
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

CORE Metadata, citation and similar papers at core.ac.uk

Provided by IntechOpen

https://core.ac.uk/display/322415135?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1. Introduction

To continue at the forefront in this fast paced and competitive world, companies have to
be highly adaptable and to suit such transforming needs customized software solutions
play a key role. To support this customization, software systems must provide numerous
configurable options. While this flexibility promotes customizations, it creates many potential
system configurations, which may need extensive quality assurance.

A good strategy to test a software component involves the generation of the whole set of cases
that participate in its operation. While testing only individual values may not be enough,
exhaustive testing of all possible combinations is not always feasible. An alternative technique
to accomplish this goal is called combinatorial testing. Combinatorial testing is a method
that can reduce cost and increase the effectiveness of software testing for many applications.
It is based on constructing economical sized test-suites that provide coverage of the most
prevalent configurations. Covering arrays (CAs) are combinatorial structures which can be
used to represent these test-suites.

A covering array (CA) is a combinatorial object, denoted by CA(N; t, k, v) which can be
described like a matrix with N × k elements, such that every N × t subarray contains all
possible combinations of vt symbols at least once. N represents the rows of the matrix, k
is the number of parameters, which has v possible values and t represents the strength or the
degree of controlled interaction.

To illustrate the CA approach applied to the design of software testing, consider the
Web-based system example shown in Table 1, the example involves four parameters each with
three possible values. A full experimental design (t = 4) should cover 34 = 81 possibilities,
however, if the interaction is relaxed to t = 2 (pair-wise), then the number of possible
combinations is reduced to 9 test cases.

Using Grid Computing for Constructing
Ternary Covering Arrays

Himer Avila-George1, Jose Torres-Jimenez2,
Abel Carrión1 and Vicente Hernández1

1Instituto de Instrumentación para Imagen Molecular (I3M), Centro Mixto CSIC -
Universitat Politècnica de València - CIEMAT, Valencia

2CINVESTAV-Tamaulipas, Information Technology Laboratory, Km. 5.5 Carretera
Victoria-Soto La Marina, Ciudad Victoria, Tamaulipas

1Spain
2Mexico

10

www.intechopen.com

2 Grid Computing

Browser OS DBMS Connections

0 Firefox Windows 7 MySQL ISDN

1 Chromium Ubuntu 10.10 PostgreSQL ADSL

2 Netscape Red Hat 5 MaxDB Cable

Table 1. Parameters of Web-based system example.

Fig. 1 shows the CA corresponding to CA(9; 2, 4, 3); given that its strength and alphabet are
t = 2 and v = 3, respectively, the combinations that must appear at least once in each subset
of size N × 2 are {0, 0}, {0, 1}, {0, 2}, {1, 0}, {1, 1}, {1, 2}, {2, 0}, {2, 1}, {2, 2}.

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 0

0 1 1 1

0 2 2 2

1 0 1 2

1 1 2 0

1 2 0 1

2 0 2 1

2 1 0 2

2 2 1 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

Fig. 1. A combinatorial design, CA(9; 2, 4, 3).

Finally, to make the mapping between the CA and the Web-based system, every possible value
of each parameter in Table 1 is labeled by the row number. Table 2 shows the corresponding
pair-wise test suite; each of its nine experiments is analogous to one row of the CA shown in
Fig. 1.

Experiments

1 Firefox Windows 7 MySQL ISDN

2 Firefox Ubuntu 10.10 PostgreSQL ADSL

3 Firefox Red Hat 5 MaxDB Cable

4 Chromium Windows 7 PostgreSQL Cable

5 Chromium Ubuntu 10.10 MaxDB ISDN

6 Chromium Red Hat 5 MySQL ADSL

7 Netscape Windows 7 MaxDB ADSL

8 Netscape Ubuntu 10.10 MySQL Cable

9 Netscape Red Hat 5 PostgreSQL ISDN

Table 2. Test-suite covering all 2-way interactions, CA(9; 2, 4, 3).

When a CA contains the minimum possible number of rows, it is optimal and its size is called
the Covering Array Number (CAN). The CAN is defined according to

CAN(t, k, v) = min
N∈N

{N : ∃ CA(N; t, k, v)}.

222 Grid Computing – Technology and Applications, Widespread Coverage and New Horizons

www.intechopen.com

Using Grid Computing for Constructing Ternary Covering Arrays 3

The trivial mathematical lower bound for a covering array is vt ≤ CAN(t, k, v), however,
this number is rarely achieved. Therefore determining achievable bounds is one of the main
research lines for CAs. Given the values of t, k, and v, the optimal CA construction problem
(CAC) consists in constructing a CA(N; t, k, v) such that the value of N is minimized.

The construction of CAN(2, k, 2) can be efficiently done according with Kleitman & Spencer
(1973); the same is possible for CA(2, k, v) when the cardinality of the alphabet is v = pn ,
where p is a prime number and n a positive integer value (Bush, 1952). However, in the
general case determining the covering array number is known to be a hard combinatorial
problem (Colbourn, 2004; Lei & Tai, 1998). This means that there is no known efficient
algorithm to find an optimal CA for any level of interaction t or alphabet v. For the values
of t and v that no efficient algorithm is known, we use approximated algorithms to construct
them. Some of these approximated strategies must verify that the matrix they are building is

a CA. If the matrix is of size N × k and the interaction is t, there are (k
t) different combinations

which implies a cost of O(N × (k
t)) for the verification (when the matrix has N ≥ vt rows,

otherwise it will never be a CA and its verification is pointless). For small values of t and v
the verification of CAs is overcame through the use of sequential approaches; however, when
we try to construct CAs of moderate values of t, v and k, the time spent by those approaches is
impractical. This scenario shows the necessity of Grid strategies to construct and verify CAs.

Grid Computing is a technology which allows sharing resources between different
administration domains, in a transparent, efficient and secure way. The resources comprise:
computation hardware (supercomputers or clusters) or storage systems, although it is also
possible to share information sources, such as databases or scientific equipment. So, the
main concept behind the Grid paradigm is to offer a homogeneous and standard interface
for accessing these resources. In that sense, the evolution of Grid Middlewares has enabled
the deployment of Grid e-Science infrastructures delivering large computational and data
storage capabilities. The current infrastructures rely on Globus Toolkit (Globus Alliance,
2011), UNICORE (Almond & Snelling, 1999), GRIA (Surridge et al., 2005) or gLite (gLite,
2011) mainly as core middleware supporting several central services dedicated to: user
management, job metascheduling, data indexing (cataloguing) and information system,
providing consolidated virtual view of the whole or larger parts of the infrastructure. The
availability of hundreds and thousands of processing elements (PEs) and the efficient storage
of Petabyes of data is expanding the knowledge on areas such as particle physics, astronomy,
genetics or software testing. Thus, Grid Computing infrastructures are the cornerstone in the
current scientific research.

In this work is reported the use of Grid Computing by means of the use of the European
production infrastructure provided by the European Grid Infrastructure (EGI) (EGI, 2011)
project. The availability of this kind of computing platforms makes feasible the execution
of computing-intensive applications, such as the construction and verification of CAs. In this
work we focus on the construction of ternary CAs when 5 ≤ k ≤ 100 and 2 ≤ t ≤ 4.

The chapter is structured as follows. First, Section 2 offers a review of the relevant related
work. Then, the algorithm for the verification of CAs is exposed in Section 3. Moreover,
Section 4 details the algorithm for the construction of CAs by using a simulated annealing
algorithm. Next, the Section 5 explains how to parallelize the previous algorithm using
a master-slave approach. Taking the previous parallelization, Section 6 describes how to
develop a Grid implementation of the construction of CAs. The results obtained in the

223Using Grid Computing for Constructing Ternary Covering Arrays

www.intechopen.com

4 Grid Computing

experiments performed in the Grid infrastructure are showed in Section 7. Finally, Section 8
presents the conclusions derived from the research presented in this work.

2. Relevant related work

Because of the importance of the construction of (near) optimal CAs, much research has been
carried out in developing effective methods for construct them. There are several reported
methods for constructing these combinatorial models. Among them are: (a) direct methods,
(b) recursive methods, (c) greedy methods, and d) meta-heuristics methods. In this section we
describe the relevant related work to the construction of CAs.

Direct methods construct CAs in polynomial time and some of them employ graph or
algebraic properties. There exist only some special cases where it is possible to find the
covering array number using polynomial order algorithms. Bush (1952) reported a direct
method for constructing optimal CAs that uses Galois finite fields obtaining all CA(qt; t, q +
1, q) where q is a prime or a prime power and q ≤ t. Rényi (1971) determined sizes of CAs
for the case t = v = 2 when N is even. Kleitman & Spencer (1973) and Katona (1973)
independently determined covering array numbers for all N when t = v = 2. Williams
& Probert (1996) proposed a method for constructing CAs based on algebraic methods and
combinatorial theory. Sherwood (2008) described some algebraic constructions for strength-2
CAs developed from index-1 orthogonal arrays, ordered designs and CAs. Another direct
method that can construct some optimal CAs is named zero-sum (Sherwood, 2011). Zero-sum
leads to CA(vt; t, t + 1, v) for any t > 2; note that the value of degree is in function of the
value of strength. Recently, cyclotomic classes based on Galois finite fields have been shown
to provide examples of binary CAs, and more generally examples are provided by certain
Hadamard matrices (Colbourn & Kéri, 2009).

Recursive methods build larger CAs from smaller ones. Williams (2000) presented a tool
called TConfig to construct CAs. TConfig constructs CAs using recursive functions that
concatenate small CAs to create CAs with a larger number of columns. Moura et al. (2003)
introduced a set of recursive algorithms for constructing CAs based on CAs of small sizes.
Some recursive methods are product constructions (Colbourn & Ling, 2009; Colbourn et al.,
2006; Martirosyan & Colbourn, 2005). Colbourn & Torres-Jimenez (2010) presented a recursive
method to construct CAs using perfect hash families for CAs contruction. The advantage of the
recursive algorithms is that they construct almost minimal arrays for particular cases in a
reasonable time. Their basic disadvantage is a narrow application domain and impossibility
of specifying constraints.

The majority of commercial and open source test data generating tools use greedy algorithms
for CAs construction (AETG (Cohen et al., 1996), TCG (Tung & Aldiwan, 2000), IPOG (Lei
et al., 2007), DDA (Bryce & Colbourn, 2007) and All-Pairs (McDowell, 2011)). AETG
popularized greedy methods that generate one row of a covering array at a time, attempting
to select the best possible next row; since that time, TCG and DDA algorithms have developed
useful variants of this approach. IPOG instead adds a factor (column) at a time, adding rows
as needed to ensure coverage. The greedy algorithms provide the fastest solving method.

A few Grid approaches has been found in the literature. Torres-Jimenez et al. (2004) reported
a mutation-selection algorithm over Grid Computing, for constructing ternary CAs. Younis
et al. (2008) presented a Grid implementation of the modified IPOG algorithm (MIPOG).

224 Grid Computing – Technology and Applications, Widespread Coverage and New Horizons

www.intechopen.com

Using Grid Computing for Constructing Ternary Covering Arrays 5

Calvagna et al. (2009) proposed a solution for executing the reduction algorithm over a set
of Grid resources.

Metaheuristic algorithms are capable of solving a wide range of combinatorial problems
effectively, using generalized heuristics which can be tailored to suit the problem at hand.
Heuristic search algorithms try to solve an optimization problem by the use of heuristics. A
heuristic search is a method of performing a minor modification of a given solution in order
to obtain a different solution.

Some metaheuristic algorithms, such as TS (Tabu Search) (Gonzalez-Hernandez et al., 2010;
Nurmela, 2004), SA (Simulated Annealing) (Cohen et al., 2003; Martinez-Pena et al., 2010;
Torres-Jimenez & Rodriguez-Tello, 2012), GA (Generic Algorithm) and ACA (Ant Colony
Optimization Algorithm) (Shiba et al., 2004) provide an effective way to find approximate
solutions. Indeed, a SA metaheuristic has been applied by Cohen et al. (2003) for constructing
CAs. Their SA implementation starts with a randomly generated initial solution M which
cost E(M) is measured as the number of uncovered t-tuples. A series of iterations is then
carried out to visit the search space according to a neighborhood. At each iteration, a
neighboring solution M′ is generated by changing the value of the element ai,j by a different
legal member of the alphabet in the current solution M. The cost of this iteration is evaluated
as ∆E = E(M′) − E(M). If ∆E is negative or equal to zero, then the neighboring solution
M′ is accepted. Otherwise, it is accepted with probability P(∆E) = e−∆E/Tn , where Tn

is determined by a cooling schedule. In their implementation, Cohen et al. use a simple
linear function Tn = 0.9998Tn−1 with an initial temperature fixed at Ti = 0.20. At each
temperature, 2000 neighboring solutions are generated. The algorithm stops either if a valid
covering array is found, or if no change in the cost of the current solution is observed after 500
trials. The authors justify their choice of these parameter values based on some experimental
tuning. They conclude that their SA implementation is able to produce smaller CAs than
other computational methods, sometimes improving upon algebraic constructions. However,
they also indicate that their SA algorithm fails to match the algebraic constructions for larger
problems, especially when t = 3.

Some of these approximated strategies must verify that the matrix they are building is a CA.

If the matrix is of size N × k and the interaction is t, there are (k
t) different combinations which

implies a cost of O(N × (k
t)) (given that the verification cost per combination is O(N)). For

small values of t and v the verification of CAs is overcame through the use of sequential
approaches; however, when we try to construct CAs of moderate values of t, v and k, the
time spent by those approaches is impractical, for example when t = 5, k = 256, v = 2 there
are 8, 809, 549, 056 different combinations of columns which require days for their verification.
This scenario shows the necessity of grid strategies to solve the verification of CAs.

The next section presents an algorithm for the verification of a given matrix is a CA. The
design of algorithm is presented for its implementation in grid architectures.

3. An algorithm for the verification of covering arrays

In this section we describe a grid approach for the problem of verification of CAs.
See (Avila-George et al., 2010) for more details.

A matrix M of size N × k is a CA(N; t, k, v) i f f every t-tuple contains the set of combination
of symbols described by {0, 1, ..., v − 1}t. We propose a strategy that uses two data structures

225Using Grid Computing for Constructing Ternary Covering Arrays

www.intechopen.com

6 Grid Computing

called P and J, and two injections between the sets of t-tuples and combinations of symbols,
and the set of integer numbers, to verify that M is a CA.

Let C = {c1, c2, ..., c
(k

t)
} be the set of the different t-tuples. A t-tuple ci = {ci,1, ci,2, ..., ci,t}

is formed by t numbers, each number ci,1 denotes a column of matrix M. The set C can be
managed using an injective function f (ci) : C → I between C and the integer numbers, this
function is defined in Eq. 1.

f (ci) =
t

∑
j=1

(

ci,j − 1

i + 1

)

(1)

Now, let W = {w1, w2, ..., wvt} be the set of the different combination of symbols, where
wi ∈ {0, 1, ..., v − 1}t. The injective function g(wi) : W → I is defined as done in Eq. 2. The
function g(wi) is equivalent to the transformation of a v-ary number to the decimal system.

g(wi) =
t

∑
j=1

wi,j · vt−i (2)

The use of the injections represents an efficient method to manipulate the information that
will be stored in the data structures P and J used in the verification process of M as a CA. The

matrix P is of size (k
t)× vt and it counts the number of times that each combination appears

in M in the different t-tuples. Each row of P represents a different t-tuple, while each column
contains a different combination of symbols. The management of the cells pi,j ∈ P is done
through the functions f (ci) and g(wj); while f (ci) retrieves the row related with the t-tuple
ci, the function g(wi) returns the column that corresponds to the combination of symbols wi.
The vector J is of size t and it helps in the enumeration of all the t-tuples ci ∈ C.

Table 3 shows an example of the use of the function g(wj) for the Covering Array CA(9; 2, 4, 3)
(shown in Fig. 1). Column 1 shows the different combination of symbols. Column 2 contains
the operation from which the equivalence is derived. Column 3 presents the integer number
associated with that combination.

W g(wi) I

w1 ={0,0} 0 · 31 + 0 · 30 0

w2 ={0,1} 0 · 31 + 1 · 30 1

w3 ={0,2} 0 · 31 + 2 · 30 2

w4 ={1,0} 1 · 31 + 0 · 30 3

w5 ={1,1} 1 · 31 + 1 · 30 4

w6 ={1,2} 1 · 31 + 2 · 30 5

w7 ={2,0} 2 · 31 + 0 · 30 6

w8 ={2,1} 2 · 31 + 1 · 30 7

w9 ={2,2} 2 · 31 + 2 · 30 8

Table 3. Mapping of the set W to the set of integers using the function g(wj) in CA(9; 2, 4, 3)
shown in Fig. 1.

The matrix P is initialized to zero. The construction of matrix P is direct from the definitions of
f (ci) and g(wj); it counts the number of times that a combination of symbols wj ∈ W appears

226 Grid Computing – Technology and Applications, Widespread Coverage and New Horizons

www.intechopen.com

Using Grid Computing for Constructing Ternary Covering Arrays 7

in each subset of columns corresponding to a t-tuple ci, and increases the value of the cell
p f (ci),g(wj) ∈ P in that number.

Table 4(a) shows the use of injective function f (ci). Table 4(b) presents the matrix P of
CA(9; 2, 4, 3). The different combination of symbols wj ∈ W are in the first rows. The number
appearing in each cell referenced by a pair (ci, wj) is the number of times that combination wj

appears in the set of columns ci of the matrix CA(9; 2, 4, 3).

(a) Applying f (ci).

ci

index t-tuple f (ci)

c1 {1, 2} 0

c2 {1, 3} 1

c3 {1, 4} 3

c4 {2, 3} 2

c5 {2, 4} 4

c6 {3, 4} 5

(b) Matrix P.

g(wj)

f (ci) {0,0} {0,1} {0,2} {1,0} {1,1} {1,2} {2,0} {2,1} {2,2}

0 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

2 1 1 1 1 1 1 1 1 1

3 1 1 1 1 1 1 1 1 1

4 1 1 1 1 1 1 1 1 1

5 1 1 1 1 1 1 1 1 1

Table 4. Example of the matrix P resulting from CA(9; 2, 4, 3) presented in Fig. 1.

In summary, to determine if a matrix M is or not a CA the number of different combination of
symbols per t-tuple is counted using the matrix P. The matrix M will be a CA i f f the matrix
P contains no zero in it.

The grid approach takes as input a matrix M and the parameters N, k, v, t that describe the
CA that M can be. Also, the algorithm requires the sets C and W . The algorithm outputs the
total number of missing combinations in the matrix M to be a CA. The Algorithm 1 shows
the pseudocode of the grid approach for the problem of verification of CAs; particularly, the
algorithm shows the process performed by each core involved in the verification of CAs. The
strategy followed by the algorithm 1 is simple, it involves a block distribution model of the
set of t-tuples. The set C is divided into n blocks, where n is the processors number; the size

of block B is equal to ⌈ C
n ⌉. The block distribution model maintains the simplicity in the code;

this model allows the assignment of each block to a different core such that SA can be applied
to verify the blocks.

Algorithm 1: Grid approach to verify CAs. This algorithm assigns the set of t-tuples C to
size different cores.

Input: A covering array file, the number of processors (size) and the current processor id (rank).

Result: A file with the number of missing combination of symbols.

1 begin
2 readInputFile() /* Read M, N, k, v and t parameters. */

3 B ← ⌈
(k

t)

size
⌉ /* t-tuples per processor. */

4 Kl ← rank · B /* The scalar corresponding to the first t-tuple. */

5 Ku ← (rank + 1) · B − 1 /* The scalar corresponding to the last t-tuple. */

6 Miss ← t_wise(M, N, k, v, t,Kl ,Ku) /* Number of missing t-tuples. */

7 end

227Using Grid Computing for Constructing Ternary Covering Arrays

www.intechopen.com

8 Grid Computing

The t_wise function first counts for each different t-tuple ci the times that a combination wj ∈
W is found in the columns of M corresponding to ci. After that, it calculates the missing
combinations wj ∈ W in ci. Finally, it transforms ci into ci+1, i.e. it determines the next t-tuple
to be evaluated.

The pseudocode for t_wise function is presented in Algorithm 2. For each different t-tuple
(lines 5 to 28) the function performs the following actions: counts the expected number of
times a combination wj appears in the set of columns indicated by J (lines 6 to 14, where the
combination wj is the one appearing in Mn,J , i.e. in row n and t-tuple J); then, the counter
covered is increased in the number of different combinations with a number of repetitions
greater than zero (lines 10 to 12). After that, the function calculates the number of missing
combinations (line 15). The last step of each iteration of the function is the calculation of the
next t-tuple to be analyzed (lines 16 to 27). The function ends when all the t-tuples have been
analyzed (line 5).

Algorithm 2: Function to verify a CA.

Output: Number of missing t-tuples.

1 t_wise(M, N, k, v, t,Kl ,Ku)

2 begin
3 Miss ← 0, iMax ← t − 1, P ← 0
4 J ← getInitialTuple(k, t,Kl)
5 while Jt ≤ k and f (J) ≤ Ku do
6 covered ← 0
7 for n ← 1 to N do
8 Pf (J),g(Mn,J)

← Pf (J),g(Mn,J)
+ 1

9 end for

10 for j ← 1 to vt do
11 if Pf (J),j > 0 then

12 covered ← covered+ 1
13 end if

14 end for

15 Miss ← Miss + vt − covered

/* Calculates the next t-tuple */

16 Jt ← Jt + 1
17 if Jt > k and iMax > 0 then
18 JiMax ← JiMax + 1
19 for i ← iMax + 1 to t do
20 Ji ← Ji−1 + 1
21 end for
22 if JiMax > k − t + iMax then
23 iMax ← iMax − 1
24 else
25 iMax ← t
26 end if

27 end if

28 end while
29 return Miss

30 end

To make the distribution of work, it is necessary to calculate the initial t-tuple f for each core
according to its ID (denoted by rank), where F = rank · B. Therefore it is necessary a method to

228 Grid Computing – Technology and Applications, Widespread Coverage and New Horizons

www.intechopen.com

Using Grid Computing for Constructing Ternary Covering Arrays 9

convert the scalar F to the equivalent t-tuple ci ∈ C. The sequential generation of each t-tuple
ci previous to cF can be a time consuming task. There is where lies the main contribution of
our grid approach; its simplicity is combined with a clever strategy for computing the initial
t-tuple of each block.

We propose the getInitialTuple function as a method that generates cF (see Algorithm 3),
according to a lexicographical, without generating its previous t-tuples ci, where i < F. To
explain the purpose of the getInitialTuple function, lets consider the CA(9; 2, 4, 3) shown in
Fig. 1. This CA has as set C the elements found in column 1 of Table 4(a). The getInitialTuple
function with input k = 4, t = 2, F = 3 must return J = {1, 4}, i.e. the values of the t-tuple c3.
The getInitialTuple function is optimized to find the vector J = {J1, J2, ..., Jt} that corresponds
to F. The value Ji is calculated according to

Ji = min
j≥1

{

∆i ≤
j

∑
l=Ji−1+1

(

k − l

t − i

)

}

where

∆i = F −
i−1

∑
m=1

Jm−1

∑
l=Jm−1+1

(

k − l

t − m

)

and
J0 = 0.

Algorithm 3: Get initial t-tuple to PA.

Input: Parameters k and t; the scalar corresponding to the first t-tuple (Kl).

Output: The initial t-tuple.

1 getInitialTuple (k, t, Kl)
2 begin
3 Θ ← Kl, iK ← 1, iT ← 1

4 kint ← (k−iK
t−iT)

5 for i ← 1 to t do
6 while Θ > kint do
7 Θ ← Θ − kint
8 iK ← iK + 1

9 kint ← (k−iK
t−iT)

10 end while
11 Ji ← iK
12 iK ← iK + 1
13 iT ← iT + 1

14 kint ← (k−iK
t−iT)

15 end for
16 return J

17 end

In summary, the Algorithm 3 only requires the computation of O(t × k) binomials to compute
the n initial t-tuples of the PA. This represents a great improvement in contrast with the naive

approach that would require the generation of all the (k
t) t-tuples, as done in the SA.

The next three sections presents a simulated annealing approach to construct CAs. Section 4
describes in depth the components of our algorithm. Section 5 presents a method to

229Using Grid Computing for Constructing Ternary Covering Arrays

www.intechopen.com

10 Grid Computing

parallelizing our SA algorithm. Section 6 describes how to implement our algorithm on a
grid architecture.

4. An algorithm for the construction of covering arrays using a simulated

annealing technique

Often the solution space of an optimization problem has many local minima. A simple local
search algorithm proceeds by choosing random initial solution and generating a neighbor
from that solution. The neighboring solution is accepted if it is a cost decreasing transition.
Such a simple algorithm has the drawback of often converging to a local minimum. The
simulated annealing algorithm (SA), though by itself it is a local search algorithm, avoids
getting trapped in a local minimum by also accepting cost increasing neighbors with some
probability. SA is a general-purpose stochastic optimization method that has proven to be
an effective tool for approximating globally optimal solutions to many types of NP-hard
combinatorial optimization problems. In this section, we briefly review SA algorithm and
propose an implementation to solve CAC problem.

SA is a randomized local search method based on the simulation of annealing of metal. The
acceptance probability of a trial solution is given by Eq. 3, where T is the temperature of the
system, ∆E is the difference of the costs between the trial and the current solutions (the cost
change due to the perturbation), Eq. 3 means that the trial solution is accepted by nonzero

probability e(−∆E/T) even though the solution deteriorates (uphill move).

(P) =

{

1 i f ∆E < 0

e(−
∆E
T) otherwise

(3)

Uphill moves enable the system to escape from the local minima; without them, the system
would be trapped into a local minimum. Too high of a probability for the occurrence of uphill
moves, however, prevents the system from converging. In SA, the probability is controlled
by temperature in such a manner that at the beginning of the procedure the temperature is
sufficiently high, in which a high probability is available, and as the calculation proceeds the
temperature is gradually decreased, lowering the probability (Jun & Mizuta, 2005).

4.1 Internal representation

The following paragraphs will describe each of the components of the implementation of
our SA. The description is done given the matrix representation of an CA. An CA can be
represented as a matrix M of size N × k, where the columns are the parameters and the rows
are the cases of the test set that is constructed. Each cell mi,j in the array accepts values from

the set {1, 2, ..., vj} where vj is the cardinality of the alphabet of jth column.

4.2 Initial solution

The initial solution M is constructed by generating M as a matrix with maximum Hamming
distance. The Hamming distance d(x, y) between two rows x, y ∈ M is the number of elements
in which they differ. Let ri be a row of the matrix M. To generate a random matrix M of
maximum Hamming distance the following steps are performed:

230 Grid Computing – Technology and Applications, Widespread Coverage and New Horizons

www.intechopen.com

Using Grid Computing for Constructing Ternary Covering Arrays 11

1. Generate the first row r1 at random.

2. Generate two rows c1, c2 at random, which will be candidate rows.

3. Select the candidate row ci that maximizes the Hamming distance according to Eq. 4 and
added to the ith row of the matrix M.

g(ri) =
i−1

∑
s=1

k

∑
v=1

d(ms,v, mi,v), where d(ms,v, mi,v) =

{

1 if ms,v �= mi,v

0 Otherwise
(4)

4. Repeat from step 2 until M is completed.

An example is shown in Fig. 2; the number of symbols different between rows r1 and c1 are
4 and between r2 and c1 are 3 summing up 7. Then, the hamming distance for the candidate
row c1 is 7.

Rows

⎧

⎨

⎩

r1 =
{

2 1 0 1
}

r2 =
{

1 2 0 1
}

c1 =
{

0 2 1 0
}

Distances

⎧

⎨

⎩

d(r1, c1) = 4
d(r2, c1) = 3
g(c1) = 7

Fig. 2. Example of the hamming distance between two rows r1, r2 that are already in the
matrix M and a candidate row c1.

4.3 Evaluations function

The evaluation function E(M) is used to estimate the goodness of a candidate solution.
Previously reported metaheuristic algorithms for constructing CA have commonly evaluated
the quality of a potential solution (covering array) as the number of combination of symbols
missing in the matrix M (Cohen et al., 2003; Nurmela, 2004; Shiba et al., 2004). Then, the
expected solution will be zero missing.

In the proposed SA implementation this evaluation function definition was used. Its

computational complexity is equivalent to O(N(k
t)).

4.4 Neighborhood function

Given that our SA implementation is based on Local Search (LS) then a neighborhood function
must be defined. The main objective of the neighborhood function is to identify the set of
potential solutions which can be reached from the current solution in a LS algorithm. In case
two or more neighborhoods present complementary characteristics, it is then possible and
interesting to create more powerful compound neighborhoods. The advantage of such an
approach is well documented in (Cavique et al., 1999). Following this idea, and based on
the results of our preliminary experimentations, a neighborhood structure composed by two
different functions is proposed for this SA algorithm implementation.

Two neighborhood functions were implemented to guide the local search of our SA algorithm.
The neighborhood function N1(s) makes a random search of a missing t-tuple, then tries by
setting the jth combination of symbols in every row of M. The neighborhood function N2(s)
randomly chooses a position (i, j) of the matrix M and makes all possible changes of symbol.
During the search process a combination of both N1(s) and N2(s) neighborhood functions
is employed by our SA algorithm. The former is applied with probability P, while the latter

231Using Grid Computing for Constructing Ternary Covering Arrays

www.intechopen.com

12 Grid Computing

is employed at an (1 − P) rate. This combined neighborhood function N3(s, x) is defined in
Eq. 5, where x is a random number in the interval [0, 1).

N3(s, x) =

{

N1(s) if x ≤ P
N2(s) if x > P

(5)

In the next section it is presented our parallel simulated annealing approach for solving CAC
problem.

4.5 Cooling schedule

The cooling schedule determines the degree of uphill movement permitted during the search
and is thus critical to the SA algorithm’s performance. The parameters that define a cooling
schedule are: an initial temperature, a final temperature or a stopping criterion, the maximum
number of neighboring solutions that can be generated at each temperature, and a rule for
decrementing the temperature. The literature offers a number of different cooling schedules,
see for instance (Aarts & Van Laarhoven, 1985; Atiqullah, 2004). In our SA implementation
we preferred a geometrical cooling scheme mainly for its simplicity. It starts at an initial
temperature Ti which is decremented at each round by a factor α using the relation Tk =
αTk−1 . For each temperature, the maximum number of visited neighboring solutions is L.
It depends directly on the parameters (N, k and v is the maximum cardinality of M) of the
studied covering array. This is because more moves are required for CAs with alphabets of
greater cardinality.

4.6 Termination condition

The stop criterion for our SA is either when the current temperature reaches Tf , when it ceases
to make progress, or when a valid covering array is found. In the proposed implementation
a lack of progress exists if after φ (frozen factor) consecutive temperature decrements the
best-so-far solution is not improved.

4.7 SA Pseudocode

The Algorithm 4 presents the simulated annealing heuristic as described above. The meaning
of the four functions is obvious: INITIALIZE computes a start solution and initial values of
the parameters T and L; GENERATE selects a solution from the neighborhood of the current
solution, using the neighborhood function N3(s, x); CALCULATE_CONTROL computes a
new value for the parameter T (cooling schedule) and the number of consecutive temperature
decrements with no improvement in the solution.

5. Parallel simulated annealing

In this section we propose a parallel strategy to construct CAs using a simulated annealing
algorithm.

A common approach to parallelizing simulated annealing is to generate several perturbations
in the current solution simultaneously. Some of them, those with small variance, locally
explore the region around the current point, while those with larger variances globally explore
the feasible region. If each process has got different perturbation or move generation, each

232 Grid Computing – Technology and Applications, Widespread Coverage and New Horizons

www.intechopen.com

Using Grid Computing for Constructing Ternary Covering Arrays 13

Algorithm 4: Sequential simulated annealing for the CAC problem

1 INITIALIZE(M, T, L) ; /* Create the initial solution. */

2 M⋆ ← M ; /* Memorize the best solution. */

3 repeat
4 for i ← 1 to L do
5 Mi ← GENERATE(M) ; /* Perturb current state. */

6 ∆E ← E(Mi)− E(M) ; /* Evaluate cost function. */

7 x ← random ; /* Range [0,1). */

8 if ∆E < 0 or e(−
∆E
T)

> x then
9 M ← Mi ; /* Accept new state. */

10 if E(M) < E(M⋆) then
11 M⋆ ← M ; /* Memorize the best solution. */

12 end if

13 end if

14 end for
15 CALCULATE_CONTROL(T, φ)

16 until termination condition is satisfied;

process will probably get a different solution at the end of iterations. This approach may be
described as follows:

1. The master node set T = T0, generates an initial_solution using the Hamming distance
algorithm (See Section 4.2) and distributes them to each workers.

2. At the current temperature T, each worker begins to execute iterative operations (L).

3. At the end of iterations, the master is responsible for collecting the solution obtained by
each process at current temperature and broadcasts the best solution of them among all
participating processes.

4. If the termination condition is not met, each process reduces the temperature and goes
back to step 2, else algorithm terminates.

Algorithm 5 shows the pseudocode for master node. The function INITIALIZE computes
a start solution (using Hamming distances algorithm) and initial values of the parameters
T and L. The master node distributes the initial parameters to slave nodes, and awaits the
results. Each L iterations, the slaves send their results to the master node (See Algorithm 6).
The master node selects the best solution. If the termination criterion is not satisfied, the
master node computes a new value for the parameter T (cooling schedule) and the number of
consecutive temperature decrements with no improvement in the solution.

Algorithm 5: Simulated annealing for the master node

1 INITIALIZE(M, T, L) ; /* Create the initial solution. */

2 M⋆ ← M ; /* Memorize the best solution. */

3 repeat
4 M ← annealing_worker(M⋆, T, L) ; /* Call workers */

5 if E(M) < E(M⋆) then
6 M⋆ ← M ; /* Memorize the best solution. */

7 end if
8 CALCULATE_CONTROL(T, φ)

9 until termination condition is satisfied;

233Using Grid Computing for Constructing Ternary Covering Arrays

www.intechopen.com

14 Grid Computing

Algorithm 6: Worker algorithm

Input: best_solution, Temperature (T) and the number of perturbations (L).

Output: best_local_solution.

1 annealing_worker(M, T, L)
2 for i ← 1 to L do
3 Mi ← GENERATE(M) /* Perturb current state. */

4 ∆E ← E(Mi)− E(M) /* Evaluate cost function. */

5 x ← random /* Range [0,1). */

6 if ∆E < 0 or e(−
∆E
T)

> x then
7 M ← Mi /* Accept new state. */

8 end if

9 end for
10 return M

6. Grid Computing approach

Simulated annealing (SA) is inherently sequential and hence very slow for problems with
large search spaces. Several attempts have been made to speed up this process, such as
development of special purpose computer architectures (Ram et al., 1996). As an alternative,
we propose a Grid deployment of the parallel SA algorithm for constructing CAs, introduced
in the previous section. In order to fully understand the Grid implementation developed in
this work, this subsection will introduce all the details regarding the Grid Computing Platform
used and then, the different execution strategies will be exposed.

6.1 Grid Computing Platform

The evolution of Grid Middlewares has enabled the deployment of Grid e-Science
infrastructures delivering large computational and data storage capabilities. Current
infrastructures, such as the one used in this work, EGI, rely on gLite mainly as core
middleware supporting several services in some cases. World-wide initiatives such as EGI,
aim at linking and sharing components and resources from several European NGIs (National
Grid Initiatives).

In the EGI infrastructure, jobs are specified through a job description language (Pacini, 2001) or
JDL that defines the main components of a job: executable, input data, output data, arguments
and restrictions. The restrictions define the features a resource should provide, and could be
used for meta-scheduling or for local scheduling (such as in the case of MPI jobs). Input data
could be small or large and job-specific or common to all jobs, which affects the protocols and
mechanisms needed. Executables are either compiled or multiplatform codes (scripts, Java,
Perl) and output data suffer from similar considerations as input data.

The key resources in the EGI infrastructure are extensively listed in the literature, and can be
summarized as:

1. WMS / RB (Workload Management System / Resource Broker): Meta-scheduler that
coordinates the submission and monitoring of jobs.

2. CE (Computing Elements): The access point to a farm of identical computing nodes,
which contains the LRMS (Local Resource Management System). The LRMS is responsible
for scheduling the jobs submitted to the CE, allocating the execution of a job in one

234 Grid Computing – Technology and Applications, Widespread Coverage and New Horizons

www.intechopen.com

Using Grid Computing for Constructing Ternary Covering Arrays 15

(sequential) or more (parallel) computing nodes. In the case that no free computing nodes
are available, jobs are queued. Thus, the load of a CE must be considered when estimating
the turnaround of a job.

3. WN (Working Nodes): Each one of the computing resources accessible through a CE. Due
to the heterogeneous nature of Grid infrastructure, the response time of a job will depend
on the characteristics of the WN hosting it.

4. SE (Storage Element): Storage resources in which a task can store long-living data to be
used by the computers of the Grid. This practice is necessary due to the size limitation
imposed by current Grid Middlewares in the job file attachment (10 Megabytes in the gLite
case). So, use cases which require the access to files which exceed that limitation are forced
to use these Storage Elements. Nevertheless, the construction of CAs is not a data-intensive
use case and thus the use of SEs can be avoided.

5. LFC (Logic File Catalog): A hierarchical directory of logical names referencing a set of
physical files and replicas stored in the SEs.

6. BDII (Berkley Database Information System): Service point for the Information System
which registers, through LDAP, the status of the Grid. Useful information relative to CEs,
WNs and SEs can be obtained by querying this element.

7. R-GMA (Relational Grid Monitoring Architecture). Service for the registration and
notification of information in most of the EGI services.

8. VOMS (Virtual Organisation Management System). Authorization infrastructure to define
the access rights to resources.

Some of this terms will be referenced along the following sections.

6.2 Preprocessing task: Selecting the most appropriate CEs

A production infrastructure such as EGI involves tens of thousands of resources from
hundreds of sites, involving tens of countries and a large human team. Since it is a
general-purpose platform, and although there is a common middleware and a recommended
operating system, the heterogeneity in the configuration and operation of the resources is
inevitable. This heterogeneity, along with other social and human factors such as the large
geographical coverage and the different skills of operators introduces a significant degree of
uncertainty in the infrastructure. Even considering that the service level required is around
95%, it is statistically likely to find in each large execution sites that are not working properly.
Thus, prior to beginning the experiments, it is necessary to do empirical tests to define a group
of valid computing resources (CEs) and this way facing resource setup problems. These tests
can give some real information like computational speed, primary and secondary memory
sizes and I/O transfer speed. These data, in case there are huge quantities of resources, will
be helpful to establish quality criteria choosing resources.

6.3 Asynchronous schema

Once the computing elements, where the jobs will be submitted, have been selected, the next
step involves correctly specifying the jobs. In that sense, it will be necessary to produce the
specification using the job description language in gLite. An example of a JDL file can be seen
in the Fig. 3.

235Using Grid Computing for Constructing Ternary Covering Arrays

www.intechopen.com

16 Grid Computing

Type = " J o b " ;
V i r t u a l O r g a n i s a t i o n = " biomed " ;
E x e c u t a b l e = " t e s t . sh " ;
Arguments = "16 21 3 2 " ;
StdOutput = " s t d . out " ;
Std Error = " s t d . e r r " ;
Inp utSand box = { " / home / CA_experiment / gridCA . c " , " / home / CA_experiment / N16k21v3t2 . ca " , " / home / CA_experiment / t e s t . sh " } ;
OutputSandbox = {" s t d . out " ," s t d . e r r " ," N16k21v3t2 . ca " } ;

Fig. 3. JDL example for the case of N = 16, k = 21, v = 3, t = 2.

As it can be seen in Fig. 3, the specification of the job includes: the virtual organisation where
the job will be launched (VirtualOrganisation), the main file that will start the execution of the
job (Executable), the arguments that will used for invoking the executable (Arguments), the
files in which the standard outputs will be dumped (StdOutput y StdError), and finally the
result files that will be returned to the user interface (OutputSandBox).

So, the most important part of the execution lies in the program (a shell-script) specified
in the Executable field of the description file. The use of a shell-script instead of directly
using the executable (gridCA) is mandatory due to the heterogeneous nature present in the
Grid. Although the conditions vary between different resources, as it was said before, the
administrators of the sites are recommended to install Unix-like operative systems. This
measure makes sure that all the developed programs will be seamlessly executed in any
machine of the Grid infrastructure. The source code must be dynamically compiled in each of
the computing resources hosting the jobs. Thus, basically, the shell-script works like a wrapper
that looks for a gcc-like compiler (the source code is written in the C language), compiles the
source code and finally invokes the executable with the proper arguments (values of N, k, v
and t respectively).

One of the most crucial parts of any Grid deployment is the development of an automatic
system for controlling and monitoring the evolution of an experiment. Basically, the system
will be in charge of submitting the different gLite jobs (the number of jobs is equal to the value
of the parameter N), monitoring the status of these jobs, resubmitting (in case a job has failed
or it has been successfully completed but the SA algorithm has not already converged) and
retrieving the results. This automatic system has been implemented as a master process which
periodically (or asynchronously as the name of the schema suggests) oversees the status of the
jobs.

This system must possess the following properties: completeness, correctness, quick
performance and efficiency on the usage of the resources. Regarding the completeness, we
have take into account that an experiment will involve a lot of jobs and it must be ensured that
all jobs are successfully completed at the end. The correctness implies that there should be a
guarantee that all jobs produce correct results which are comprehensive presented to the user
and that the data used is properly updated and coherent during the whole experiment (the
master must correctly update the file with the .ca extension showed in the JDL specification
in order the Simulated Annealing algorithm to converge). The quick performance property
implies that the experiment will finish as quickly as possible. In that sense, the key aspects
are: a good selection of the resources that will host the jobs (according to the empirical tests
performed in the preprocessing stage) and an adequate resubmission policy (sending new
jobs to the resources that are being more productive during the execution of the experiment).
Finally, if the on-the-fly tracking of the most productive computing resources is correctly done,
the efficiency in the usage of the resources will be achieved.

236 Grid Computing – Technology and Applications, Widespread Coverage and New Horizons

www.intechopen.com

Using Grid Computing for Constructing Ternary Covering Arrays 17

Due to the asynchronous behavior of this schema, the number of slaves (jobs) that can be
submitted (the maximum size of N) is only limited by the infrastructure. However, other
schemas such as the one showed in the next point, could achieve a better performance in
certain scenarios.

6.4 Synchronous schema

This schema a sophisticated mechanism known, in Grid terminology, as submission of pilot
jobs. The submission of pilot jobs is based on the master-worker architecture and supported
by the DIANE (DIANE, 2011) + Ganga (Moscicki et al., 2009) tools. When the processing
begins a master process (a server) is started locally, which will provide tasks to the worker
nodes until all the tasks have been completed, being then dismissed. On the other side, the
worker agents are jobs running on the Working Nodes of the Grid which communicate with
the master. The master must keep track of the tasks to assure that all of them are successfully
completed while workers provide the access to a CPU previously reached through scheduling,
which will process the tasks. If, for any reason a task fails or a worker losses contact with the
master, the master will immediately reassign the task to another worker. The whole process
is exposed in Fig. 4. So, in contrast to the asynchronous schema, in this case the master is
continuously in contact with the slaves.

Fig. 4. Pilot jobs schema offered by DIANE-Ganga.

However, before initiating the process or execution of the master/worker jobs, it is necessary
to define their characteristics. Firstly, the specification of a run must include the master
configuration (workers and heartbeat timeout). It is also necessary to establish master
scheduling policies such as the maximum number of times that a lost or failed task is assigned
to a worker; the reaction when a task is lost or fails; and the number of resubmissions before
a worker is removed. Finally, the master must know the arguments of the tasks and the files
shared by all tasks (executable and any auxiliary files).

237Using Grid Computing for Constructing Ternary Covering Arrays

www.intechopen.com

18 Grid Computing

At this point, the master can be started using the specification described above. Upon
checking that all is right, the master will wait for incoming connections from the workers.

Workers are generic jobs that can perform any operation requested by the master which are
submitted to the Grid. In addition, these workers must be submitted to the selected CEs in
the pre-processing stage. When a worker registers to the master, the master will automatically
assign it a task.

This schema has several advantages derived from the fact that a worker can execute more than
one task. Only when a worker has successfully completed a task the master will reassign it a
new one. In addition, when a worker demands a new task it is not necessary to submit a new
job. This way, the queuing time of the task is intensively reduced. Moreover, the dynamic
behavior of this schema allows achieving better performance results, in comparison to the
asynchronous schema.

However, there are also some disadvantages that must be mentioned. The first issue refers
to the unidirectional connectivity between the master host and the worker hosts (Grid
node). While the master host needs inbound connectivity, the worker node needs outbound
connectivity. The connectivity problem in the master can be solved easily by opening a port
in the local host; however the connectivity in the worker will rely in the remote system
configuration (the CE). So, in this case, this extra detail must be taken into account when
selecting the computing resources. Another issue is defining an adequate timeout value.
If, for some reason, a task working correctly suffers from temporary connection problems
and exceeds the timeout threshold it will cause the worker being removed by the master.
Finally, a key factor will be to identify the rightmost number of worker agents and tasks.
In addition, if the number of workers is on the order of thousands (i.e. when N is about
1000) bottlenecks could be met, resulting on the master being overwhelmed by the excessive
number of connections.

7. Experimental results

This section presents an experimental design and results derived from testing the approach
described in the section 6. In order to show the performance of the SA algorithm,
two experiments were developed. The first experiment had as purpose to fine tune the
probabilities of the neighborhood functions to be selected. The second experiment evaluated
the performance of SA over a new benchmark proposed in this chapter. The results
were compared against two of the well-known tools in the literature that constructs CAs,
the TConfig1 (recursive constructions) and ACTS2 (a greedy algorithm named IPOG-F)
respectively.

In all the experiments the following parameters were used for our SA implementation:

1. Initial temperature Ti = 4.0

2. Final temperature Tf = 1.0E − 10

3. Cooling factor α = 0.99

4. Maximum neighboring solutions per temperature L = (N × k × v)2

1 TConfig: http://www.site.uottawa.ca/~awilliam/TConfig.jar
2 ACTS: http://csrc.nist.gov/groups/SNS/acts/index.html

238 Grid Computing – Technology and Applications, Widespread Coverage and New Horizons

www.intechopen.com

Using Grid Computing for Constructing Ternary Covering Arrays 19

5. Frozen factor φ = 11

6. According to the results shown in section 7.1, the neighborhood function N3(s, x) is
applied using a probability P = 0.3

Moreover, the characteristics of the Grid infrastructure employed for carrying the experiments
are:

1. Infrastructure’s name: EGI (European Grid infrastructure)

2. Virtual Organisation: biomed

3. Middleware: gLite

4. Total number of WNs available: 281.530

7.1 Fine tuning the probability of execution of the neighborhood functions

It is well-known that the performance of a SA algorithm is sensitive to parameter tuning. In
this sense, we follow a methodology for a fine tuning of the two neighborhood functions used
in our SA algorithm. The fine tuning was based on the next linear Diophantine equation,

P1x1 + P2x2 = q

where xi represents a neighborhood function and its value set to 1, Pi is a value in
{0.0, 0.1, .., 1.0} that represents the probability of executing xi , and q is set to 1.0 which is
the maximum probability of executing any xi . A solution to the given linear Diophantine
equation must satisfy

2

∑
i=1

Pixi = 1.0

This equation has 11 solutions, each solution is an experiment that test the degree of
participation of each neighborhood function in our SA implementation to accomplish the
construction of an CA. Every combination of the probabilities was applied by SA to construct
the set of CAs shows in Table 5(a) and each experiment was run 31 times, with the data
obtained for each experiment we calculate the median. A summary of the performance of
SA with the probabilities that solved the 100% of the runs is shown in Table 5(b).

Finally, given the results shown in Fig. 5 the best configuration of probabilities was P1 = 0.3
and P2 = 0.7 because it found the CAs in smaller time (median value). The values P1 = 0.3
and P2 = 0.7 were kept fixed in the second experiment.

In the next subsection, we will present more computational results obtained from a
performance comparison carried out among our SA algorithm, a well-known greedy
algorithm (IPOG_F) and a tool named TConfig that constructs CAs using recursive functions.

7.2 Comparing SA with the state-of-the-art algorithms

For the second of our experiments we have obtained the ACTS and TConfig software. We
create a new benchmark composed by 60 ternary CAs instances where 5 ≤ k ≤ 100 and
2 ≤ t ≤ 4.

The SA implementation reported by (Cohen et al., 2003) for solving the CAC problem was
intentionally omitted from this comparison because as their authors recognize this algorithm
fails to produce competitive results when the strength of the arrays is t ≥ 3.

239Using Grid Computing for Constructing Ternary Covering Arrays

www.intechopen.com

20 Grid Computing

(a)

Id CA description

ca1 CA(19; 2, 30, 3)

ca2 CA(35; 3, 5, 3)

ca3 CA(58; 3, 10, 3)

ca4 CA(86; 4, 5, 3)

ca5 CA(204; 4, 10, 3)

ca6 CA(243; 5, 5, 3)

ca7 CA(1040; 5, 15, 3)

(b)

p1 p2 ca1 ca2 ca3 ca4 ca5 ca6 ca7

0 1 4789.763 3.072 46.989 12.544 3700.038 167.901 0.102

0.1 0.9 1024.635 0.098 0.299 0.236 344.341 3.583 0.008

0.2 0.8 182.479 0.254 0.184 0.241 173.752 1.904 0.016

0.3 0.7 224.786 0.137 0.119 0.222 42.950 1.713 0.020

0.4 0.6 563.857 0.177 0.123 0.186 92.616 3.351 0.020

0.5 0.5 378.399 0.115 0.233 0.260 40.443 1.258 0.035

0.6 0.4 272.056 0.153 0.136 0.178 69.311 2.524 0.033

0.7 0.3 651.585 0.124 0.188 0.238 94.553 2.127 0.033

0.8 0.2 103.399 0.156 0.267 0.314 81.611 5.469 0.042

0.9 0.1 131.483 0.274 0.353 0.549 76.379 4.967 0.110

1 0 7623.546 15.905 18.285 23.927 1507.369 289.104 2.297

Table 5. (a) A set of 7 CAs configurations; (b) Performance of SA with the 11 combinations of
probabilities which solved the 100% of the runs to construct the CAs listed in (a).

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

[0.0,1.0] [0.1,0.9] [0.2,0.8] [0.3,0.7] [0.4,0.6] [0.5,0.5] [0.6,0.4] [0.7,0.3] [0.8,0.2] [0.9,0.1] [1.0,0.0]
 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

B
e
s
t

ti
m

e
s

P

ca1 ca2 ca3 ca4 ca5 ca6 ca7

Fig. 5. Performance of our SA with the 11 combinations of probabilities.

The results from this experiment are summarized in Table 6, which presents in the first two
columns the strength t and the degree k of the selected benchmark instances. The best size N
found by the TConfig tool, IPOG-F algorithm and our SA algorithm are listed in columns 3, 4
and 5 respectively. Next, Fig. 6 compares the results shown in Table 6.

From Table 6 and Fig. 6 we can observe that our SA algorithm gets solutions of better quality
than the other two tools. Finally, each of the 60 ternary CAs constructed by our SA algorithm
have been verified by the algorithm described in Section 3 . In order to minimize the execution
time required by our SA algorithm, the following rule has been applied when choosing the

240 Grid Computing – Technology and Applications, Widespread Coverage and New Horizons

www.intechopen.com

Using Grid Computing for Constructing Ternary Covering Arrays 21

rightmost Grid execution schema: experiments involving a value of the parameter N equal
or less than 500 have been executed with the synchronous schema while the rest have been
performed using the asynchronous schema.

(a) CAN(2, k, 3)

t k TConfig IPOG-F Our SA

5 15 13 11
10 15 19 14
15 17 20 15
20 21 21 15
25 21 21 17
30 21 23 18
35 21 23 19
40 21 24 20
45 23 25 20

2 50 25 26 21
55 25 26 21
60 25 27 21
65 27 27 21
70 27 27 21
75 27 28 21
80 27 29 21
85 27 29 21
90 27 30 21
95 27 30 22
100 27 30 22

(b) CAN(3, k, 3)

t k TConfig IPOG-F Our

5 40 42 33
10 68 66 45
15 83 80 57
20 94 92 59
25 102 98 72
30 111 106 87
35 117 111 89
40 123 118 89
45 130 121 90

3 50 134 126 101
55 140 131 101
60 144 134 104
65 147 138 120
70 150 141 120
75 153 144 120
80 155 147 129
85 158 150 130
90 161 154 130
95 165 157 132
100 167 159 133

(c) CAN(4, k, 3)

t k TConfig IPOG-F Our

5 115 98 81
10 241 228 165
15 325 302 280
20 383 358 330
25 432 405 400
30 466 446 424
35 518 479 475
40 540 513 510
45 572 533 530

4 50 581 559 528
55 606 581 545
60 621 596 564
65 639 617 581
70 657 634 597
75 671 648 610
80 687 663 624
85 699 678 635
90 711 690 649
95 723 701 660
100 733 714 669

Table 6. Comparison among TConfig, IPOG-F and our SA to construct ternary CAs when
5 ≤ k ≤ 100 and 2 ≤ t ≤ 4.

241Using Grid Computing for Constructing Ternary Covering Arrays

www.intechopen.com

22 Grid Computing

 5

 10

 15

 20

 25

 30

 35

 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
 5

 10

 15

 20

 25

 30

 35

N

Test Cases

TConfig
IPOG−F
Our SA

(a) CAN(2, k, 3)

 40

 60

 80

 100

 120

 140

 160

 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

N

Test Cases

TConfig
IPOG−F
Our SA

(b) CAN(3, k, 3)

 100

 200

 300

 400

 500

 600

 700

 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

N

Test Cases

TConfig
IPOG−F
Our SA

(c) CAN(4, k, 3)

Fig. 6. Graphical comparison of the performance among TConfig, IPOG-F and our SA to
construct ternary CAs when 5 ≤ k ≤ 100 and 2 ≤ t ≤ 4.

8. Conclusions

In large problem domains, testing is limited by cost. Every test adds to the cost, so CAs are an
attractive option for testing.

Simulated annealing (SA) is a general-purpose stochastic optimization method that has
proven to be an effective tool for approximating globally optimal solutions to many types
of NP-hard combinatorial optimization problems. But, the sequential implementation
of SA algorithm has a slow convergence that can be improved using Grid or parallel
implementations

This work focused on constructing ternary CAs with a new approach of SA, which integrates
three key features that importantly determines its performance:

1. An efficient method to generate initial solutions with maximum Hamming distance.

2. A carefully designed composed neighborhood function which allows the search to quickly
reduce the total cost of candidate solutions, while avoiding to get stuck on some local
minimal.

3. An effective cooling schedule allowing our SA algorithm to converge faster, producing at
the same time good quality solutions.

242 Grid Computing – Technology and Applications, Widespread Coverage and New Horizons

www.intechopen.com

Using Grid Computing for Constructing Ternary Covering Arrays 23

The empirical evidence presented in this work showed that SA improved the size of many
CAs in comparison with the tools that are among the best found in the state-of-the-art of the
construction of CAs.

To make up for the time the algorithm takes to converge, we proposed an implementation of
our SA algorithm for Grid Computing. The main conclusion extracted from this point was the
possibility of using two different schemas (asynchronous and synchronous) depending on the
size of the experiment. On the one hand, the synchronous schema achieves better performance
but is limited by the maximum number of slave connections that the master can keep track of.
On the other hand, the asynchronous schema is slower but experiments with a huge value of
N can be seamlessly performed.

As future work, we aim to extend the experiment where 100 ≤ k ≤ 20000 and 2 ≤ t ≤ 12, and
compare our results against the best upper bounds found in the literature (Colbourn, 2011).

Finally, the new CAs are available in CINVESTAV Covering Array Repository (CAR), which
is available under request at http://www.tamps.cinvestav.mx/~jtj/CA.php.

9. Acknowledgments

The authors thankfully acknowledge the computer resources and assistance provided by
Spanish Supercomputing Network (TIRANT-UV). This research work was partially funded
by the following projects: CONACyT 58554, Calculo de Covering Arrays; 51623 Fondo Mixto
CONACyT y Gobierno del Estado de Tamaulipas.

10. References

Aarts, E. H. L. & Van Laarhoven, P. J. M. (1985). Statistical Cooling: A General Approach to
Combinatorial Optimization Problems, Philips Journal of Research 40: 193–226.

Almond, J. & Snelling, D. (1999). Unicore: Uniform access to supercomputing as an element
of electronic commerce, Future Generation Computer Systems 613: 1–10. http://dx.
doi.org/10.1016/S0167-739X(99)00007-2.

Atiqullah, M. (2004). An efficient simple cooling schedule for simulated annealing, Proceedings
of the International Conference on Computational Science and its Applications - ICCSA
2004, Vol. 3045 of Lecture Notes in Computer Science, Springer-Verlag, pp. 396–404.
http://dx.doi.org/10.1007/978-3-540-24767-8_41.

Avila-George, H., Torres-Jimenez, J., Hernández, V. & Rangel-Valdez, N. (2010). Verification
of general and cyclic covering arrays using grid computing, Proceedings of the Third
international conference on Data management in grid and peer-to-peer systems - GLOBE
2010, Vol. 6265 of Lecture Notes in Computer Science, Springer-Verlag, pp. 112–123.
http://dx.doi.org/10.1007/978-3-642-15108-8_10.

Bryce, R. C. & Colbourn, C. J. (2007). The density algorithm for pairwise interaction testing,
Softw Test Verif Rel 17(3): 159–182. http://dx.doi.org/10.1002/stvr.365.

Bush, K. A. (1952). Orthogonal arrays of index unity, Ann Math Stat 23(3): 426–434. http://
dx.doi.org/10.1214/aoms/1177729387.

Calvagna, A., Gargantini, A. & Tramontana, E. (2009). Building T-wise Combinatorial
Interaction Test Suites by Means of Grid Computing, Proceedings of the 18th IEEE
International Workshops on Enabling Technologies: Infrastructures for Collaborative
Enterprises - WETICE 2009, IEEE Computer Society, pp. 213–218. http://dx.doi.
org/10.1109/WETICE.2009.52.

243Using Grid Computing for Constructing Ternary Covering Arrays

www.intechopen.com

24 Grid Computing

Cavique, L., Rego, C. & Themido, I. (1999). Subgraph ejection chains and tabu
search for the crew scheduling problem, The Journal of the Operational Research
Society 50(6): 608–616. http://www.ingentaconnect.com/content/pal/

01605682/1999/00000050/00000006/2600728.
Cohen, D. M., Dalal, S. R., Parelius, J. & Patton, G. C. (1996). The combinatorial design

approach to automatic test generation, IEEE Software 13(5): 83–88. http://dx.doi.
org/10.1109/52.536462.

Cohen, M. B., Colbourn, C. J. & Ling, A. C. H. (2003). Augmenting simulated annealing to
build interaction test suites, Proceedings of the 14th International Symposium on Software
Reliability Engineering - ISSRE 2003, IEEE Computer Society, pp. 394–405. http://
dx.doi.org/10.1109/ISSRE.2003.1251061.

Colbourn, C. (2004). Combinatorial aspects of covering arrays, Le Matematiche 58: 121–167.
Colbourn, C. J. (2011). Covering array tables for t=2,3,4,5,6. Accessed on April 20, 2011.

URL: http://www.public.asu.edu/ ccolbou/src/tabby/catable.html
Colbourn, C. J. & Kéri, G. (2009). Binary covering arrays and existentially closed graphs,

Proceedings of the 2nd International Workshop on Coding and Cryptology - IWCC 2009,
Vol. 5557 of Lecture Notes in Computer Science, Springer-Verlag, pp. 22–33. http://
dx.doi.org/10.1007/978-3-642-01877-0_3.

Colbourn, C. J. & Ling, A. C. H. (2009). A recursive construction for perfect hash families,
Journal of Mathematical Cryptology 3(4): 291–306. http://dx.doi.org/10.1515/

JMC.2009.018.
Colbourn, C. J., Martirosyan, S. S., Mullen, G. L., Shasha, D., Sherwood, G. B. & Yucas,

J. L. (2006). Products of mixed covering arrays of strength two, J. Combin. Designs
12(2): 124–138. http://dx.doi.org/10.1002/jcd.20065.

Colbourn, C. J. & Torres-Jimenez, J. (2010). Error-Correcting Codes, Finite Geometries
and Cryptography. Chapter: Heterogeneous Hash Families and Covering Arrays,
Contemporary Mathematics 523: 3–15. ISBN-10 0-8218-4956-5.

DIANE (2011). Distributed analysis environment. Accessed on June 6, 2011.
URL: http://it-proj-diane.web.cern.ch/it-proj-diane/

EGI (2011). European grid initiative. Accessed on September 6, 2011.
URL: http://www.egi.eu/

gLite (2011). Lightweight middleware for grid computing. Accessed on June 6, 2011.
URL: http://glite.cern.ch/

Globus Alliance (2011). Globus toolkit. Accessed on May 21, 2011.
URL: http://www.globus.org/toolkit/

Gonzalez-Hernandez, L., Rangel-Valdez, N. & Torres-Jimenez, J. (2010). Construction of
mixed covering arrays of variable strength using a tabu search approach, Proceedings
of the 4th international conference on Combinatorial optimization and applications - COCOA
2010, Vol. 6508 of Lecture Notes in Computer Science, Springer-Verlag, pp. 51–64.
http://dx.doi.org/10.1007/978-3-642-17458-2_6.

Jun, Y. & Mizuta, S. (2005). Detailed analysis of uphill moves in temperature parallel
simulated annealing and enhancement of exchange probabilities, Complex Systems
15(4): 349–358.
URL: http://www.complexsystems.com/abstracts/v15_i04_a04.html

Katona, G. O. H. (1973). Two applications (for search theory and truth functions) of sperner
type theorems, Periodica Math. 3(1-2): 19–26. http://dx.doi.org/10.1007/

BF02018457.

244 Grid Computing – Technology and Applications, Widespread Coverage and New Horizons

www.intechopen.com

Using Grid Computing for Constructing Ternary Covering Arrays 25

Kleitman, D. J. & Spencer, J. (1973). Families of k-independent sets, Discrete Math 6(3): 255–262.
http://dx.doi.org/10.1016/0012-365X(73)90098-8.

Lei, Y., Kacker, R., Kuhn, D. R., Okun, V. & Lawrence, J. (2007). IPOG: A general strategy for
t-way software testing, Proceedings of the 14th Annual IEEE International Conference and
Workshops on the Engineering of Computer-Based Systems - ECBS 2007, IEEE Computer
Society, pp. 549–556. http://dx.doi.org/10.1109/ECBS.2007.47.

Lei, Y. & Tai, K.-C. (1998). In-parameter-order: A test generation strategy for pairwise
testing, Proceedings of the 3rd IEEE International Symposium on High-Assurance Systems
Engineering - HASE 1998, IEEE Computer Society, pp. 254–261.

Martinez-Pena, J., Torres-Jimenez, J., Rangel-Valdez, N. & Avila-George, H. (2010). A heuristic
approach for constructing ternary covering arrays using trinomial coefficients,
Proceedings of the 12th Ibero-American Conference on Artificial Intelligence - IBERAMIA
2010, Vol. 6433 of Lecture Notes in Computer Science, Springer-Verlag, pp. 572–581.
http://dx.doi.org/10.1007/978-3-642-16952-6_58.

Martirosyan, S. S. & Colbourn, C. J. (2005). Recursive constructions of covering arrays,
Bayreuth. Math. Schr. 74: 266–275.

McDowell, A. G. (2011). All-pairs testing. Accessed on June 21, 2011.
URL: http://www.mcdowella.demon.co.uk/allPairs.html

Moscicki, J., Brochu, F., Ebke, J., Egede, U., Elmsheuser, J., Harrison, K., Jones, R., Lee, H.,
Liko, D., Maier, A., Muraru, A., Patrick, G., Pajchel, K., Reece, W., Samset, B., Slater,
M., Soroko, A., Tan, C., van der Ster, D. & Williams, M. (2009). Ganga: A tool
for computational-task management and easy access to grid resources, Comput Phys
Commun 180(11): 2303–2316. http://dx.doi.org/10.1016/j.cpc.2009.06.

016.
Moura, L., Stardom, J., Stevens, B. & Williams, A. (2003). Covering arrays with mixed alphabet

sizes, Journal of Combinatorial Designs 11(6): 413–432. http://dx.doi.org/10.

1002/jcd.10059.
Nurmela, K. J. (2004). Upper bounds for covering arrays by tabu search, Discrete Appl. Math.

138: 143–152. http://dx.doi.org/10.1016/S0166-218X(03)00291-9.
Pacini, F. (2001). Job description language howto. Accessed on October 10, 2011.

URL: http://server11.infn.it/workload-grid/docs/DataGrid01TEN01020_2-Document.pdf
Ram, D. J., Sreenivas, T. H. & Subramaniam, K. G. (1996). Parallel simulated annealing

algorithms., Journal of Parallel and Distributed Computing 37(2): 207–212.
Rényi, A. (1971). Foundations of Probability, John Wiley & Sons, New York, USA.
Sherwood, G. (2011). On the construction of orthogonal arrays and covering arrays using

permutation groups. Accessed on June 20, 2011.
URL: http://testcover.com/pub/background/cover.htm

Sherwood, G. B. (2008). Optimal and near-optimal mixed covering arrays by column
expansion, Discrete Mathematics 308(24): 6022 – 6035. http://dx.doi.org/10.

1016/j.disc.2007.11.021.
Shiba, T., Tsuchiya, T. & Kikuno, T. (2004). Using artificial life techniques to generate test

cases for combinatorial testing, Proceedings of the 28th Annual International Computer
Software and Applications Conference - Volume 01 - COMPSAC 2004, IEEE Computer
Society, pp. 72–77. http://dx.doi.org/10.1109/CMPSAC.2004.1342808.

Surridge, M., Taylor, S., Roure, D. D. & Zaluska, E. (2005). Experiences with gria - industrial
applications on a web services grid, Proceedings of the First International Conference on

245Using Grid Computing for Constructing Ternary Covering Arrays

www.intechopen.com

26 Grid Computing

e-Science and Grid Computing, IEEE Computer Society, pp. 98–105. http://dx.doi.
org/10.1109/E-SCIENCE.2005.38.

Torres-Jimenez, J., De Alfonso, C. & Hernández, V. (2004). Computation of ternary covering
arrays using a grid, Proceedings of the Second Asian Applied Computing Conference
- AACC 2004, Vol. 3285 of Lecture Notes in Computer Science, Springer-Verlag,
pp. 240–246. http://dx.doi.org/10.1007/978-3-540-30176-9_31.

Torres-Jimenez, J. & Rodriguez-Tello, E. (2012). New bounds for binary covering arrays using
simulated annealing, Information Sciences, 185(1): 137–152. http://dx.doi.org/

10.1016/j.ins.2011.09.020.
Tung, Y. & Aldiwan, W. S. (2000). Automating test case generation for the new generation

mission software system, Proceedings of the IEEE Aerospace Conference, Vol. 1, IEEE
Press, pp. 431–437. http://dx.doi.org/10.1109/AERO.2000.879426.

Williams, A. W. (2000). Determination of test configurations for pair-wise interaction
coverage, Proceedings of the IFIP TC6/WG6.1 13th International Conference on Testing
Communicating Systems: Tools and Techniques - TestCom 2000, Kluwer, pp. 59–74.

Williams, A. W. & Probert, R. L. (1996). A practical strategy for testing pair-wise coverage of
network interfaces, Proceedings of the The Seventh International Symposium on Software
Reliability Engineering - ISSRE 1996, IEEE Computer Society, pp. 246–256. http://
dx.doi.org/10.1109/ISSRE.1996.558835.

Younis, M., Zamli, K. & Mat Isa, N. (2008). IRPS - An Efficient Test Data Generation Strategy
for Pairwise Testing, Proceedings of the 12th International Conference on Knowledge-Based
and Intelligent Information & Engineering Systems - KES 2008, Vol. 5177 of Lecture
Notes in Computer Science, Springer-Verlag, pp. 493–500. http://dx.doi.org/10.
1007/978-3-540-85563-7_63.

246 Grid Computing – Technology and Applications, Widespread Coverage and New Horizons

www.intechopen.com

Grid Computing - Technology and Applications, Widespread

Coverage and New Horizons

Edited by Dr. Soha Maad

ISBN 978-953-51-0604-3

Hard cover, 354 pages

Publisher InTech

Published online 16, May, 2012

Published in print edition May, 2012

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

Grid research, rooted in distributed and high performance computing, started in mid-to-late 1990s. Soon

afterwards, national and international research and development authorities realized the importance of the

Grid and gave it a primary position on their research and development agenda. The Grid evolved from tackling

data and compute-intensive problems, to addressing global-scale scientific projects, connecting businesses

across the supply chain, and becoming a World Wide Grid integrated in our daily routine activities. This book

tells the story of great potential, continued strength, and widespread international penetration of Grid

computing. It overviews latest advances in the field and traces the evolution of selected Grid applications. The

book highlights the international widespread coverage and unveils the future potential of the Grid.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Himer Avila-George, Jose Torres-Jimenez, Abel Carrión and Vicente Hernández (2012). Using Grid

Computing for Constructing Ternary Covering Arrays, Grid Computing - Technology and Applications,

Widespread Coverage and New Horizons, Dr. Soha Maad (Ed.), ISBN: 978-953-51-0604-3, InTech, Available

from: http://www.intechopen.com/books/grid-computing-technology-and-applications-widespread-coverage-

and-new-horizons/using-grid-computing-for-constructing-ternary-covering-arrays

© 2012 The Author(s). Licensee IntechOpen. This is an open access article

distributed under the terms of the Creative Commons Attribution 3.0

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.

