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1. Introduction  

A paradigm shift currently occurs in microbiology, with significant impacts in a variety of 
environmental, medical and industrial applications. The old misconception of free floating 
microbes is invalidated by a different knowledge pattern: the great majority of terrestrial 
microorganisms live in communities associated to surfaces, called biofilms (Costerton et al, 
1987; Flemming, 2008; Muntean, 2009). This organisation mode is associated to all surfaces 
in contact with water in drinking water processing, storage and distribution. Such biofilms 
are represented by structured consortia of sessile microorganisms characterized by surface 
attachment, self-produced exopolymeric matrix, structural, functional and metabolic 
heterogeneity, capable of intercellular communication by quorum-sensing and plurispecific 
composition.  

Biofouling in drinking and industrial water systems has detrimental effects such as 
microbiological and chemical deterioration in water quality, corrosion inducing, drinking 
water treatment yield loss, efficiency reducing in cooling and heating exchange and 
transport, as well as in membrane processes (White et al, 1999; Flemming et al, 2002; 
LeChevallier and Au, 2004; Coetser and Cloete, 2005).  

Biofilms are playing a major role in drinking and waste water treatment processes due to 
their enhanced properties of mineralization, bioaccumulation and bioadsorbtion. Despite 
the beneficial effects of the biological filter known as schmutzdecke in slow sand filtration or 
of the bio-sand filters, biofilms occurrence in other treatment stages, in drinking water 
networks and reservoirs represents a continuous challenge to water professionals. Drinking 
water associated biofilms induce residual disinfectants depletion and may cause aesthetic 
problems consisting in colour, odour and taste degradation due to chemical compounds 
released and more important, they pose a threat to human and animal health by hosting 
pathogenic or toxins producing bacteria, viruses, protozoa, algae, fungi and invertebrates. 
The great majority of water related health problems are the result of microbial 
contamination (Riley et al, 2011). Considering these aspects, naturally occurring biofilms in 
contact with drinking water were identified and described as microbial reservoirs for 
further contamination (Szewzyk et al, 2000; Wingender and Flemming, 2011).  

The complex structure of drinking water associated biofilms is influenced by the microbial 
composition of source water and sediments (LeChevallier et al, 1987; Szewzyk et al, 2000; 
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Emtiazi et al, 2004). They may enter the distribution network, escaping the treatment and 
disinfection processes (known as breakthrough) and multiply in bulk water or biofilms. The 
two modes of multiplication are defined as regrowth (recovery of disinfectant injured cells) 
and aftergrowth (microbial growth in a distribution system) processes (Characklis, 1988; van 
der Kooij, 2003). Pathogenic microorganisms of concern may also emerge in drinking water 
systems by intrusion, due to external contamination events in different steps of water 
treatment, storage and transportation: cross connections, backflow events, pipe breaks, 
negative pressure and because of improper flushing and disinfection procedures.  

2. Drinking water biofilms, emerging pathogens and opportunistic pathogens  

The most alarming consequences as a result of biofouling in drinking water distribution 

systems consist in the presence, multiplication and dispersion into water of bacterial 

pathogens, opportunistic pathogens, parasitic protozoa, viruses and toxins releasing fungi 

and algae. They may appear as primary colonizers promoting the adhesion at the interface 

and subsequent biofilm formation (Costerton, 1994), but more often as secondary colonizers 

in ecological microniches offered by the existent attached community.  

Emerging pathogens are those that have appeared in a human population for the first time, 

or have occurred previously but are increasing in incidence or expanding to areas where 

they have not previously been reported, usually over the last 20 years. They include: bacteria 

(pathogenic E. coli, Helicobacter pylori, Campylobacter jejuni, Mycobacterium avium complex), 

parasitic protozoa (Cryptosporidium spp., Cyclospora cayetanensis, Toxoplasma gonidii), viruses 

(noroviruses, hepatitis E) and toxic cyanobacteria (Hunter et al, 2003). Opportunistic 

pathogens are commonly members of water microbiota that would be normally harmless to a 

healthy individual but can infect a compromised host (US EPA, 2002). 

Such microorganisms were detected worldwide in drinking water and associated biofilms 
and in raw water and sediments. In this context, establishing health-based targets, drinking 
water quality assurance implies effective preventive measures, such as sources water 
protection in order to reduce contamination risk in these strategic environments, as well as 
corrective actions stipulated in water safety plans prepared by water suppliers.  

When cases of illness are registered, epidemiological studies are conducted in order to 
demonstrate similarities in genetic profiles of strains isolated from clinical and the 
environmental specimens, to track the source of infection. Drinking water and associated 
biofilms are often among the prime candidates tested when gastrointestinal diseases and 
different types of infections are recorded.  

Developing countries are facing a major lack of safe drinking water, the transmission via 
faecal-oral route causing enormous numbers of severe water related illness and cases of 
deaths, especially in infants (Riley et al, 2011). Microbial source tracking approach is 
particularly important for drinking water sources, in order to identify the origin of 
contamination. Increasing population’s access to clean drinking water and sanitation 
facilities is one of the first priorities of local and global authorities.  

Even if the access to high quality drinking water is provided, neither humans in rich 
countries have definitely won the fight against microbes, yet. Tap water quality assurance 
is facing new challenges, consisting mainly in biofouling issues, emergent waterborne 
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pathogens, toxins releasing and opportunistic pathogens occurrence. Besides households, 
different branches of industry, especially food and pharmaceutical, health care facilities, 
schools, nursing homes and other critical areas are carefully included in monitoring 
assays. Recently is seriously considered the ability of some species, referred as 
opportunistic pathogens, to induce disease under certain circumstances in 
immunocompromised individuals: immunosuppressed, malnourished, diabetic, burn, 
cancer, AIDS, on haemodialysis, respiratory, with organ transplants patients (Rusin et al, 
1997; Payment and Robertson, 2004). Sensitive subpopulations such as young children, 
elderly persons or pregnant women are also vulnerable to infections caused by 
opportunistic pathogens (Reynolds et al, 2008). Other special categories of exposed 
subjects consist in patients with indwelling cannulae and catheters, implant devices and 
contact lenses wearers. Opportunistic pathogens are becoming a major issue, causing from 
allergy or superficial infections to life-threatening systemic infections, since the ascending 
trend in congenital and acquired immunodeficiency affecting global population. Such 
species presence is often investigated, in addition to routine monitoring, within drinking 
water and associated biofilms, as wide-occurring bacteria of concern in the continuous 
increasing category of hospitalised and ambulatory immunocompromised persons 
(Glasmacher et al, 2003).  

Even in drinking water carefully treated and distributed at high standards, pathogenic 
contamination and disease outbreaks may occur (Szewzyk et al, 2000; Wingender & 
Flemming, 2011) demonstrating the imperative requirement for comprehensive water safety 
plans implementation.  

2.1 Drinking water quality assessment – Microbiological aspects and biofilms 

Tap water supposes not to be and is not sterile, microbial load in bulk water consisting 
mainly in inoffensive heterotrophs, presumably coming from associated biofilms by 
detachment during dispersion. Routine monitoring of raw water sources, finishing water at 
the exit from treatment plant, drinking water in pipe networks, service reservoirs and finally 
at the consumers implies periodically investigations of a number of water samples collected 
with a frequency depending on the population deserved. According to European 
regulations, microbial indicators assessed by standardised conventional culturing 
techniques are: colony count at 37⁰C, colony count at 22⁰C, total coliforms, Escherichia coli, 
intestinal enterococci and Clostridium perfringens. The greatest microbial risk being 
associated with ingestion of water contaminated with human or animal faeces, thus the 
potential presence of pathogenic bacteria, viruses and cysts of protozoan parasites; faecal 
indices (E. coli, intestinal enterococci and C. perfringens) presence is routinely investigated.  

The shortcomings of water quality monitoring based on faecal indicators and heterotrophic 
plate count, resulting in underestimation of drinking water microbial populations in 
numbers and composition are discussed worldwide considering the following:  

• Only a small volume approximated to represent from 2 x 10-7 to 5 x 10-7% of delivered 

drinking water is examined in routine monitoring (Allen, 2011); 

• In drinking water systems, the high majority of bacteria, estimated at 95%, are located 

attached at the surfaces, while only 5% are found in water phase and detected by 

sampling as commonly used for quality control (Flemming et al, 2002). Other studies 
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are indicating bacterial numbers characterizing the biomass in pipe biofilms being 25 

times more abundant than the suspended cells (Servais et al, 2004). Although, the 

common notion that biofilms dominate the distribution systems has been proven to be 

not true under all conditions by Srinivasan (2008), whose findings suggest that bulk 

bacteria may dominate in network sections containing chlorine residuals lower than 

0.1mg/L and having residence time longer than 12 hours.  

• A significant percent of water and biofilm bioburden may be in a viable but non 

cultivable state, unable to grow on artificial growth media but alive and capable of 

renewed activity and so hygienically relevant (Moritz et al, 2010). A small fraction of 

waterborne microorganisms (0.01%) are estimated to be culturable heterotrophic 

bacteria (Watkins and Jian, 1997; Exner et al, 2003);  

• Limitations of detection methods (Lehtola et al, 2006; 2007; September et al, 2007). The 

investigation of drinking water associated biofilms from four European countries 

(France, Great Britain, Portugal and Latvia) confirmed E. coli presence by culturing 

techniques in one out of five pipes whereas all networks except one were positive for E. 

coli using the PNA FISH methods; their viability was also demonstrated. E.coli 

contributed with percents from 0.001% to 0.1% in the total bacterial numbers (Juhna et 

al., 2007);  

• Faecal indicators are the best predictors of potential risks, but their concentrations 

rarely correlate perfectly with those of pathogens (Payment and Locas, 2011). Although 

in freshwater significant correlations have been established between faecal indices and 

pathogenic species, their presence in drinking water showed limited or no correlation 

with different species of pathogenic or opportunistic pathogenic bacteria, viruses, 

protozoa and fungi. Water quality assessment based only on the investigation of faecal 

indicators’ presence proved to be insufficient when many waterborne outbreaks 

emerged. Still, until more reliable indices and methods of detection will be wider 

implemented, the well- known standardised procedures are applied in routine 

monitoring across the globe.  

Many studies targeting attached microbial communities have been performed for 

quantification of the total number of germs, by different methods. They offer an unspecific 

overview upon microbial load, bringing certain information about drinking water treatment 

process efficiency and distribution system integrity. Still, the real composition and dynamics 

of microbial populations within drinking water associated biofilms represents a continuous 

challenge. Experimental biofilm succession monitored for a long term development 

indicated a stable population state after 500 days in a model drinking water distribution 

system. A homogenous composition of the population in the mature biofilm could mask a 

dynamic situation at a smaller scale (Martiny et al., 2003). Quantitative and prescriptive 

evaluation is the next target of scientific community. Prediction of microorganisms’ 

behaviour in the distribution system water and biofilms requires greater understanding of 

the effects in microbial attachment, detachment, survival, multiplication and viability of 

three groups of abiotic and biotic factors: substratum physicochemical properties (type of 

materials), biofilm composition (microbial intra- and interspecific interactions) and bulk 

water characteristics (disinfectants residuals, oxygen and nutrients concentrations, system 

hydraulics, temperature).  
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2.1.1 Occurrence of bacteria in drinking water and associated biofilms 

Among the nuisance bacteria regularly found in drinking water and biofilms, species that 
are not characteristic to the water environment may appear due to contamination events, 
with major impacts upon human health. Enteric bacteria such as Escherichia coli, Klebsiella 
pneumoniae, K. oxytoca, Enterobacter cloacae, E. aglomerans, Helicobacter pylori, Campylobacter 
spp., Shigella spp., Salmonella spp., Clostridium perfringens, Enterococcus faecalis, E. faecium, as 
well as environmental bacteria becoming opportunistic pathogens Legionella pneumophila, 
Pseudomonas aeruginosa, P. fluorescens, Aeromonas hydrophila, A. caviae, Mycobacterium avium, 
M. xenopi, together with other waterborne agents have been indicated to live in ecological 
microniches offered by drinking water associated biofilms (table 1).  

When compared with planktonic counterparts, biofilm bacteria and other inhabitants 
display superior characteristics due to specialization within this emergent structure and to 
complex relationships established (Costerton, 1994). Community belonging, from a 
microbial perspective represents a benefit materialized in increasing the chances of survival 
in this oligotrophic environment by offering ecological microniches, establishing intra- and 
interspecific cooperation relationships by communication via quorum sensing and 
perpetuating individuals’ resistance to disinfection agents. Even species not able to survive 
and most of them incapable of growth and multiplication in water were identified in 
associated biofilms; recent studies have demonstrated their ability to grow in those 
microniches. For example, Legionella pneumophila survives but does not multiply in sterile 
drinking water, its proliferation being dependent on parasitic relationship with other 
microorganisms: 14 species of amoebae, two species of ciliated protozoa, and one slime mould 
- L. pneumophila being described as protozoonotic bacteria (Murga et al, 2001; Fields et al, 2002; 
Declerck, 2010). In many outbreaks, the presence of pathogenic bacteria was not detected by 
routine monitoring, the correlation with faecal indicators found in tap water samples being 
defective. E. coli bacillus, the most popular faecal indicator, was chosen inter alia based on its 
incapacity of growth in water. Recent studies have shown its ability to multiplicate in drinking 
water associated biofilms under strictly anaerobic conditions (Latimer et al., 2010), so the 
indicative value of the faecal index of choice becomes questionable.  

One of the advantages offered by drinking water biofilm organization to its members is 
represented by the enhanced resistance to disinfection residuals. The four hypothetical 
mechanisms of biofilm resistance involve slow antimicrobial penetration, deployment of 
adaptative stress responses, physiological heterogeneity in biofilm population and the 
presence of phenotypic variants or persister cells (Chambless et al, 2005). Another benefit from 
the microbial perspective consists in the emergence of genetically encoded resistance to 
biocides and antibiotics, and the spread of antimicrobial resistance genes in bacterial 
populations via mobile genetic elements, by lateral gene transfer. Integrons are genetic 
elements possessing a site-specific recombination system for assembling of resistance genes in 
gene cassettes. They play a major role in the rapid spread of antibiotic resistance in clinical 
environments. Gene cassettes encoding resistance to quaternary ammonium compounds (qac) 
and integron-integrase (intlI) genes characteristics for class 1 integron were recently recovered 
from environmental samples, including biofilms from a groundwater treatment plant (Gillings 
et al, 2009). The proximity of individuals in biofilm consortia and the extremely short 
generation times in bacteria multiplication are prerequisites for intensive rates of lateral gene 
transfer and thus resistance spreading and perpetuation in diverse natural or artificial 
ecosystems. 
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Bacteria Samples type/Origin Country References 

Escherichia coli 

Biofilm - WDS 
Biofilm - WDS 
Biofilm – WDS 

 
Biofilm, Water - WDS 

Biofilm - DWTP 

USA 
Germany 

France, England, 
Portugal, Latvia 

South Africa 
Romania 

LeChevallier et al, 1987 
Schmeisser et al, 2003 

Juhna et al, 2007 
 

September et al, 2007 
Farkas et al, 2011 

Faecal enterococci 

Water - WDS 
Water - WDS 

Biofilm - WDS 
Biofilm - DWTP 

Korea 
South Africa 

Portugal 
Romania 

Lee et al, 2006 
September et al, 2007 

Menaia et al, 2008 
Farkas et al, 2011 

Clostridium spp. 

Biofilm - WDS 

Water - WDS 
Biofilm - DTP 

Portugal 

Greece 
Romania 

Menaia et al, 2008 

Kormas et al, 2010 
Farkas et al, 2011 

Klebsiella spp. 
Biofilm - WDS 
Water - WDS 

Biofilm, Water - WDS 

USA 
Korea 

South Africa 

LeChevallier et al, 1987 
Lee et al, 2006 

September et al, 2007 

Pseudomonas spp. 

Biofilm - WDS 
Biofilm - WDS 
Water - WDS 

Biofilm, Water - WDS 
Biofilm - WDS 

Biofilm - DWTP 

Germany 
Germany 

Korea 
South Africa 

Portugal 
Romania 

Schmeisser et al, 2003 
Emtiazi et al, 2004 

Lee et al, 2006 
September et al, 2007 

Menaia et al, 2008 
Farkas et al, 2011 

Aeromonas spp. 

Water - WDS 
Biofilm, Water - WDS 

Biofilm - WDS 
Water - WDS 

Biofilm, Water - WDS 
Water - WDS 

Biofilm - DWTP 

Scotland 
USA 

Australia 
Korea 

South Africa 
Brasil 

Romania 

Gavriel et al, 1998 
Chauret et al, 2001 

Bomo et al, 2004 
Lee et al, 2006 

September et al, 2007 
Razzolini et al, 2008 

Farkas et al, 2011 

Vibrio spp. 
V. cholerae 

Water - WDS 
Biofilm, Water - WDS 

Biofilm - pond 
Water - reservoirs 

Korea 
South Africa 
Bangladesh 

Sudan 

Lee et al, 2006 
September et al, 2004; 2007 

Alam et al, 2007 
Shanan et al, 2011 

Mycobacterium spp. 

Biofilm - WDS 

Biofilm - WDS 

Water - WDS 

Water - WDS 

Germany 

South Africa 

Greece 

USA 

Schmeisser et al, 2003 

September et al, 2004 

Kormas et al, 2010 

Marciano-Cabral et al, 2010 

Shigella spp., 

Salmonella spp. 

Biofilm - WDS 

Water - WDS 

Germany 

Korea 

Schmeisser et al, 2003 

Lee et al, 2006 

Campylobacter spp. 
Water - WDS 

Raw water 

Finland 

France 

Hänninen et al, 2002 

Gallay et al, 2006 

Helicobacter pylori 
Biofilm - WDS 

Biofilm - WDS 

England 

Portugal 

Watson et al, 2004 

Bragança et al, 2005 

Legionella 
pneumophila 

Biofilm - WDS 

Water - WDS 

Biofilm - WDS 

Water - WDS 

Germany 

The Netherlands 

Portugal 

USA 

Emtiazi et al, 2004 

Diederen et al, 2007 

Menaia et al, 2008 

Marciano-Cabral et al, 2010 

Table 1. Pathogenic and opportunistic pathogenic bacteria detected in association with 
drinking water; WDS – water distribution systems, DWTP - drinking water treatment plant.  
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Experimental studies emphasized on bacteria ability of colonization, survival and 

multiplication in water associated biofilms, followed by dispersion in water phase in a 

planktonic state. The findings of Banning et al. (2003) suggested that the ability of P. 

aeruginosa to survive longer than E. coli in water associated biofilm could not be attributed to 

the association with the biofilm, rather than to the ability to utilize a wider range of organic 

molecules as carbon and energy sources compared to other Enterobacteriaceae. An increment 

in available nutrients may reduce E. coli survival in enhanced competition for nutrients and 

increased antagonism by the indigenous microbial population.  

Lehtola et al. (2007) investigated the survival of faecal indices versus pathogenic bacteria 

and viruses, in drinking water biofilms experimentally infested with E. coli, L. pneumophila, 

Mycobacterium avium and canine calcivirus (as a surrogate for human norovirus). The results 

proved that pathogenic bacteria and virus particles entering water distribution systems can 

survive in biofilms for weeks, even in conditions of high-shear turbulent flow and may pose 

a risk to the consumers. Meanwhile, E. coli registered a limited survival to a few days in 

water and in biofilms, being a poor indicator of certain pathogens in biofilms. The study also 

showed that standard culture methods may seriously underestimate the real numbers of 

bacteria in water and biofilms.  

Comparative evaluation of classical techniques involving bacterial growth on specific 

selective media and molecular methods based on 16s rDNA sequence identity reveals a high 

discrepancy between what was expected to grow and the species isolated from specific 

selective growth media. Bacterial analyses of water based on selective isolation and 

culturing approach is recommended to be interpreted with caution (September et al, 2007).  

Experimental studies revealed also low detectable numbers by culture-based technique in 

case of potable water biofilms infected with Campylobacter jejuni (Lehtola et al, 2006). C. 

jejuni and C. coli waterborne epidemics registered in Finland (Hänninen et al, 2000) and 

France (Gallay et al, 2000) were associated to consumption of contaminated tap water with 

origin in polluted sources.  

Severe outbreaks such as cholera caused by the ingestion of water contaminated with Vibrio 

cholerae, typhoid and paratyphoid enteric fevers caused by Salmonella enterica subsp. enterica 

serovar Typhi, respective serovar Paratyphi, shigellosis due to infections with Shigella species 

still occur in countries with insufficient access to safe water. But even in developed 

countries, outbreak events involving emerging pathogenic bacteria like Legionella 

pneumophila, waterborne E.coli O157:H7 and foodborne E.coli O104:H4 demonstrate the 

microbes’ versatility and the fragility of humanity’s victory over the nature.  

2.1.2 Occurrence of protozoa in drinking water and associated biofilms 

The food web in drinking water microbial consortia is based on heterotrophic bacteria, the 

next trophic level being represented by protozoa. Species of parasitic protozoa, including 

free living amoebae associated with infections in humans have been isolated from source 

waters and drinking water (table 2). Their presence represents a double threat to human 

health, being also related to amoeba-resisting bacteria, such as Legionella spp. and 

Mycobacterium spp., which proliferate in protozoa thus increasing the probability of causing 

diseases in humans (Marciano-Cabral et al, 2010).  
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Some protozoa, for example Giardia spp. and Cryptosporidium spp. may persist to hostile 

environment in drinking water, resist to different disinfection procedures and accumulate in 

biofilms under the form of cysts, respective oocysts. Experimental introducing 

Cryptosporidium oocysts for the prediction of behaviour in drinking water distribution 

system showed surface attachment and subsequent intermittent detachment, with exposure 

to high doses of chlorine (20mg/L) needed for the removal of substantial numbers of 

oocysts attached to pipe walls (Warneke et al, 2006). The study of Helmi et al. (2008) 

investigating the interaction of Giardia lamblia and Cryptosporidium parvum (oo)cysts in 

drinking water biofilms, revealed that protozoa are able to attach in biofilm matrix from the 

first day and survive extended periods of time, longer for Cryptosporidium. Viable (oo)cysts 

were recovered from biofilm and water phase for the whole period of investigation, of 34 

days, turbulent shear stress influencing the detachment.  

Protozoa Samples type/Origin Country References 

Flagellates:  
Giardia lamblia  
 

Filtered water - DWTP
Water - WDS 
Water - WDS 
Water - WDS 

USA 
Canada 

Australia 
Spain 

LeChevallier et al, 1991 
Chung et al, 1998 
Hellard et al, 2001 

Carmena et al, 2007 

Apicomplexa 
(Sporozoans): 
Cryptosporidium parvum 

Filtered water - DWTP
Water - WDS 
Water - WDS 

USA 
Canada 
Spain 

LeChevallier et al, 1991 
Chung et al, 1998 

Carmena et al, 2007 

Amoebae: 
Naegleria fowleri 
Acanthamoeba spp. 
Hartmannella spp.  
Vahlkampfia spp. 

 
Well water 

Biofilm, Water - WDS 
Biofilm, Water - WDS 

Water reservoir 

 
USA 
USA 
USA 

Sudan 

 
Blair et al, 2008 

Marciano-Cabral et al, 2010 
Shoff et al, 2010 

Shanan et al, 2011 

Table 2. Protozoa detected in raw water sources, water treatment plants (DWTP) and 
drinking water networks (WDS) and associated biofilms.  

2.1.3 Occurrence of viruses in drinking water and associated biofilms 

Sources of drinking water were investigated for the presence of enteric viruses, especially 

when gastrointestinal outbreaks occurred, and the results revealed episodes of faecal 

contamination in raw water. Epidemiological studies conducted supported the association 

between drinking water consumption and illness (table 3).  

Viruses 
Samples 

type/Origin 
Country References 

Hepatitis A virus 
Hepatitis E virus 

Well water 
Water - WDS 

USA 
India 

Bloch et al, 1990 
Hazam et al, 2010 

Noroviruses 

Well water 
Spring water 
Groundwater 
Groundwater 

USA 
Finland 

New Zeeland 
Korea 

Parshionikar et al, 2003 
Maunula et al, 2005 
Hewitt et all, 2007 

Koh et al, 2011 

Coxsakie A viruses Raw water Taiwan Hsu et al, 2009 

Adenoviruses 
Rotaviruses 

Drinking water 
sources 

West Africa Verheyen et al, 2009 

Table 3. Viruses identified in raw water sources and water distribution networks (WDS).  
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The presence of enteric viruses associated with inadequate water supplies, poor sanitation 
and hygiene is mostly affecting developing countries (Ashbolt et al, 2004). Episodes of 
gastroenteritis caused especially by noroviruses attributed to contaminated drinking water 
have been reported also in developed countries. Inefficient raw water treatment and 
secondary contamination of distribution systems with sewage are of high concern, enteric 
viruses being generally more resistant than enteric bacteria to widely used free chlorine, 
chlorine dioxide and monochloramine disinfectants (LeChevallier & Au, 2004). Although no 
complete investigations regarding faecal indicators presence were performed in the 
considered studies (especially for intestinal enterococci as index of viruses), coliforms and E. 
coli have been detected in water samples in many cases of gastroenteritis outbreaks 
investigated (Parshionikar et al, 2003; Hewitt et al, 2007; Koh et al, 2011).  

There is no evidence of viruses ability of multiplication in environmental biofilms, but they 
may survive for extended periods of time trapped in the matrix, similarly to protozoan 
(oo)cysts, and be detached in water column, where remain inactive until they find a host. 
Experimental studies using pilot scale systems demonstrated the ability of viruses to attach 
and accumulate into drinking water biofilms within one hour after inoculation, while their 
detachment in water phase is influenced by flow velocity (Lehtola et al, 2007; Helmi et al, 
2008). The viral genomes were detected in biofilms over the whole period of both 
experiments (for 21, respectively 34 days). Helmi and co-workers, investigating the 
poliovirus infectivity, recovered the infectious viruses only for 6 days, when flow velocity 
increment from laminar to turbulent regimen was applied, concluding that detection of viral 
genome in biofilms is not sufficient to assess a risk associated with the presence of infectious 
particles.  

2.1.4 Occurrence of fungi in drinking water and associated biofilms 

Initially considered to be airborne, fungal infections in immunocompromised patients 
hospitalized in controlled atmospheric conditions raised the hypothesis of waterborne 
origin of aspergillosis (Anaissie & Costa, 2001). Opportunistic pathogens, potentially 
causing superficial or systemic infections, allergenic or toxigenic species of fungi (yeasts and 
moulds) have been isolated from drinking water worldwide, their presence being primary 
attributed to the ability of surfaces colonization as biofilms (table 4).  

Fungi Samples type/Origin Country References 

Paenicillium spp. 
Aspergillus spp.  
Cladosporium spp. 
Epicoccum spp. 
Alternaria spp. 
Trichoderma spp. 
Acremonium spp. 
Exophiala spp. 
Phialophora spp. 
Fusarium spp.  
Mucor spp. 
Candida spp.  

Biofilm - WDS 
Water - WDS 

Biofilm, water - WDS 
Water - WDS 
Water - WDS 
Water WDS 

Water - WDS 
 

USA 
Germany 

USA 
Norway 
Portugal 

Brazil 
Australia 

 

Doggett, 2000 
Göttlich et al, 2002 
Kelley et al, 2003 

Hageskal et al, 2006 
Gonçalves et al, 2006 

Pires-Gonçalves et al, 2008 
Sammon et al, 2010 

 

Table 4. Fungi identified in drinking water distribution systems (WDS) and associated 
biofilms.  

www.intechopen.com



 
Ecological Water Quality – Water Treatment and Reuse 

 

150 

In some studies, the correlation with standard hygiene indicators was not found (Göttlich, 
2002), other authors described negative correlations between bacteria and filamentous fungi, 
which may be explained either by competition for nutrients either by inhibiting toxins 
produced (Gonçalves et al, 2006) while in other investigations positive significant 
correlations were found between the presence of filamentous fungi, yeasts and bacteria in 
drinking water (Sammon et al, 2010). Regarding filamentous fungi behaviour in water 
distribution systems, deposition is attributed to highly resistant spores, while mycotoxins, 
taste and odour changing compounds producing implies germination and hyphal growth in 
biofilms. The occurrence of fungi in drinking water systems may have significant impact 
due to health effects of mycotoxins (such as aflatoxins): mutagenic, teratogenic, oestrogenic, 
carcinogenic and allergenic, although no reports of disease attributed to mycotoxins 
produced in the water distribution systems have been reported (Sonigo et al, 2011).  

2.1.5 Occurrence of algae in drinking water and associated biofilms 

Algae are assumed not to be characteristic to water distribution system biofilms due to the 
absence of light (Wingender and Flemming, 2011), but algal biomass is a major component 
of biofilms in surface source waters, water treatment and storage, in areas exposed to air 
and light. Experimental research designed by Chrisostomou et al (2009) emphasized on air-
dispersed phytoplankton diversity and colonization potential of algal taxa in drinking water 
reservoir systems. Algal communities are associated to biofilms and may support bacterial 
growth, for example Legionella species (Declerck, 2010). Few recent studies investigating the 
presence of algae in drinking water are available (table 5).  

Algae Samples type/Origin Country References 

Oocystis spp. 
Xenococcus spp. 

Water - WDS Spain Codony et al, 2003 

Anabaena spp. 
Microcystis spp. 
Oscillatoria spp. and many more 

Water - WDS Argentina Ricardo et al, 2006 

Microcystis aeruginosa 
Chroococcus dispersus 

Water reservoirs Greece Lymperopoulou et al, 2011 

Table 5. Algae identified in drinking water distribution systems (WDS).  

Algal toxins, of which the most dangerous for humans is cyanobacterial microcystin, are 
considered chemical hazards in drinking water, especially when open-air reservoirs are 
used in water storage (Lymperopoulou et al, 2011). Algal growth and eutrophication in 
surface waters are widely investigated, with respect to ecological effects. In drinking water 
sources and throughout the water treatment process, distribution and storage, algal blooms 
raise issues about toxins releasing and aesthetic problems inducing, such as colour and 
smell. Algal removal in drinking water treatment is recommended to be carefully 
performed, in order not to disrupt the cells and release toxins in drinking water 
(LeChevallier and Au, 2004). Epidemiological studies are conducted worldwide in order to 
demonstrate the evidence of algal toxins in the environment and to evaluate their 
relatedness to illness in humans. Possible linkages between algae toxins in drinking water 
and health effects, including liver problems and diarrhoea in children were indicated by a 
survey in Namibia, although microcystin never exceeded the tolerable daily intake 
(Gunnarsson and Sanseovic, 2001).  
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3. Drinking water and associated biofilms – Chemical aspects  

Detrimental effects of biofouling in drinking water distribution systems include chemical 
aspects, involving organic and inorganic compounds produced by the microorganisms 
inhabiting water phase, biofilms and sediments. Different volatile compounds, organic and 
inorganic acids, metal oxides and enzymes resulted in microbial metabolism or decay may 
cause aesthetic problems in water: colour, taste and odours and may also have an impact on 
the substratum, leading to microbially influenced corrosion.  

3.1 Drinking water aesthetic problems 

Aesthetic and organoleptic characteristics of water may be affected by a series of chemical 
substances, resulting in colour, odour and taste degradation. Such substances originate in 
microbial activity and decomposition in source waters and in distribution systems, 
disinfectants used in water treatment, materials used in pipes and joints in water networks. 
A list of these substances, related to microbial activity and decay that may be produced in 
the journey of drinking water from drinking water sources to the tap, that may influence 
consumers perception, is presented in table 6 (after the UK Environment Agency, 2004). 
These chemical compounds are usually attributed to microbial biofilms associated to 
drinking water processing and distribution. 

Investigating the sources of taste and odour in drinking water in order to find their sources 
and mitigation strategies, Peter (2008) concluded that low concentrations in chlorine 
residuals, stagnant water, plastic pipes and particles accumulation in distribution systems 
may increase the generation of taste and odour compounds by favouring biofilm formation 
and microbial activity. Other sources of aesthetic problems in water may reside in the 
activity of bacteria involved in sulphur cycle, producing sulphur odours and yellow 
discoloration (US EPA, 2002). Oxidation and reduction of soluble metals may produce metal 
oxides, leading to consumer complaints about the metallic taste and yellow, black or brown 
staining water (Cerrato et al, 2006).  

3.2 Microorganisms – Surface interactions and microbially influenced corrosion 

Biofouling proved to be interdependent on surface characteristics. Investigations of 
microbial reversible and irreversible attachment in primary or secondary colonization and 
in drinking water biofilms composition concluded as following: 

• The hydrophobic/hydrophilic properties of the substrate are influencing biofilm 
formation. Exopolysacharides produced by some bacteria facilitate cell adhesion to 
hydrophilic surfaces, while exopolymers of other bacteria may show a preference for 
hydrophobic substrata (Beech et al, 2005).  

Regarding the influence of the substratum on biofilm composition, copper materials appear 
to be colonized just by L. pneumophila in low numbers, inhibiting P. aeruginosa integration, 
while drinking water biofilms on elastomeric and polyethylene materials proved to be a 
better support for pseudomonads (Moritz et al, 2010).  

• Pipe materials may be corroded, influencing disinfection effectiveness: corrosion products 
in iron pipes react with free chlorine and lead to residual disinfectants depletion. 
LeChevallier et al. (1987) detected high concentrations of coliforms only in tubercles 
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formed on iron pipes and suggested few possible explanations: coliform growth stimulated 
by iron oxides; nutrient syntropy; sourface roughness; protection from disinfection. Iron 
pipes may be a better support for fungi also, when compared to PVC pipes (Doggett, 2000). 

Drinking water flowing through PVC pipes contains three times the aqueous concentration 
of soluble manganese and 35 times the concentration of total manganese than present in the 
drinking water transported by iron pipes (Cerrato et al, 2006).  

Microorganisms Chemical substances produced Aesthetic effects 

Microbial decomposition 
Indole, skatole, putrescine, cadaverine,

β-phenylethylamine, 
butyric, propionic and stearic acids

Fishy, grassy, woody tastes 
Faecal, rotten, cheese, pungent 

odours 

Algae decomposition 
Mercaptan, dimethyl sulphide, 

polysulphides
Fishy, swampy, septic odours 

Algae decomposition/activity
n-hexanal, n-heptanal, isomers of 
decadienal sulphur compounds, 

terpenes, aromatic compounds, esters

Fishy odours 
Rotten eggs odours 

Aromatic odours 
Pseudomonas spp. 
Flavobacterium spp. 
Aeromonas spp. 
Paenicillium caeseicolum

Dimethyl polysulphides Swampy odours 

Fungi 
Chaetomium globosum 
Basidiobolus ranarumi 
Actinomycetes 

Geosmin
Cadin-4-ene-1-ol 

2-isopropyl-3-methoxypyrazine 

Earthy, musty taste and odour 
Woody, earthy odour 

Musty, mouldy potato odour 

Actinomycetes: 
Streptomyces spp. 
Nocardia spp. 
Microbiospora spp 
Cyanobacteria: 
Anabaena spp. 
Microcystis spp. 
Oscillatoria spp. 
Aphanizomenon spp. 
Algae: 
Chlorophyceae 
Bacillariophyceae 

Geosmin
2-methylsorboneol 

 

Earthy, musty taste and 
odours 

Sulphur oxidizing/reducing 
bacteria 
Sulphate reducing bacteria

Sulphuric acid, sulphates, sulphur, 
methyl mercaptan, hydrogen sulphide

Metal sulphides (ferrous sulphide)

Rotten eggs, rotten cabbage 
odours 

Yellow, brown, black staining 
Metals oxidizing/ reducing 
bacteria 

Metal oxides Rusty or metallic taste 
Brown, black staining 

Table 6. Chemical compounds produced by microbial decomposition and metabolism, 
affecting taste and odour of drinking water.  

Microbially influenced corrosion represents another undesirable impact of biofilms 
associated to drinking water treatment and distribution, involving metallic or non-metallic 
materials deterioration as a result of pipes inner surface biofouling.  

Physiological groups of bacteria classified on account of the ability to use different 
substrates in their nutrition or in respiration are summarized in table 7 (Drăgan-Bularda & 
Kiss, 1986; Drăgan-Bularda & Samuel, 2006; Muntean, 2009). Their representative species 
may belong to microbial communities of source waters and sediments, enter drinking water 
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treatment plants and distribution systems in a planktonic state and adhere to surfaces or 
become members of established biofilms (Costerton, 1994). Their metabolites have 
significant impacts on drinking water quality, either being released in bulk water where 
may react with other compounds, for example with disinfectants, leading to toxic 
disinfection-by products (as trihalomethanes), or by remaining in biofilm matrix where 
acting upon pipes surfaces and inducing corrosion.  

Physiologycal groups of bacteria Representatives Metabolites produced 
Ammonifying bacteria
 

Bacillus spp.
Clostridium spp. 

Pseudomonas spp. 
Burkholderia spp.

Ammonium 
Ammonia 

Nitrosifiers (Ammonia oxidizing
bacteria) 

Nitrosomonas spp.
Nitrocystis spp. 
Nitrospira spp. 

Nitrosolobus spp. 
Nitrosovibrio spp.

Nitrite ions 

Nitrifying bacteria (Nitrite 
oxidizing bacteria) 

Nitrobacter spp
Nitrococcus spp. 
Nitrospira spp. 
Nitrospina spp.

Nitrate ions 

Denitrifying bacteria Paracoccus denitrificans
Pseudomonas stutzeri 

Thiobacillus denitrificans 
Alcaligenes spp. 

Bacillus spp.

Nitrous oxide 
Nitrogen 

Sulphur reducing bacteria
 

Desulfuromonas spp.
Proteus spp.

Hydrogen sulphide 

Sulphate reducing bacteria Desulfovibrio desulfuricans
Desulfovibrio sulfodismutans 

Desulfotomaculum spp. 
Desulfonema spp. 

Desulfosarcina spp. 
Desulfobacter spp. 
Desulfococcus spp. 

Desulfomicrobium spp.

Hydrogen sulphide 

Sulphur oxidizing bacteria:
  

Thiobacillus spp.
Sulfolobus spp. 
Beggiatoa spp. 
Thiothrix spp.

Sulphuric acid 
Sulphates 
Sulphur 

Iron reducing bacteria Sphaerotilus natans
Leptothrix ochracea 

Crenothrix polyspora

Iron (Fe2+) oxides 

Iron oxidizing bacteria Galionella feruginea
Ferrobacillus ferooxidans 
Thiobacillus ferooxidans

Iron (Fe3+) oxides 

Manganese oxidizing/reducing 
bacteria 

Sphaerotilus discophorus
Pseudomonas spp. 

Metallogenium spp. 
Pedomicrobium spp. 

Bacillus spp. 
Micrococcus spp. 

Vibrio spp.

Manganese oxides 

Table 7. Physiological groups of bacteria, their representatives and metabolites.  
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Chemical and enzymatic microbial products resulted in biofilms activity may induce 
corrosion and related effects by different mechanisms:  

• oxygen concentration cells and anaerobic sites generation (promoting growth of 
anaerobic bacteria); 

• formation of iron concentration cells by the activity of iron and manganese oxidizing 
bacteria;  

• metabolites such as acids produced by bacteria have corrosive action upon the surface;  
• production of depolarizing enzymes within the biofilm matrix, which may persist 

longer than viable cells;  
• exopolymers produced by slime forming bacteria stimulate biofilm formation and 

biomass accumulation;  
• the binding capacity of biofilm matrix which may lead to deposits accumulation with 

clogging effects (Beech et al, 2005; Coetser and Cloete, 2005).  

Some of the recommended strategies in drinking water associated biofilm control are: source 
waters protection, appropriate treatment, infrastructure contamination prevention, pipes and 
reservoirs maintenance, corrosion control, appropriate disinfection practices, nutrient levels 
reducing, water quality monitoring, personnel training, water safety plans implementation.  

We are still living in an age of surfaces, even the remark was first said by Oscar Wild’s 
character in 1895. Having in mind the virtual idea of self-cleaning surfaces, researchers in 
nanotechnology field are targeting innovative repellent materials with a wide range of 
applications, for the biofouling control. The superhydrophobicity models such as “the lotus 
effect” characterizing the lotus (Nelumbo nucifera) leaf, offered by natural patterns are 
investigated at nanoscale. The interdependence between surface roughness, reduced particle 
adhesion and water repellence proved to be the keystone in the self-cleaning mechanism of 
many biological surfaces (Barthlott & Neinhuis, 1997).  

4. Conclusions 

The present review emphasize on the following recent and relevant findings:  

• Biofilms associated with drinking water are ubiquitous, harbouring bacterial pathogens, 
opportunistic pathogens, parasitic protozoa, viruses, toxins releasing fungi and algae;  

• Microbial consortia in contact with drinking water have significant impacts upon water 
quality and may threat human health when contamination events occur; 

• Access to safe water continues to be a target for developing countries, unfulfilled at the 
moment;  

• Even in developed countries, where substantial efforts are submitted in order to ensure 
population’s access to a high quality drinking water, microbial versatility represents an 
endless source of problems, with respect to opportunistic pathogens emergence;  

• Microbial communities in water networks and biofilms represent complex ecosystems; 
their ecology is influenced by a series of abiotic and biotic factors: raw water sources 
quality, temperature, flow rate and system hydraulics, nutrient concentration, pipe 
material, particles accumulation, ingress and intrusion, water treatment, water 
disinfection and microbial interactions;  

• Further research is needed in order to understand attached microbial consortia for 
biofouling prevention and control in drinking water industry, as a matter of public 
security.  
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