (due to the fact that mouse follows a 
maternal method for centrosome inheritance, in contrast to human where fertilization 
restores centrosome). As well, differences may be observed in the failure of fertilization 
between the two models. In human oocytes, the failure results from cytoplasm inability to 
support pronuclear formation while in mouse oocytes, the failure is rather due to inability of 
spermatozoa to penetrate the oocyte (Neuber and Powers, 2000). Other differences may also 
be reported between mouse and human oocytes, in contrast to non-rodent oocytes, mouse 
oocytes depend not upon protein synthesis for meiosis resumption and metaphase II spindle 
organization depends upon the assembly of cytoplasmic asters, including gamma-tubulin 
(see Table1). Still, the mouse model could promote strategies to sustain oocyte quality in 
mammals and provide evidences on the effects of environmental factors that may negatively 
impact oogenesis (Alvarez Sedo et al., 2011; Combelles et al., 2005; Farin and Yang, 1994; 
Gordo et al., 2001; Hunter and Moor, 1987; Liang et al., 2007; Lu et al., 2002; Meinecke and 
Krischek, 2003; Memili and First, 1998; Schatten and Sun, 2011; Sun et al., 1999; Sun et al., 
2002). Nevertheless, further efforts have to be performed to promote other mammalian non-
rodent models, whose meiotic regulation, cytoskeletal organization and fertilization are 
more closely related to human system (Schatten and Sun, 2011).  

 

 
 

Xenopus
oocytes 

Mouse 
oocytes 

Pig 
oocytes

Bovine 
oocytes 

Human 
oocytes 

Does maturation depends upon 
protein synthesis? 

Yes No Yes Yes n.d. 

Does initiation of meiosis depends 
upon transcription? 

No Yes 

No 
(DO) 
Yes 

(COC)

No (DO) 
Yes 

(COC) 
n.d. 

Do maturation and spindle 
morphogenesis rely on MPF 

activation? 
Yes Yes Yes Yes n.d.* 

Does initiation of meiosis depends 
upon MAPK network activation? 

No No No No n.d.* 

Does spindle morphogenesis depends 
upon MAPK network activation? 

Yes Yes Yes Yes n.d.* 

Does metaphase II spindle formation 
depends upon cytoplasmic asters 

assembly? 
No Yes No No No 

Table 1. Meiosis characteristics in Xenopus, mouse, porcine, bovine and human oocytes.  
(DO: denuded oocyte; COC: Cumulus Oocyte Complexes ; n.d.: not determined; * 
Dynamical observations have been solely gathered for these kinases) (Alvarez Sedo et al., 
2011; Combelles et al., 2005; Farin and Yang, 1994; Gordo et al., 2001; Hunter and Moor, 1987; 
Liang et al., 2007; Lu et al., 2002; Meinecke and Krischek, 2003; Memili and First, 1998; 
Schatten and Sun, 2011; Sun et al., 1999; Sun et al., 2002). 
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Organisms enabling studies of spindle morphogenesis and aneuploidy might be divided 
into two classes: (1) meiotic models from non-mammalian species, which offer opportunities 
to unravel the fundamental mechanisms of meiotic spindle morphogenesis, and (2) meiotic 
models that correspond closely to human oocytes, taking into account both morphology and 
timing of meiotic maturation. Among the non-mammalian models, Xenopus has appeared as 
a model of choice since it shared similarities regarding mechanisms controlling meiotic 
progression with many mammalian species (see Table 1). In most vertebrates, oocytes are 
arrested at the first meiotic prophase until meiotic resumption is induced by hormonal 
stimulation. In both amphibian and pig models, resumption of meiosis and completion of 
oocytes maturation depend on protein translation, and are independent upon transcription. 
The factor promoting entry into M-phase, or division, was first reported in amphibians 
(Masui and Markert, 1971) and isolated almost two decades later in amphibian oocytes, 
based on genetic analysis performed in yeast (Gautier et al., 1988; Lohka et al., 1988).  
Named M-phase or Meiosis Promoting Factor (MPF), this factor is comprised of a catalytic 
subunit p34Cdc2/Cdk1, and a regulatory subunit Cyclin B, whose association is crucial  
for the kinase activity of the complex. Together with the Mitogen Activated Protein Kinase 
(MAPK) pathway, MPF rules the coordination of the cellular reorganization during M-phase 
(Bodart et al., 2005; Haccard and Jessus, 2006; Kotani and Yamashita, 2002). The maintenance 
of low levels of MPF activity is a prerequisite for the maintenance of meiotic arrest at 
prophase, while high levels of MPF activity are required for arrest at metaphase II (Bodart et 
al., 2002a). 

This chapter aims at comparing pig and Xenopus oocytes regarding their respective 
advantages and inconveniences, in comparison to other animal models. Standard 
methodologies for spindle morphogenesis analysis and aneuploidy detection in both  
models will be described. The role of the MAPK network in spindle morphogenesis  
and in ploidy maintenance will also be largely discussed, since female gametes have  
offered case studies to emphasize the potential role of MAPK's deregulation in  
aneuploidy. 

2. Comparing advantages and inconveniences of pig and amphibian oocytes 
as models for spindle morphogenesis and aneuploidy studies 

Xenopus has mainly been used in an aneuploidy context for cancer study purposes and has 
been less regarded as a valuable source for reproductive studies. Although it may appear as 
an attractive model, enabling structural approaches of spindle morphogenesis, it is not 
appropriate for accurate studies of genetic imbalance. To study the unbalance, porcine 
oocytes have appeared as a valuable and suitable model. 

2.1 Strengths and disadvantages of amphibian oocyte model 

The current understanding of meiosis regulation in vertebrate oocytes has benefited from 
studies performed in amphibian models such as Xenopus laevis. Fully-grown oocytes, 
blocked in prophase I resume meiosis upon hormonal stimulation and arrest in metaphase II 
as mature oocytes, or eggs, in anticipation of fertilization. Neither somatic cells nor in vitro 
systems offer a similar amenability for in vivo studies of the mechanisms that control cell 
cycle and orchestrate the cellular reorganization that occurs during mitosis or meiosis (Liu 
and Liu, 2006). This model could be advantageous to analyze the role of molecular networks 
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involved in the morphological events of cell division. Indeed, Xenopus oocytes offer 
impressive opportunities for studies at the biochemical level: oocytes contain high levels of 
proteins (each oocyte contains for example 50 to 70 ng of the catalytic subunit of Protein 
Kinase A (PKA), 1 oocyte is equivalent to 50 000 somatic cells) and makes it possible to 
perform anti-MAPK immunoblotting on one-tenth of a single cell, allowing to study feed-
back regulation mechanisms within one cell. Thus, extracts of either oocytes or eggs from 
amphibian are an abundant source for cytoskeletal and cell cycle proteins. In addition to 
their physiological synchronization in G2-like state or metaphase block, Xenopus oocytes 
are also known and used for their high capacity of protein synthesis (200-400 ng per day, 
per oocyte) and their size (1.2 to 1.4 mm), which facilitates micromanipulations, 
exploration of signaling network or electrophysiological properties. Finally, the use of this 
model of lower vertebrate fits into the ethical policy of the 3R (Replace, Refine, Reduce) 
on animal experimentation, which aims at promoting non mammalian alternative models 
in order to noticeably reduce and refine the use of upper vertebrates in experimental 
studies. 

In addition, for several decades Xenopus oocytes have appeared to be one of the best cellular 
model to study in vivo enzymatic activities, assembly of cell division spindle, aneuploidy 
and characterization of parthenogenetic events. Nevertheless, this model suffers from 
several disadvantages: (1) amphibians are not oviparous models and oocytes maturation, as 
well as fertilization, is independent of any cumulus cells; (2) oocytes contain yolk, which 
does not facilitate structural analysis, and exhibit autofluorescence; (3) Xenopus laevis is a 
allotetraploid species, making it less/not suitable for genetic studies and careful analysis of 
genetic imbalances.  

2.2 Strengths and disadvantages of porcine oocyte model 

As mentioned above, mouse models may be optimal for studying molecular mechanisms 
underlying the maturation of mammalian oocytes, but several differences may been 
outlined when comparing to the maturation of non-rodent oocytes (Table 1).  Porcine 
oocytes are closely related to human oocytes, in term of morphology and timing of meiotic 
maturation. Nuclear envelope breakdown, also called germinal vesicle breakdown (GVBD) 
in oocytes, occurs after 20 hours (2-5 hours in mice). Oocytes are reaching the second meiotic 
metaphase block approximately 40 hours after the lutheinizing hormone (LH) peak (in vivo) 
or after isolation from follicles (in vitro condition) (9-13 hours in mouse). It is known that pig 
oocytes rely on de novo protein synthesis for GVBD, whereas this occurs independently of 
protein synthesis in murine oocytes. 

Several studies have reported that fertilization of pig oocytes resembles more that of lower 
vertebrates than mice (Long et al., 1993; Sun et al., 2001a). In sea urchin, starfish, porcine or 
bovine oocytes, sperm interaction with the oocyte or their penetration is impaired by 
microfilament inhibitors (Schatten et al., 1982).  In murine oocytes, however, microfilament 
inhibitor Latrunculin A did not block sperm penetration (Schatten et al., 1986). Similarly, it 
was reported that the microfilament modulator JAS inhibited sperm incorporation and 
prevented cortical granules (CG) exocytosis in murine oocytes (Terada et al., 2000). In 
murine oocytes, pronucleus migration is blocked upon inhibition of microfilament assembly 
(Schatten et al., 1989; Terada et al., 2000), while in pigs (Sun et al., 2001a) or urchins (Schatten 
et al., 1992), microtubule assembly is not required for pronucleus formation. During 
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fertilization in sea urchins, pigs, cattle and humans, sperm introduces the centrosome into 
the egg. Microtubules nucleated by centrosomes cause the syngamy between male and 
female pronuclei (Kim et al., 1997; Sun et al., 2001a; Sutovsky et al., 1996; Van Blerkom et al., 
1995). In mice, the situation is quite different because centrosomes are maternally inherited. 
Microtubules are organised by numerous cytoplasmic sites and microtubules and 
microfilament activity are required for pronuclear migration. For the above-mentioned 
reasons, porcine egg may be a more appropriate model for studies with the aim to make a 
comparison with human reproduction. 

The access to porcine ovaries is straightforward since they can be obtained as "bioproducts" 
from local slaughterhouses. Nevertheless, working with pig oocytes may be hampered 
because of the heterogeneity of the isolated oocytes and the heterogeneity of the donor 
animals. Two types of ovaries may be obtained from slaughterhouses, depending whether 
killed animals are monitored or not. When performed, monitoring includes exact 
reproduction phase, age and farming conditions (including composition of feeding rations). 
Monitoring is expensive, but often necessary to obtain better standard conditions. For any 
work using porcine oocytes isolated from ovaries obtained from a slaughterhouse, it is 
necessary to perform a rigorous and strict selection of the ovaries and oocytes. Apart from 
ovaries collected at slaughterhouses, oocytes might be obtained by endoscopic ovum pick-
up (OPU) from living animals. Antral follicles are punctured and cumulus oocyte complexes 
(COCs) are aspirated with the follicular fluid into an aspiration cannula using vacuum 
pressure. In contrast to the previous method, oocytes obtained in this way are homogenous 
and of high quality. Unfortunately, this method is expensive and labor-intensive and results 
in a low recovery of oocytes compared to the previous method. 

Porcine and murine oocytes are different in their in vitro requirements during maturation. In 
contrast to mouse oocytes, porcine oocytes require cumulus cells for successful maturation, 
and they are very sensitive to maturation conditions and manipulation. For instance, culture 
conditions of cumulus cells may alter the meiotic spindle morphology (Ueno et al., 2005), 
may impair successful micro-injection and subsequent scanning by confocal microscopy 
during maturation. Thus, live imaging experiments in this model are time-consuming and 
may appear as "complex".  

3. Chromatin configuration, spindle morphogenesis and aneuploidy 
detection 

3.1 Xenopus laevis oocytes 

3.1.1 Morphological signs of maturation by external observation  

In Xenopus oocytes, spindle formation is associated with migration of nucleoplasm and 
chromosomes to the apex of the cells. Upon hormonal stimulation, the germinal vesicle 
breaks down at its basis and migrates towards the apex of the oocyte, creating a large 
white area without pigment. This area is called white spot or maturation spot (Figure 1). 
The chromosomes are condensed and the first metaphase spindle is formed at the cortical 
area, located near the plasma membrane. After extrusion of the first polar body, the 
metaphase II spindle will be anchored at the plasma membrane. A dot may be detected 
within the white spot, corresponding to the anchored metaphase II spindle at the plasma 
membrane. 
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Fig. 1. External morphology of Xenopus oocytes. Immature oocytes (left panel) exhibit a dark 
pigmented hemisphere where the nucleus, or germinal vesicle, is found. Upon stimulation 
by progesterone, a small white spot appears at the apex of the cell, which is correlated with 
GV migration and its breakdown (right panel). 

3.1.2 Spindle morphogenesis and aneuploidy detection 

Classically, oocytes are fixed overnight in Smith’s fixative, embedded in paraffin and 
sectioned (7µm thickness). Sections are then stained with Nuclear Red to detect nuclei and 
chromosomes, and with picroindigocarmine, which reveals cytoplasmic structures (Bodart 
et al., 1999). This method enables the detection of spindle and condensed chromosomes, 
even if not located near the plasma membrane. Atypical structures can be detected in depth 
of the oocytes, such as tripolar spindle or nuclear envelope reformation around 
chromosomes in deep cytoplasm (Figure 2, 3). These methods can be coupled with 
electrophysiological procedures or calcium measurements to perform oocyte-by-oocyte 
analysis (Bodart et al., 2001). 

To perform immunocytological studies, oocytes are fixed in cold methanol, which is 
gradually replaced by butanol before embedding in paraffin. 7 µm-thin sections are 
subsequently incubated with antibodies directed towards spindle structures (e.g. towards 
alpha-tubulin). Structures are revealed with second antibodies conjugated with a fluorescent 
marker such as Oregon Green or Fluorescein Isothiocyanate. To detect structures located 
near the plasma membrane, section and embedding should be avoided. In this case, oocytes 
are fixed in cold methanol, which is gradually replaced by PBS (phosphate buffered saline). 
Next the oocytes are incubated in a low percentage of detergent for permeabilization 
purposes together with diluted antibodies and revealed as previously mentioned. Treated 
oocytes are bisected and animal halves are placed on standard slides with mounting 
medium including glycerol and Hoechst 33342, which reveals chromosomes, and observed 
under an epifluorescent microscope (Figure 4) (Baert et al., 2003; Bodart et al., 2005; Bodart 
and Duesbery, 2006). 

To overcome autofluorescence and to increase the number of observed structures, many 
studies have been undertaken using egg extract together with sperm nuclei (Cross and 
Powers, 2009; Garner and Costanzo, 2009; Maresca and Heald, 2006). Though these methods 
are of interest, they have to be performed in a cell-membrane-free context and only focus on 
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mitotic spindle formation. Indeed differences remain, albeit meiosis and mitosis share quite 
a lot of similarities: (1) centrosomes are absent in oocytes, (2) kinetochores appear later in MI 
and (3) the Ran GTPase might be dispensable for MI but requested for MII and mitosis 
(Brunet et al., 1999; Dumont et al., 2007). 

 

Fig. 2. Bipolar spindle and first polar body (left panel), abnormal tripolar spindle (right 
panel, bottom), and multiple envelope reformation around chromosomes in deep cytoplasm 
(right panel, top). Metaphase II spindle has, like seen in most species, a typical barrel shape. 

 

Fig. 3. Double aster formation in Xenopus oocyte where MAPK activity has been impaired. 
Structures are located in the subcortical layer but are not associated with the plasma 
membrane. 
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Fig. 4. Bipolar spindle in metaphase-II arrested Xenopus oocyte; DNA (blue), beta-Tubulin 
(green). 

3.2 Porcine oocytes 

3.2.1 Germinal vesicle stages 

Full meiotic competence of pig oocytes is reached in ovarian follicles of 2 mm or more in 
diameter.  Germinal vesicle breakdown is initiated in vivo by either preovulatory surge of 
gonadotropins or atretic degeneration of the follicle. Spontaneous (gonadotropin-
independent) maturation occurs upon removal of the oocyte, or the oocyte-cumulus cell 
complex, from antral follicles when cultured in an appropriate supportive medium. Several 
protein kinases have been shown to regulate meiotic resumption. MPF is a key regulator of 
the meiotic resumption. Its inhibition totally blocks GVBD in pig oocytes. Nevertheless, 
MAPK, Protein Kinase C and Calmodulin-dependent Kinase (CAMKII) also play crucial 
roles during meiotic resumption in pig oocytes. In pigs, like in other domestic species and 
amphibians, protein synthesis is a prerequisite for oocyte meiotic resumption. In porcine 
oocytes, four GV chromatin configurations (GV1-GV4) were described, based on chromatin 
stages, nucleolus and nuclear chromatin disappearance (Motlik and Fulka, 1976). Stages 
GV1 (Figure 5), GV2 and GV3 exhibit a typical perinucleolar ring. At stage GV4 chromatin 
makes clumps and strands, nuclear membrane is less distinct, and nucleolus disappears 
completely. In oocytes undergoing GVBD, GV membrane disappears completely and 
chromatin condenses into clumps. Growing oocytes (diameter ≤90 µm) are unable to resume 
meiosis in vitro. Acquisition of meiotic competence in growing pig oocyte rather correlates 
with its ability to activate both MPF and MAPK pathways (Kanayama et al., 2002). 

3.2.2 Spindle morphogenesis 

Metaphase II spindle is a crucial structure for genetic material segregation within oocytes 
and eggs; this structure is maintained in a highly dynamic status from ovulation to 
fertilization. The spindle morphogenesis during maturation begins after GVBD, when 
microtubule-organizing centres (MTOCs) are recruited in the vicinity of chromosomes: 
small microtubule asters are observed near the condensed chromatin. During the 
prometaphase stage, microtubule asters are found in association with each chromatin mass. 
Randomly growing microtubules are then stabilized and organized into a bipolar spindle. 
Next, asters elongate and encompass the chromatin at the metaphase-l stage. At this step,  
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Fig. 5. Morphology of porcine oocyte nucleus exhibiting different GV configurations. (A) 
GV1: nucleolus surrounded by condensed chromatin, (B) GV2: condensed chromatin are not 
only around the nucleolus, (C) GV3: chromatin is condensed in many clumps or strands, (D) 
GV4: nucleolus disappears completely and condensed chromatin is in clumps (black arrows 
indicate nucleolus). 

microtubules are seen only in the spindle (Figure 6, left). During anaphase-I and telophase-I, 
microtubules are detected around the chromatin (Figure 6, right). At the metaphase-II stage, 
microtubules are only observed in the second meiotic spindle. The meiotic spindle has a 
symmetric barrel-shaped structure containing anastral broad poles peripherally located and 
radially oriented (Kim et al., 1996). 

3.2.3 Aneuploidy detection 

To detect aneuploidy there are applicable methods such as fluorescence in situ hybridization 
(FISH) or karyotyping from chromosomal spreads. These methods require spreading the 
metaphase II oocyte on a slide, risking the loss of chromosomal material. Modern 
cytogenetic method of comparative genomic hybridization is also suitable for aneuploidy  
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Fig. 6. Spindle detection in pig oocyte; (left) spindle at metaphase-I stage; (right) spindle at 
telophase-I stage. 

detection in oocyte or polar body. The comparative genomic hybridization (CGH) method 
relies on whole oocyte DNA amplification in a single reaction, preventing artificial changes 
of chromosome content. These methods are suitable for detection of numeric aberrations, 
chromosomal non-disjunction and frequency of premature segregation of sister chromatids 
(an extra or a missing copy of a single chromatid). 

3.2.3.1 Karyotyping from spreads 

Giemsa staining is suitable only for hyperhaploid spreads. Hypohaploidy is rather 
considered as an artifact, because air-drying step used in slide preparation can account for 
chromosome loss during rapid evaporation of alcohol containing fixative. For karyotype 
analysis, only cells in metaphase can be analyzed because they present identifiable 
individual chromosomes (Figure 7). Furthermore, poor chromosome morphology and 
artefactual loss of chromosomes can compromise cytogenetic results. 

     
 

Fig. 7. Chromosomal analysis of porcine oocytes (Giemsa staining); (right) haploid 
chromosome set (n=19), (left) diploid chromosome set (2n=38) (Lechniak et al., 2007) 
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3.2.3.2 Fluorescence in situ hybridization (FISH) 

Fluorescence in situ hybridization (FISH, Figure 8) is a well-established technique for 
chromosome analysis and aneuploidy screening (Foster et al., 2010; Lechniak et al., 2007). In 
contrast to previously described methods, FISH data can be obtained from interphase nuclei 
or at least in cases where not all chromosomes are separated during spreading. Concerning 
oocyte, analysis of the corresponding polar bodies can be performed in parallel to strength 
the observations. Unfortunately, the diagnostics of targeted aneuploidies in pig with 
fluorescence in-situ hybridization is limited to chromosome-specific DNA probes. Current 
protocols have used probes for up to 13 chromosomes in human samples but in pigs, they 
are suitable for usually two probes (specific for centromeric region of Chromosomes 1 and 
10) (Lechniak et al., 2007). Results are thus extrapolated for all chromosomes solely based on 
these 2 probes. Furthermore, premature segregation of sister chromatids is not detectable via 
this method. 

3.2.3.3 Comparative genomic hybridization (CGH) 

Comparative genomic hybridization (CGH, Figure 9) is a more comprehensive method than 
karyotyping or FISH techniques. This cytogenetic technique allows the analysis of the full 
set of chromosomes and it has been applied to detect aneuploidy at the single cell level in 

interphase or M-phase cells. The CGH protocol requires only 0,5-1 g of genomic DNA 
(from oocyte or polar body). By comparison with other farm animals, pigs have a small 
number of chromosomes (2n=38), which ease up chromosome identification and analysis. 
This method also enables analysis of the whole chromosomal set and relative contribution of 
individual chromosomes to resulting aneuploidy. This approach was recently applied in a 
study looking to detect chromosome abnormalities in first polar bodies and metaphase II-
arrested oocytes in pig. CGH method is also suitable for detection of chromosome non-
disjunction or premature segregation of sister chromatids (an extra or a missing copy of a 
single chromatid). 

     

 

Fig. 8. Chromosomal analysis of porcine oocytes (FISH); (left) diploid oocytes (green signal – 
chromosome 1, red signal - chromosome 10), (right) aneuploid oocyte (disomy of 
chromosome 10) (Lechniak et al., 2007) 
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Fig. 9. Comparative genomic hybridization (CGH) in MII porcine oocytes; (upper panel) 
aneuploid oocyte with trisomy of chromosomes 7, 8, 11 and 15;  (lower panel) corresponding 
polar body with nulisomy of chromosomes 7, 8, 11 and 15 (red signal – DNA from oocyte or 
polar body, green signal – reference DNA) (Hornak et al., 2011).  

3.2.3.4 Abnormalities during meiotic spindle morphogenesis in pig oocytes 

Abnormalities during meiotic spindle morphogenesis are a hallmark of maternal aging. 
Spindle aberrations are not found so often in oocytes of animals with shorter reproductive 
periods like mice. In porcine oocytes, abnormal spindle morphologies include poorly 
shaped spindle morphologies, grossly disorganized microtubules, sometimes with thick 
bundles of cytoplasmic microtubules (Figure 10). These morphologies may result from the 
failure to organize two opposite metaphase spindle poles, either in metaphase I or 
metaphase II, or from the loss of attachment between microtubules and chromosomes.  In 
oocytes coming from old pigs, one might observe various forms of abnormal spindles like 
multipolar spindle, large rounded spindle with microtubules emanating from most of its 
surface, elongated spindle, highly disorganized spindle with scattered microtubules, tripolar 
spindle or large irregular spindle (Miao et al., 2009). In contrast to amphibians, aster 
formations are rare in mammals. In pigs, they were solely observed after taxol  (Sun et al., 
2001b). 
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Fig. 10. Typical abnormal spindle morphologies observed in porcine oocytes: aster formation 

(upper panel, left) (Sun et al., 2001b), tripolar spindles (upper panel, right), disorganized spindle 

with scattered chromosomes (lower panel, left) and irregular spindle (lower panel, right).  

4. Aneuploidy case study: Unraveling the role of MAPK pathway in the 
cellular reorganization during meiosis 

In many species, MAPK from the Extracellular regulated kinase (Erk) family has appeared 

as major player in the network regulating meiosis. The completion of the two meiotic 

metaphase offer windows of vulnerability towards aneuploidy, where MAPK are playing a 

crucial role. Nevertheless, the involvement of this pathway has been underestimated in its 

role for genome integrity. At least, the involvement of MAPK deregulation in aneuploidy 

remains difficult to untangle and female gametes have offered case studies to unravel 

MAPK's role in spindle morphogenesis. Here is outlined the involvement of the MAPK 

network in aneuploidy throughout different models. 

4.1 Physical properties of MAPK pathway in amphibian 

In many species, MAPK from the Extracellular regulated kinase (Erk) family is a crucial 
component in the network regulating meiosis. In vertebrate oocytes, the oncoprotein Mos 
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acts as the upstream activator of mitogen-activated protein kinase kinase (MEK) and 
MAPK/Erk levels. This oocyte-expressed kinase appeared early during animal evolution 
and was in charge of regulating female meiosis specializations (Amiel et al., 2009). Once 
accumulated, Mos phosphorylates MEK, which in turn activates MAPK/Erk by dual 
phosphorylation of a TEY motif (Ferrell and Bhatt, 1997). In amphibian oocytes, Mos-
activated cascade prevents DNA synthesis during meiosis and promotes spindle 
morphogenesis as well as cytostatic activity present in metaphase-II arrested oocytes (Baert 
et al., 2003; Bodart et al., 2005; Dupre et al., 2002; Sagata, 1997). In this model, physiological 
role of MAPKKK Raf, has been minored and Mos is thought to literally hijack the control of 
the MAPK cascade. A specific all-or-none response for MAPK/Erk activation is 
characteristic in these oocytes, in contrast to the gradual response of MAPK/Erk to external 
stimuli observed in mammalian somatic cells. The cascade arrangement of the signaling 
network generates the steepness of MAPK/Erk response in Xenopus oocytes. The physical 
properties of the cascade, which includes ultrasensitivity, bistability and irreversibility 
(Angeli et al., 2004; Ferrell and Machleder, 1998; Huang and Ferrell, 1996; Russo et al., 2009), 
are thought to mainly arise for bistability and ultrasensitivity from the existence of a feed-
back loop motif. Indeed, the Mos-MEK-MAPK/Erk network has been found to be 
embedded in a positive feed-back loop, driven by MAPK/Erk itself (Ferrell and Machleder, 
1998; Howard et al., 1999; Matten et al., 1996) and / or through MPF action (Castro et al., 
2001; Nebreda et al., 1995; Paris et al., 1991), which promotes Mos accumulation.  

4.2 Role of MAPK/Erk network in spindle morphogenesis  

4.2.1 Amphibian oocytes 

MAPK/Erk activity was suggested to be required for functional spindle assembly 
checkpoint in amphibian oocyte extracts (Chung and Chen, 2003; Minshull et al., 1994; 
Takenaka et al., 1997). Although presence of MAPK/Erk on kinetochores has been suspected 
in somatic cells (Willard and Crouch, 2001), proteomic studies failed to find MAPK/Erk 
associated to isolated human metaphase chromosomes (Uchiyama et al., 2005). Thus, 
whether MAPK/Erk in its active form is a component of kinetochore, and whether it is 
required for spindle assembly checkpoint function, remains somehow controversial.  

From observations made in many species like starfish, jellyfish, urochordates, amphibians 
and mice, it is thought that control of meiotic spindle morphogenesis and positioning and 
chromatin organization are conserved functions for Mos and MAPK/Erk network. First 
observations were made in nullizygous mice for Mos, where MEK activation is impaired 
and interphase-like structure of microtubules and chromosomes are found between meiotic 
division, as well as formation of monopolar half-spindle (Araki et al., 1996; Tong et al., 2003; 
Verlhac et al., 1996). Similar observations were made in other biological systems. MAPK/Erk 
cascade regulates spindle bipolarity through its direct or indirect effects on microtubule 
dynamics in amphibian oocytes (Bodart et al., 2005; Gotoh et al., 1995). No bipolar spindle 
anchored at the plasma membrane is observed when MAPK/Erk activity is inhibited by 
chemical inhibitors of MEK such as U0126 (Bodart et al., 2002b; Gross et al., 2000; Horne and 
Guadagno, 2003). Rana japonica oocytes treated with U0126 also fail to organize a 
Microtubule Organizing Center (MTOC) at the bottom of the germinal vesicle and 
chromosomes are partially condensed (Kotani and Yamashita, 2002). Both in vitro (Horne 
and Guadagno, 2003) and in vivo (Bodart et al., 2005), MAPK activity inhibition leads to the 
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formation of monopolar spindle or aster-like structures, attesting the failure to establish a 
bipolar organization (Figure 3). Similarly, when Mos accumulation is prevented in vivo, 
Xenopus oocytes exhibit aster-like structures. Such structures remain to be fully 
characterized but do not enable oocytes to properly segregate their genomic content (Bodart 
et al., 2005). Finally, by inhibiting the network at different levels, it has been shown that Mos 
and MAPK/Erk play distinct but complementary roles in spindle morphogenesis (Bodart et 
al., 2005). The latter observations suggested that MAPK/Erk is composed of functional 
modules, which may exert distinct actions at different levels of spindle organization. Then 
deregulation in any of this model may drive different type of aneuploidy, depending on the 
deregulated module.  

4.2.2 Porcine oocytes 

MAPK is found under an inactive form in pig oocytes at the GV stage, while its level of 

activity is significantly increased at GVBD time. Microinjection of c-mos RNA into porcine 

oocytes induces GVBD to occur earlier. But, antisense RNA towards pig c-mos protein does 

not affect GVBD in denuded oocytes, although MAPK phosphorylation and activation were 

completely inhibited (Ohashi et al., 2003). Other reports show that the presence of MEK 

inhibitors, PD98059 or U0126 in the maturation medium blocks MAPK activation in both 

cumulus-enclosed and denuded oocytes, but prevents GVBD only in cumulus-enclosed 

oocytes (CEOs) (Meinecke and Krischek, 2003). Similarly to other models, MAPK activation 

is dispensable for meiotic resumption per se, but activation of this cascade in cumulus cells is 

indispensable for the gonadotropin-induced meiotic resumption of porcine cumulus-

enclosed oocytes. These observations suggest that MAPK activation is not required for 

GVBD induction in denuded oocytes but is necessary for GVBD induction in CEOs. MPF 

activation correlates with GVBD occurrence, even though the activation of MAPK has been 

completely prevented, indicating that MPF is sufficient to induce GVBD.  

Nevertheless, the activity of MAPK in porcine oocytes may be involved in the organization 

of chromosomes at the metaphase spindle plate (Ye et al., 2003). Phosphorylated MAPK is 
detected at the spindle during the post-GVBD maturation period (Sugiura et al., 2001). After 

GVBD, phosphorylated MAPK and its downstream effector p90rsk distribute to the area 

around the condensed chromosomes, in the meiotic spindle at the MI stage, in the midzone 
of the elongated spindle at anaphase I to telophase I transition, and in the spindle at MII 

stage (Goto et al., 2002; Lee et al., 2000). MAPK is kept highly phosphorylated from the MI to 
MII stages, when microtubules are assembled in the spindle (Sun et al., 2001a). Thus, it can 

be suggested that the MAPK cascade is required not to initiate resumption of maturation 
but for microtubule dynamics in the meiotic spindle in pig oocytes (Meinecke and 

Krischek, 2003). Inhibition of MAPK activation during MI-to-MII transition results in the 
failure of first polar body emission and MII spindle formation (Lee et al., 2000). After 

fertilization, MAPK is kept highly active while the second meiosis resumes and the 
second polar body extrudes. Finally, MAPK is dephosphorylated during pronucleus 

formation (Sun et al., 2001a). High level of MAPK is important for the oocyte to remain 
arrested at MII stage and is also necessary for the chromosomes to orderly align at the 

spindle equator. Low level of MAPK activity may cause instability of chromosomes in the 
spindles and may alter the precious relationship between microtubules and chromosomes 

(Ma et al., 2005). 
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4.3 Mos-MAPK in human oocytes  

p42Erk2 is the main form of MAPK in human oocytes (Sun et al., 1999). Its pattern of 
activation by phosphorylation is reminiscent of other mammalian species including mice 
and pigs. MAPKKK Mos has also been detected in human oocytes and its expression was 
like in other models restricted to oocytes (Heikinheimo et al., 1995; Heikinheimo et al., 1996; 
Pal et al., 1994). MAPK is inactive in immature oocyte while its activity increases during 
maturation and drops after fertilization. Thus, the functional role of MAPK in human 
oocytes remains an opened question since dynamical observations have been solely 
gathered (Combelles et al., 2005; Sun et al., 1999; Trounson et al., 2001). MAPK and Mos have 
been then assumed to exert similar functions to those of other species. 

4.4 A role for Mos in the limitation of M-phase rounds? 

Mitotic exit is irreversible and irremediably followed by interphase, based on the 
degradation mechanisms of Cyclin B (Potapova et al., 2006). This is not the case during 
meiosis, where exit from the first meiotic division is not followed by interphase and 
replication but is immediately followed by the onset of the second division. This lack of 
irreversibility has raised the following question:  how oocytes limit the number of M-phases 
to just two during maternal meiosis? Switching off the activity of Mos – MAPK/Erk 
network appeared as an attractive hypothesis for ruling the number of M-phases, though it 
was clear from studies in jellyfish, starfish and amphibians that this mechanism could not be 
a universal one. First evidence supporting this hypothesis was recorded in mice oocytes 
where maintaining MAPK activity inhibits pronucleus formation (Moos et al., 1995; Moos et 
al., 1996) and where entry to meiosis III is observed in the presence of high level of 
MAPK/Erk activity (Verlhac et al., 1996). The hypothesis that Mos-MAPK/Erk network 
could be the determining factor limiting the number of meiosis to two was recently formally 
tested in urochordates, which are at the crossroad between invertebrates and vertebrates 
(Dumollard et al., 2011). In ascidian eggs, prolonging MAPK activity by expressing murine 
Mos leads to entry into supernumerary rounds of M-phases, which was attested by the 
increased number of polar bodies (Dumollard et al., 2011). Then, urochordates offer an 
attractive model to unravel new observations on a conserved role of MAPK/Erk in spindle 
morphogenesis and to decipher the mechanisms leading to uncontrolled division and 
polyploidy since the successive rounds of M-phases observed in these cases occur without 
intervening replication. 

5. Concluding remarks  

Intensive fundamental research has generated a large amount of experimental data. 
However, it is crucial to validate this knowledge on animal models closer to humans. For 
analysis of aneuploidy degree and mechanism of occurrence in mammalian oocytes, pig has 
appeared as an attractive model. Comparing to non-human primates, pigs are cheaper and 
easier to maintain in controlled conditions. Porcine physiology assures a high relevance of 
the data obtained in this species for human-related research. Effective application of special 
breeds like minipigs, together with new methods for aneuploidy detection like CGH, brings 
new possibilities for aneuploidy research in mammalians. Usage of porcine oocytes for 
research on regulation pathways is still limited by the volume of oocytes collected and their 
sensitivity to manipulation in in vitro conditions. Development of in vitro cultivation 
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methods and more effective live-cell imaging systems open new perspectives for aneuploidy 
research on porcine oocytes. To this extent, the molecular toolkits developed for kinase 
activity reporter will offer advantages to understand how kinases integrate and achieve 
cellular functions (Riquet et al., 2011). Also, these methods, which aim at developing new 
sensors, will gain in sensitivity, kinetic properties and in spatial resolution, providing new 
tools for precise subcellular localization of dynamic structures such as meiotic spindles.   

Nowadays pigs are used in several fields of biomedical research and its importance, as 
biomedical model, will increase in the near future. Last reports detecting aneuploidies in 
porcine oocytes bring interesting results and indicate significance of the porcine model for 
the study of aneuploidy in human. Nevertheless, taking advantages of the above-mentioned 
advantages of Xenopus oocytes, this amphibian might be considered as an "old dog", from 
which one might learn new tricks. It might also provide new insights to the scientific 
community interested in the field of reproduction. Proteomic approaches of the meiotic 
microtubule proteome are promising, since they will enable us to build a network of a 
microtubule-associated interactome: such approach was successfully adopted and began to 
validate novel spindle components like the human orthologue Mgc81475 (Smu1), which 
depletion drives mitotic arrest (Gache et al., 2010). Further works are requested to validate 
this observation in other meiotic or mitotic models and to fully elucidate the role of the 
member of the MAPK/Erk network in spindle morphogenesis and aneuploidy. 
Nevertheless, approaches driven either in oocytes, eggs or extracts have generated an 
abundant literature, which has been attractive for modeling purposes. Computational 
models have been proposed to understand the self-organization of meiotic spindle 
(Loughlin et al., 2010; Schaffner and Jose, 2006; Schaffner and Jose, 2008). These models offer 
a coherent picture of how microtubule dynamic instability, flux, and nucleation contribute 
to self-organization of a structure in a steady state. 

Understanding of aneuploidy occurrence during meiosis in humans will benefit from 
experiments performed in various models, such as pigs and amphibians, and from the 
development of new tools, like sensors, and new approaches, like modeling. Further efforts 
will be necessary to collect and compare data obtained from these models. 
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