
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IntechOpen

https://core.ac.uk/display/322415139?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

0

Open Development Platform for
Embedded Systems

E. Ostúa, A. Muñoz, P. Ruiz-de-Clavijo, M.J. Bellido,
D. Guerrero and A. Millán

Grupo de Investigación y Desarrollo Digital (ID2)
Dpto. Tecnología Electrónica, University of Seville

Spain

1. Introduction

Embedded systems are those that implement a specific function while satisfying a number
of restrictions. These restrictions have evolved over time and today, the most common
for this type of system are cost and low consumption, and minimum size and weight.
Moreover, the demand for embedded systems for different functions, and also the complexity
of these functions has increased significantly in recent years. Also, due to the high level
of competition, is the need to significantly reduce development times of these systems
(Sangiovanni-Vincentelli, 2001).

All these problems in the design of embedded systems have been giving rise to an evolution
in design methodology, so it has passed from implementing them as an application specific
hardware, to a methodology whose main part is software design.

This change in methodology has been possible thanks to advances in technology that allow
a complete system to be included in a single chip (ie, System on Chip, SoC). The hardware
architecture of Embedded systems in SoC technology consists of a microprocessor as a core,
around which are the components or peripherals necessary to carry out the function of
the system. This function is implemented through software running on the microprocessor
(Beeckler, 2007; Atitallah, 2008).

For views of both cost reduction as well as development time, design methodologies of
embedded systems have consisted of pre-built hardware platforms closed with a wide range
of applications. This range of applications is achieved because these platforms have multiple
ports that are able to package different types of signals. The most common platforms
of this type are microcontrollers (MCUs) and digital signal processors (DSPs). With this
type of component, the final application design consists primarily in the development of
software running on them. In order to reduce development times as well as being able
to use these platforms in highly complex functions, manufacturers have made an effort in
software development environments (Salewski, 2005). Thus, in recent years, the new MCUs
are characterized by supporting several operating system because they provide a convenient
way for software applications development.

However, these type of closed platforms reduce the degree of freedom of the designer of
embedded systems. This is so because the designer is not able to manipulate and adapt the

14

www.intechopen.com

2 Will-be-set-by-IN-TECH

hardware to the specific application. This could lead to an improved final performance of the
system.

An alternative to closed hardware platforms is the use of FPGAs (Ostua, 2008; Muñoz,
2008; Eastman, 2005). The high capacity of integration, low cost on short runs, and high
performance in terms of operating frequency and power consumption in FPGAs makes it
possible to implement an entire microprocessor-based system in one of these programmable
devices. This type of FPGA-based hardware platform has several advantages over closed
platforms:

• SoC design adapted to the specific needs of embedded systems

• Ability to design and adapt the hardware components to specific application functionality,
and include them in the SoC

• Dynamic reconfiguration capability of the SoC (Williams, 2004)

However, the use of FPGAs necessarily implies an effort to design the hardware architecture
that makes the total development time of the system can be significantly higher than in
the case of closed platforms. To make the design of embedded systems using a FPGA as
central core of the system feasible, CAD tools are necessary to facilitate the construction
of the hardware architecture quickly and efficiently. Indeed, nowadays, manufacturers are
leveraging the SoC design tools on FPGAs and there is a level of competition for the best
solution that combines both ease of construction of the complete architecture as the best
performance of the final system implemented. Examples of these tools are, for example Xilinx
EDK (Xilinx Inc., 2009), Altera ESD (Altera Inc., 2009), etc.

But in addition to facilitating the development of the hardware architecture it is also necessary
to facilitate software development. This is the point where there is greater difference between
the MCUs and FPGAs. The new MCUs are characterized by supporting operating systems.
The introduction of the operating system level in an embedded system allows these to be
used in applications of high complexity. In contrast, microprocessors used in FPGAs, are only
now beginning to support operating systems (Henkel, 2004) such as the case with petalinux
MicroBlaze (Petalogix Inc., 2010), or projects to port Linux to Altera’s Nios (Altera Inc., 2010)
or Lattice Mico32 (Lattice Inc., 2010).

In this chapter, we present a platform hw / sw open in the sense that it is technologically
independent, and that it is implementable in low-cost FPGAs that meets both of the main
features mentioned above: CAD tools that facilitate the development of SoC hardware
architecture and, above all, a software development methodology comparable to the methods
used in standard PCs.

The platform is based on the LEON3 processor (Gaisler, 2010) that implements the SPARC v8
architecture. The main advantage is that on this microprocessor a Debian Linux distribution
(Debian, 2010) was implemented. Having not only a Linux operating system, but of all
the components of a very mature distribution as Debian, gives rise to a great potential and
easiness when developing software applications for embedded systems.

In what follows we describe the platform, starting with the hardware architecture. Then we
describe the implementation process of the Debian distribution. In the 4th section, we detail a
general development methodology for any application based on this platform. We show the
advantages of the platform on a specific example of embedded system consisting of a terminal
unit for location and positioning. Finally, are summarized the main points of work.

312 Grid Computing – Technology and Applications, Widespread Coverage and New Horizons

www.intechopen.com

Open Development Platform for Embedded Systems 3

2. SoC hardware level

As we mentioned before, we chose LEON3 synthesizable microprocessor, that implements a
SPARC architecture. The main features of this microprocessor are described as follows:

• The LEON3 32-bit core implements the full SPARC V8 standard

• It uses big-endian byte ordering and has 32- bit internal registers

• It has 72 instructions in 3 different formats and 3 different instruction addressing modes
(immediate, displacement and indexed)

• Implements signed and unsigned multiply, divide and MAC operations and has a 7-stage
pipeline instructions

• Also implements Harvard Architecture with two separate instruction and data cache
interfaces

With final purpose in mind, Debian was chosen as the Linux distribution, since it has
been adapted and compiled for many architectures such as x86 or SPARC v8 among other
features. The microprocessor we want to use, must have the ability to run any of these sets of
instructions and should be capable of running a Linux kernel 2.6 version. For this purpose,
it requires some extra functional blocks, such as a memory management unit (MMU) and a
floating point unit (FPU), and should be included within the microprocessor.

Moreover, the whole system must provide a minimum number of other functional blocks that
enable a proper operating system support. These blocks are an interrupt controller and a
timers unit. On the other hand, support for system memory and an alternative to connecting
a mass storage medium should be included. The developed SoC includes a mixed memory
control block, which allows access to both FLASH memory and SDRAM memory. It’s memory
map is assigned as follows: the lowest memory addresses point to the non-volatile memory,
while the the rest of addresses cover the dynamic memory. In this way, the start of FLASH
memory match the microprocessor boot vector, allowing one to store and run a boot loader in
these positions.

In order to provide disk space for the operating system, the inclusion of an IDE interface
controller was a good option. This controller has been connected to a Compact Flash card
and, in addition, this medium is also used to provide swap memory to the system.

Finally, it is necessary to add some peripheral blocks for communication with the outside
of the SoC. It is interesting to provide some kind of Internet access to fully exploit the
advantages that the operating system as a development platform provides. Therefore,
we have implemented both access methods: modem and Ethernet interfaces. It also
includes other general-purpose and debug ports, such an UART blocks that provide RS232
communication.

In summary, figure 1 shows the block-level diagram of the system, where all functional blocks
that have been included can be appreciated. Its interconnections has been made through open
AMBA 2.0 Bus specification.

Most building blocks of this design are part of a set of libraries and IP cores (including
LEON3 microprocessor) called Grlib (Gaisler, 2010). However, it is relatively easy to add
new logic cores to the system. For example, a 16550 UART core have been added to support a
modem GSM / GPRS communications. This core, wich is based on a model written in Verilog

313Open Development Platform for Embedded Systems

www.intechopen.com

4 Will-be-set-by-IN-TECH

Fig. 1. SoC block-level diagram

language, is obtained from Opencores (OpenCores, 2010). It was necessary do some work to
adapt its native intefarce to function properly with the AMBA APB bus.

The synthesis of this design can be accomplished with many software packages and may use
different FPGA families and even ASIC as target.

Grlib includes some shell scripts for Linux that greatly facilitate this task. In this chapter, the
Xilinx ISE package (Xilinx Inc, 2010) has been used, obtaining the results of compilation and
synthesis for Spartan3 XC1500 shown at table 1.

These results are heavily dependent on the choices made when configuring the
microprocessor. For example, the size of data and instructions caches, and the number and
complexity of the peripherals that have been added to the system, will dramatically change
these results.

3. SoC platform operating system

The main objective of this chapter is aimed at obtaining a development platform similar to
those available on conventional workstations, but this one will run on top of the SoC platform
itself. To accomplish this, and based on the exclusive use of open software, we will install a
complete Linux distribution, allowing the use of all development tools, compilers and libraries
and also take advantage of using open source code without restrictions.

We can divide our campaign into two main goals, as the SoC platform should first be able to
boot a Linux kernel before a complete Linux distribution can be installed. The LEON3 core we

314 Grid Computing – Technology and Applications, Widespread Coverage and New Horizons

www.intechopen.com

Open Development Platform for Embedded Systems 5

Device Utilization Summary

Number of BUFGMUXs 4 out of 8 50%
Number of DCMs 2 out of 4 50%
Number of LOCed DCMs 2 out of 2 100%
Number of External IOBs 221 out of 333 66%
Number of LOCed IOBs 192 out of 221 86%
Number of MULT18X18s 1 out of 32 3%
Number of RAMB16s 14 out of 32 43%
Number of Slices 12809 out of 13312 96%
Number of SLICEMs 391 out of 6656 5%
Overall effort level (-ol): High
Router effort level (-rl): High

Timing summary

Timing errors: 0
Score: 0
Constraints cover 21241138 paths,

0 nets
and 106771 connections

Design statistics

Minimum period: 24.822ns
Maximum frequency: 40.287MHz
Minimum input required time before clock: 6.591ns
Minimum output required time after clock: 12.193ns

Table 1. Xilinx ISE compilation and synthesis

planned to synthesize meets all the requirements for the implementation of a modern Linux
kernel 2.6, while a few adaptations are necessary to meet the particularities of its architecture.

3.1 SnapGear & boot-loader

Snapgear (SnapGear, 2010) is an open source specific Linux distribution for embedded
systems. A fork of the main distribution was adapted by Gaisler Research for LEON3 systems,
which have included various kernel patches and a few basic device drivers.

This software package also includes a fundamental and indispensable element in order to load
the operating system, which is the boot loader. This small piece of software is usually stored
at the beginning of the FLASH memory which must correspond to the memory address $0, so
it’s then executed by LEON3 processor on the startup process.

The first function of the boot loader is to initialize the basic hardware system, such as
debugging console or memory chips. Then it proceeds to uncompress the software package
you want to run to the RAM memory system, both a 2.6 Linux kernel and a small romfs
filesystem, both Gzipped. On this read-only file system the Linux kernel mounts the root
system, which includes all utilities and applications that we have decided to include in the
software applications compilation.

315Open Development Platform for Embedded Systems

www.intechopen.com

6 Will-be-set-by-IN-TECH

Fig. 2. SoC Boot Up

Another important ability of this small piece of software (boot loader) is to pass arguments to
the Linux kernel, which avoids the need to use complex bootloaders such as LILO or GRUB,
which are necessary in workstations.

The configuration of the Linux kernel and boot loader and the preparation of the romfs unit
are performed by a few scripts. After this process, we proceed to compile the software system
and so a set of software images (object files) are obtained.

With this set of object files generated we chose an image prepared for flash memory that
contains the boot loader with the Linux kernel and the small romfs file system. Then we
can program the flash memory using the Debug-Support Unit (DSU) within LEON3 core by
interfacing with a JTAG or Ethernet connection, using the debugging application grmon from
Gaisler Research.

Once the process is completed we have a functional Linux kernel with very basic core
lightweight applications on top of our SoC platform. The complete programming and booting
process of the SoC platform is shown in figure 2.

316 Grid Computing – Technology and Applications, Widespread Coverage and New Horizons

www.intechopen.com

Open Development Platform for Embedded Systems 7

3.2 Debian

Once Snapgear Linux operating system is running on the system it’s time to implement
a complete Debian distribution, obtained directly from an official Debian repository. This
distribution is precompiled for many platforms, including SPARC V8, which makes it
mandatory to usage of Integer Multiplier (MUL) and a Floating Point Unit (FPU) hardware
cores, which LEON3 provides.

There are a few ways to install this operating system, however we have chosen the defacto
approach to use a small application called debootstrap, which takes care of the download,
unzip and install all necessary packages for our target platform. A file system was created
that includes such romfs application and its dependencies to other libraries and applications
(such as wget and binutils) and they were integrated into the image we created for Snapgear
in the previous step.

After the inclusion of the new file system in the romfs Snapgear compilation, it is possible to
boot the Linux system and to prepare the installation process of the Debian distribution. In
order to do so, having initialized the system and using the Linux shell, it proceeds to boot and
configure the Ethernet interface to access the Internet and a DNS server.

Then comes the setup for the drive where you want to install the operating system, which
in this case it’s a portable solid state memory Compact Flash Card connected through an
ATA Controller IP core, but also could have opted for a remote unit NFS hard disk drive IDE
interface as a network booting solution.

It is desirable to have at least 1.5 GBytes free on the device to allow easy installation of those
software packages and also in order to make use of swap space. Next, two partitions are
created in the disk, one for the ext2 filesystem and one swap, with the commands fdisk, mke2fs
and mkswap, which are then assembled and activated by the commands mount and swapon.

We must note that romfs is a read-only filesystem, so it has been necessary to have an empty
path to mount the unit, in our case we have used the path /mnt/debinst. In this state, the
system is ready to install Debian Operating System Cross. Simply run the setup application
debootstrap like this:

/usr/sbin/debootstrap -arch sparc stable /mnt/debinst

http://ftp.es.debian.org/debian

This command starts downloading packages from the Internet repository. These software
packages are stored in the mass storage unit, to be validated and then installed in the system.

Once the process gets the basic installation of Debian on the drive, then it’s necessary to
configure certain aspects before its first use. At this point the use of chroot command proved
quite useful to facilitate the entire process of design and preparation. This command allows
the change of the root environment file system and keep running applications of the new
distribution in the path that has been installed, allowing one to continue the setup process
without restarting the whole system.

Firstly, the process was necessary to explicitly indicate the operating system to invoke a
command line (shell) when booting the system (init process). To achieve this we simply

317Open Development Platform for Embedded Systems

www.intechopen.com

8 Will-be-set-by-IN-TECH

modified the description file load during the boot process of the operating system, the file
/etc/inittab, by adding the following line:

T0: 234: respawn:/sbin/getty -L ttyS0 38400 vt100

Thus, the getty application launched a shell connected to the serial port every time the system
restarts.

Secondly, the network interface and the name servers (DNS) have to be configured in order to
introduce a suitable network configuration, adjusting the files /etc/network/interfaces and
/etc/resolv.conf . Also it’s need to tell where the mount points of the units will be, such as the
boot, root and swap file systems. Like in other standard distributions, one just has to edit the
configuration file /etc/fstab.

Finally the /dev directory is empty in the new distribution installation and so it was necessary
to create the block and character devices in order to let the kernel manage the peripherals, a
task done using the mknod command.

Once the installation and configuration of the Debian Linux distribution is complete, it’s time
to recompile the kernel adapted to the LEON3 microprocessor. In this new compilation the
romfs partition is removed and the kernel will take the parameters where to locate the actual
root file system (the drives) by modifying the boot loader configuration.

This argument was necessary to provide the kernel to configure the system console through
the serial port and to tell the kernel where the root filesystem was:

console=ttyS0, 38400 root=/dev/hda1

Finally started, the system with the new kernel and the Debian Linux installation that, after
loading, presented a console with all the benefits of this operating system.

Importantly, once complete the whole process of installation and configuration, has the
tools Debian APT package installation, such as apt-get, which allow you to install many
libraries and applications, such as compilers, servers, internet services, daemons, desktop
environments, etc., and even full distribution upgrades quickly and conveniently.

4. Developing methodology

The previous sections have been devoted to describing the basic technical characteristics
of the platform proposed. This section, however, is devoted to discuss the development
methodology of embedded systems based on this platform. The developing methodology
of SOCs is divided two main parts: hardware developing and software developing. Although
both are interlaced, they are very different. With regard to hardware development, begin
identifying the components needed for the specific embedded system will be implemented.
These components will be the interface of the SoC with the ports needed by the system.

Once identified, we must make the complete design of SoC (as shown in Figure 1) including
all necessary components. As mentioned in section 2, this process will be done with GRLIB
library that comes with the development system LEON3 processor. GRLIB includes a large
number of components common in embedded systems. One of the advantages of this

318 Grid Computing – Technology and Applications, Widespread Coverage and New Horizons

www.intechopen.com

Open Development Platform for Embedded Systems 9

platform is the possibility of designing a controller or peripheral specific for a particular
application, which can be included in the SoC. It is also possible to reuse IP cores available for
other systems. In these cases, it will make a design interface with the AMBA bus, which is the
main bus that uses the hardware platform.

The most important improvement on this platform is under software developing since, the
biggest effort in SOCs developing falls on the software and specifically in the interaction with
peripherals. Our platform includes a operating system installed that solves the peripheral
management through the device drivers. Even if a given driver is not avaliable for a new
hardware, using Debian distribution we have tools to makes easy the developing. While with
a conventional software developing methodology, some external tools are required: cross
compilers, emulators, debug connection tools, etc., once installed the Debian distribution
some advantages are achieved versus conventional software development methodologies of
embedded systems.

We have achived significant improvements in the software tasks such as installing, compiling
and developing, also, in the manage of devices drives or in high level applications. All this
due some advantages of the using Debian as base software, it can be summarized as following:

• The Debian repositories has a large set of precompiled software that can be easily installed
using the distribution tools. All is done inside of the platform without external tools.

• The distribution provides a the development environment and integrated debug tools that
may be installed inside the platform. Also, without the need of external tools.

• Several improvements in the process of update firmware/software. The distribution adds
tools to update all software installed inside in an automated mode.

Usually, is not an easy task to install any precompiled software in a SoC. Most medium-high
complex software applications depend of other software as shared libraries or external tools.
Software distributions give tools to solve applications dependences. Specifically, the main
feature of Debian software distribution is the Debian package machinery. This resolves the
software dependencies and creates a minimal configuration for each installed software. This
minimal configuration allows the putting services on just after install processes and also, can
be used as example of end software configuration.

Using precompiled software avoids the heavy task of compile software. Compile software
for embeded systems is a heavy task due some of following reasons: one, is the dependence
between applications and shared libraries making the compilation process complex. Usually
one application needs an exact version of each required shared library. If there are several
applications installed at the same time, the same library could appear several times, but with
a different version number. In this situation install, upgrade and maintain the software is a
tedious task.

Other reasons that make the task of compile software for SoCs complex is the use of cross
compilers to generate software. Once compiled software, to test it, all necessary files must
be transferred and installed: executable files, shared libraries, config files, etc. The steps of
compiling and transference are repeated as many times as necessary to achieve the software
to be ready. This process is improved when the Debian distribution is installed. It is possible
to install all compiler tools in the platform and make the compilation process inside of
platform. Also, this task is assisted by Debian tools since, it detects all dependencies between

319Open Development Platform for Embedded Systems

www.intechopen.com

10 Will-be-set-by-IN-TECH

applications, source code, and shared libraries. Debian tools leave the software developer
environment ready inside of platform and the software compilations can be made easily. At
this point the software can be developed inside of SoC, the software is also able to be debugged
inside using the debug tools included.

Once the developing process has finished, this platform has some advantages during its
lifetime. Having the ability of upgrade in the field is a common task today and is an advantage
over closed systems. Upgrading the software or fix critical bugs are easy tasks becouse
Debian community maintains its repository and, the software upgrades are automated when
packages machinary is used. Other embedded SoCs require external tools to update the
firmware, instead, this platform has the ability of autoupgrade if its necessary, eg. using
network connection.

Another important aspect is the improvement in the process of developing drivers for this
platform. By running 2.6 kernels it is possible to load devices drivers in the kernel under
demand. With this, we obtain two advantages, one concerning to the resources used and the
other, in the devices drivers developing process. Both are now explained in detail.

One of improvements is the capacity to add all avaliable device drivers with the kernel.
Although most of the device drivers are not necessary at same time, the capabilities of the
platform is not affected by including all. In fact, only the necessary device drivers are loaded
into memory on demand, while the rest of them remain stored at disk. With this, the system
maintains all functionality and, it saves resources for the rest of the tasks. On the other hand,
new device drivers are developed without touching the binary kernel that is running into
platform. Since the new drivers are loaded and unloaded dynamically, the driver developer
can debug inside the platform. This is an advantage over other SOCs where, the kernel must
be fully recompiled and loaded into the SOC for each change in the drivers thus, making the
debugging process of drivers difficult.

5. Sample system implemented with this hardware platform

This section presents a specific development of a Remote Terminal Unit (RTU) which
implements the standard IEC-60870-5 application-layer protocol for telecontrol messaging
stacks. Both the hardware and the operating system are based on the platform already
presented in this chapter and we discuss the main tasks required to customize our
developments to fit the target system and also describe some of the advantages of using our
embedded platform.

In a typical telecontrol scenario one station (primary station, called CC), controls the
communication with other stations (secondary stations, also called RTUs), so IEC 60870-5
specification allows online telecontrol applications to take place. In this sense, the IEC defines
a set of functions (profiles) that performs standard procedures for telecontrol system. A typical
scenario for this kind of communication is shown in figure 3.

The transmission channels available within the design RTU are RF (Radio Frequency), GSM
(Global System Mobile) and GPRS (General Packet Radio System). We had to provide the
hardware platform with these devices and to integrate everything in the kernel drivers so
they were addressable by the user level applications.

For RF transmission an ICOM IC-V82 (VHF transceiver) device was used, with the digital
unit UT-118. This device is D-star capable, and can be connected to any RS232 device for data

320 Grid Computing – Technology and Applications, Widespread Coverage and New Horizons

www.intechopen.com

Open Development Platform for Embedded Systems 11

Fig. 3. IEC 60870-5 transmission scenario

transmission, with a data transmission speed of 1200bps. The GSM modem was a Wavecom
Fastrack M1306B, which behaves as a standard AT-command modem via a RS232 port, so the
modem is connected to the RTU this way. According to device specifications, it allows a data
transmission of up to 14.400 bps for GSM but this feature depends on the GSM operator used,
so it might not be available (in fact, our tests ran at 9600bps).

In order to get those devices into the design we needed some serial ports and so we integrated
a fully capable UART 16550A compatible peripheral, which improves the default UART
integrated with LEON microprocessor, by using all the transmit, receive & handshaking lines
and also adding two onchip FIFO buffers for improved usability.

We started the development of the UART with one of the free IP cores from OpenCores
community (written in Verilog) and we had to interface the Wishbone bus interconnection
architecture to the AMBA-2.0 APB (ARM Corp., 1999) peripheral connection LEON manages
(the one for relatively slow and simple devices like this). The main issue when interfacing
those two protocols is that the AMBA-APB bus does not have a signal for acknowledgement,
so every operation always has the same duration, while the Wishbone peripherals usually
insert wait states in the communication to the bus master using that ACK line. Finally some
Plug & Play information was added to the system so it enable the identification and allocation
of the peripheral automatically on the LEON based system startup.

In figure 4 a picture of a prototype of the platform is shown, where you can see the GPS device,
the GPRS modem fitted in a custom expansion card with some more serial ports, a compact
flash card to hold the Linux local filesystems and the FPGA which holds the embedded design.
The prototype has been implemented on the development board XC3S GR-1500. This board
includes a Xilinx XC1500 FPGA Spartan3. Also, the board provide others features needed to
run the system: 64Mbytes of SDRAM, 64 Mbit of Flash memory, Ethernet PHY transceivers
R232, etc. In order to connect both the GPS and GSM modem and Compact Flash card has
been necessary to develop adaptive PCBs as shown in figure 4.

321Open Development Platform for Embedded Systems

www.intechopen.com

12 Will-be-set-by-IN-TECH

Fig. 4. Hardware Platform Prototype

Regarding the software development, there is no open source applications available for the
IEC standard protocols, so both the data-link layer and the application layer have to be
implemented from scratch. Anyway, as we’re using Linux on our platform we already have a
TCP/IP stack and standard development tools and libraries, so the data transport and other
concrete IEC specifications were built.

The software project was divided into a few different modules, but the most interesting one is
the Remote Module, (RTU module). Modules have been developed in C++ language, under a
typical software development IDE on a hardware platform x86 (PC) running Linux operating
system. Only standard libraries have been used in the development. After the initial setup
and debugging the software toolkit also has been compiled for LEON (SPARC) architecture.
As LEON has a standard Linux Debian distribution with standard C++ libraries, getting a
binary file running is as simple as compiling the same source code developed in the PC in the
embedded Linux by using the standard C compilers for the architecture. A GCC compiler has
been used to compile and link the RTU source code inside LEON.

In order to test the full system, two parameters were analyzed, initialization time (IT), mean
time required to complete the initialization on a RTU, and Poll Time (PT), mean time required
to complete a poll over a RTU. Also two scenarios were tested. In one the CC and RTU were
PCs and in the other the RTU was LEON. Full details on the application solution implemented
and main results were presented in (Medina, 2009).

322 Grid Computing – Technology and Applications, Widespread Coverage and New Horizons

www.intechopen.com

Open Development Platform for Embedded Systems 13

6. Conclusions

The breakthrough in the capabilities and performance of FPGAs has made becoming an
alternative to the MCU in the design and implementation of embedded systems. The main
differences between the two alternatives are in fact that the design with FPGAs need to
design not only the SoC software but also hardware. This can be very advantageous in
many cases because the hardware can be adapted to the specific needs of an embedded
system. However, there are still significant differences in the software design methodology
due to the development tools available to the MCU are far more advanced than the software
development environment for microprocessors that are implemented in FPGAs.

In this chapter we present a platform hw / sw implementable on FPGA which greatly
facilitates the process of software development. This platform has several significant
advantages such as it is based on open components (LEON3 microprocessor and operating
system Linux, Debian), tools that facilitate the development of hardware platform, etc.. But,
fundamentally, the main advantage is based on having implemented the Linux operating
system with the Debian distribution. This distribution is prepared to run on a standard PC.
This means that all the software available for Debian is easily installed. It also has a large
set of libraries for developing software applications that can be implemented and used in the
embedded system that is based on this platform.

To demonstrate the efficiency of embedded systems development based on this platform we
have designed a terminal of geolocation. Thus, it has completed the design of both hardware
platform and software applications running on the terminal unit. Software development has
demonstrated the advantage and versatility that means having both a large set of available
libraries and development environments equivalent to those of a standard PC.

7. Acknowledgements

This work has been partially supported by the Ministerio de Economía y Competitividad
of the Spanish Government through project HIPERSYS (TEC2011-27936) and the European
Regional Development Fund (ERDF).

8. References

Sangiovanni-Vincentelli, A. and Martin, G. 2001. "Platform-Based Design and Software Design
Methodology for Embedded Systems" IEEE Design & Test of Computers, 18, 6 (Nov.
2001), 23-33. DOI:10.1109/54.970421

Beeckler, J.S. , Gross, W.J., 2007. "A Methodology for Prototyping Flexible Embedded
Systems" CCECE: Canadian Conference on Electrical and Computer Engineering, 2007.
pp. 1679-1682

A. Ben Atitallah, P. Kadionik, N. Masmoudi, H. Levi. "FPGA implementation of a HW/SW
platform for multimedia embedded systems" Design Automation for Embedded Systems
(2008) 12: 293âĂŞ311, DOI 10.1007/s10617-008-9030-2

Salewski, F., Wilking, D., and Kowalewski, S. 2005. "Diverse hardware platforms in embedded
systems lab courses: a way to teach the differences" SIGBED Rev. 2, 4 (Oct. 2005),
70-74. DOI:10.1145/1121812.1121825

E. Ostua, J. Viejo, M. J. Bellido, A. Millan, J. Juan, A. Muñoz, 2008, "Digital Data Processing
Peripheral Design for an Embedded Application Based on the Microblaze Soft Core",

323Open Development Platform for Embedded Systems

www.intechopen.com

14 Will-be-set-by-IN-TECH

4th Southern Conference on Programmable Logic (SPL 2008) ; San Carlos de Bariloche
(Argentina), 2008

A. Muñoz, E. Ostua, M. J. Bellido, A. Millan, J. Juan, D. Guerrero, 2008, "Building a
SoC for industrial applications based on LEON microprocessor and a GNU/Linux
distribution", IEEE International Symposium on Industrial Electronics (ISIE 2008) pp.
1727-1732, Cambridge (United Kingdom)

J. Williams and N. Bergmann, "Embedded linux as a platform for dynamically
self-reconfiguring systems-on-chip" Proc. Eng. Reconfig. Syst. Algorithms (ERSA), Jun.
2004, pp. 171-176

Salewski, F. and Kowalewski, S. 2007. "Hardware platform design decisions in embedded
systems: a systematic teaching approach" SIGBED Rev. 4, 1 (Jan. 2007), 27-35.
DOI:10.1145/1217809.1217814

Nancy Eastman. 2005. "Moving Embedded Systems onto FPGAs" 00 Embedded Magazine
http://china.xilinx.com/publications/magazines/emb_02/xc_pdf/emb02-
altium.pdf

Xilinx Inc. (2009) "EDK Concepts, Tools, and Techniques"
http://www.xilinx.com/support/documentation/sw_manuals/xilinx11/edk
_ctt.pdf

Altera Inc. (2009) "Nios II Processor Reference Handbook"
http://www.altera.com/literature/hb/nios2/n2cpu_nii5v1.pdf

Joachim Henkel, Mark Tins (2004) "Munich/MIT Survey: Development of Embedded Linux"
http://pascal.case.unibz.it/retrieve/1535/MunichMIT-Survey_Embedded_Linux_
2004.pdf

Petalogix Inc. (2010), "Petalinux User Guide"
http://www.petalogix.com/resources/documentation/petalinux/userguide

Altera Inc. (2010) "Nios Forum: Operative Systems"
http://www.alteraforum.com/forum/forumdisplay.php?f=38

Lattice Inc. (2010) "uCLinux for LatticeMico32"
http://www.latticesemi.com/products/intellectualproperty/ipcores/mico32/mico
32uclinux.cfm

Jiri Gaisler, Sandi Habinc, 2010 "GRLIB IP Library User’s Manual"
Debian (2010) "Debian SPARC Port"

http://www.debian.org/ports/sparc/index.en.html
OpenCores.org, equivalent to ORSoC AB, all rights reserved. OpenCoresÂő, registered

trademark
http://www.OpenCores.org

Xilinx Inc. (2009) "ISE Design Suite Software Manuals and Help"
http://www.xilinx.com/support/documentation/sw_manuals/xilinx11/
manuals.pdf

Snapgear 2010, "SnapGear Embedded Linux Distribution"
http://www.snapgear.org/

ARM Ltd. Corp. 1999, "AMBA(TM) Specification (Rev 2.0)"
http://www.arm.com/products/solutions/AMBA_Spec.html

V. Medina, I. Gomez, E. Dorronzoro, D. Oviedo, S. Martin, J. Benjumea, G. Sanchez,
2009, "IEC-60870-5 application layer for an Open and Flexible Remote Unit" IEEE
International Symposium on Industrial Electronics (ISIE 2009) ; Seoul Olympic Parktel,
Seoul, Korea July 5-8, 2009

324 Grid Computing – Technology and Applications, Widespread Coverage and New Horizons

www.intechopen.com

Grid Computing - Technology and Applications, Widespread

Coverage and New Horizons

Edited by Dr. Soha Maad

ISBN 978-953-51-0604-3

Hard cover, 354 pages

Publisher InTech

Published online 16, May, 2012

Published in print edition May, 2012

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

Grid research, rooted in distributed and high performance computing, started in mid-to-late 1990s. Soon

afterwards, national and international research and development authorities realized the importance of the

Grid and gave it a primary position on their research and development agenda. The Grid evolved from tackling

data and compute-intensive problems, to addressing global-scale scientific projects, connecting businesses

across the supply chain, and becoming a World Wide Grid integrated in our daily routine activities. This book

tells the story of great potential, continued strength, and widespread international penetration of Grid

computing. It overviews latest advances in the field and traces the evolution of selected Grid applications. The

book highlights the international widespread coverage and unveils the future potential of the Grid.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

E. Ostúa, A. Muñoz, P. Ruiz-de-Clavijo, M.J. Bellido, D. Guerrero and A. Millán (2012). Open Development

Platform for Embedded Systems, Grid Computing - Technology and Applications, Widespread Coverage and

New Horizons, Dr. Soha Maad (Ed.), ISBN: 978-953-51-0604-3, InTech, Available from:

http://www.intechopen.com/books/grid-computing-technology-and-applications-widespread-coverage-and-

new-horizons/open-development-platform-for-embedded-systems

© 2012 The Author(s). Licensee IntechOpen. This is an open access article

distributed under the terms of the Creative Commons Attribution 3.0

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.

