
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IntechOpen

https://core.ac.uk/display/322415129?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


4 

A New Approach to Resource  
Discovery in Grid Computing 

Leyli Mohammad Khanli1,  
Saeed Kargar2 and Ali Kazemi Niari2 

1C.S. Dept., University of Tabriz 
2Islamic Azad University, Tabriz Branch 

Iran 

1. Introduction 

The grid computing systems are one of great developments in the field of engineering and 
computer science and provide a clear future in the global use of various optimal distributed 
resources (hardware and software). Therefore with expanding grid systems and the 
importance of finding suitable resources for users (Foster & Kesselman, 2003), while saving 
time and space, resource discovery algorithms are very important. If one algorithm with less 
traffic and without reference to unnecessary nodes in a shorter time, can find the 
appropriate resource for users, it will significantly increase the efficiency of the system. 

There are many approaches to resource discovery, such as flooding-based and random-
based. These approaches decrease the system efficiency, because the users’ requests pass 
through many unnecessary paths and create additional traffic. Therefore it is not suitable for 
a grid environment with numerous nodes. 

Another approach is resource discovery tree using bitmap (Chang & Hu, 2010). This method 

decreases some disadvantages of previous methods such as unnecessary traffic and heavy 

load, and furthermore the cost of update is low. But in this method, users’ requests are also 

sent to unnecessary nodes, so in a grid environment with numerous nodes and requests, the 

reference to unnecessary nodes will create additional and heavy traffic and decrease the 

efficiency of the system. 

In this work, we use a weighted tree for resource discovery (Khanli & Kargar, 2011). We 

only use one bitmap for the identification of available resources in nodes and also resources 

of children and their descendant nodes. The users’ request must be transformed into this 

bitmap. We record a footprint of resources in nodes. When a user’s query reaches every 

node, we can use this footprint to access the directly appropriate resource without visiting 

additional and unnecessary nodes and no time is consumed. We compare our algorithm 

with other algorithms and show that our algorithm is very efficient. 

We discuss the previous works about the resource discovery in Section 2. In Section 3, we 

explain our proposed mechanism. Section 4 details the diagrams for comparing our method 

with previous methods, and finally, Section 5 contains conclusions. 

www.intechopen.com



 
Grid Computing – Technology and Applications, Widespread Coverage and New Horizons 

 

72

2. A brief history of the resource discovery in grid  

There are different methods for resource discovery in grid environment. Centralized 
resource discovery approaches (Berman et al., 2003; Chien et al., 2003; Foster & Kesselman, 
1997; Germain et al., 2000; Mutka & Livny, 1987; Neary et al., 1999) are one of the 
mechanisms which suffer from single point of failure and bottlenecks. 

Most of the methods in resource discovery tend to peer to peer (Al-Dmour & Teahan, 2005; 
Ali et al., 2005; Basu et al., 2005;  Bharambe et al., 2004; Cai & Hwang, 2007; Iamnitchi et al., 
2002; Koo et al., 2006; Nejdl et al., 2002; Oppenheimer et al., 2004; Shen, 2009; Talia et al., 
2006; Zerfiridis & Karatza, 2003) which for example use super-peer (Mastroianni et al., 2005) 
or hierarchical (Liu et al., 2006) models. Apart from similarities between grid and peer to 
peer systems (Iamnitchi & Talia, 2005), they have critical differences in the field of security, 
users, applications, scale and etc. (Trunfio et al., 2007). 

In the grid some methods use resource brokers to match the user’s request with available 
resources (Bradley et al., 2006). They can consider some factors including software 
/hardware capabilities, network bandwidth, resource cost and so forth. 

Yuhui Deng et al. (2009) suggested a peer to peer model for resource discovery which uses 
ant colony optimization (ACO). The main idea of this method was inspired from ants, which 
search their environment for food. 

Xue-Sheng Qi et al. (2006) suggested a mechanism which can find multi-accessible resources 
and choose one of them, which uses a table. When a user wants to use the resource, 
reservation table will be checked. If the desired resource does not exist, it will be added to 
the table and the resource will be reserved. 

Another method for resource discovery problems would be semantic communities (Li & 
Vuong, 2005; Li, 2010;  Nazir et al., 2005; Zhu et al., 2005; Zhuge, 2004) which allows the grid 
nodes to communicate with no requirement to a central visiting point. 

In (Li, 2010), Li proposes a semantics-aware topology construction method where queries 
propagate between semantically related nodes. To route the query, it constructs and uses the 
Resource Distance Vector (RDV) routing table (RDVT). 

Gregor Pipan (2010), used TRIPOD overlay network for resource discovery which is based 
on a hybrid overlay network. He also used a K-Tree. The recommended TRIPOD overlay in 
this method is especially designed for resource discovery, which is combined two structures 
in an overlay and also used synthetic coordinate system. 

Tangpongprasit et al. (2005) proposed an algorithm which uses the reservation algorithm for 
finding suitable resources in a grid environment. In the forward path, if there are any 
resources, they will be saved and reserved, in the backward path, one of them will be 
selected (if more than one resource has been reserved) and added to the request. 

In (2006), Ramos and de Melo propose a structure of master and slave. A master does the 
updating and the slave restores the information from the machine. 

In (2010), Chang and Hu proposed a resource discovery tree using bitmap for grids. It uses 
two bitmaps called the ‘‘index bitmap’’ and ‘‘local resource bitmap’’, and the other bitmap 
would be the ‘‘attribute counter’’. The local resource bitmap registers information about the 

www.intechopen.com



 
A New Approach to Resource Discovery in Grid Computing 

 

73 

local resources of nodes and the index bitmap registers the information about its children 
nodes which exist in the nodes that have child (non-leaf nodes). In this method, the users’ 
query at first becomes AND with the local resource bitmap and if there is no local resource 
in the node, it becomes AND with the index bitmap. If the result is a nonzero number, the 
query will be forwarded to all children until reaching the target node. If the result of the 
AND operation is zero, it means that there are no resource in children and the query will be 
sent to the father node. 

There are some differences between our algorithm and the other ones: 

Our algorithm uses a tree structure in which the edges have weight. The advantage of our 
method is that any node in our weighted tree has a unique path, so the user’s query against 
all of previous methods is not sent to the extra and unnecessary paths. We can directly reach 
the target node using a resource footprint which is stored in nodes. Furthermore, for 
resource discovery we only use one bitmap in every node which is for the storing of 
information about its local resources and the resources of its children and descendant. Also 
it preserves a footprint of resources and if we need a resource which is available in its 
children or descendant, we can directly and without any referring to unnecessary and extra 
nodes, reach the target node. This method significantly reduces the system traffic and 
increases the performance of system. 

3. Our proposed method 

Here, we introduce a weighted tree structure for resource discovery. In this method, like 
(Chang & Hu, 2010) (explain in previous section) we use one bitmap except several bitmaps 
will replace one bitmap with different contents. In the current method, we will allocate to 
any kind of resource two positions of bitmap, where one of them is the ‘‘counter’’ and 
another is the ‘‘path’’. A user’s request should be changed into this form. There will be one 
bitmap in every node in which the user’s query will be multiplied by this bitmap position to 
a position in order that the availability of matched resources would be investigated. If the 
current node contains the requested resource, so the requested resource is found, otherwise 
if it does not contain the requested resource or have the requested resource in its children 
and descendant, the query will be sent to the father node. However, if the node does not 
contain the requested resource but it is available in one of its children or descendant, the 
target node can be found directly and without any referring to extra nodes using the 
information stored in this node and weighted edges. Therefore, our offered method 
decreases unnecessary referrals to other nodes and reduces the additional traffic, so the time 
is saved and the ability of resource discovery is improved. 

Due to the existence of different resources in the grid environment and also the various 
types of resources (attributes), the resources and their attributes should be identified in our 
bitmap. This bitmap has positions that numbers will be stored in. The length of the bitmap 
depends on the attributes of each resource. For example, if our expected resource is an 
operating system (OS), the different types of operating systems that are used in our grid 
environment determine the length of our bitmap. If the types of operating systems are XP, 
Linux, Unix and MacOS, our bitmap will have six positions. Actually, we allocate two 
positions for each type in the bitmap: the counter and path. All of the users’ queries should 
be transformed into this form. Fig. 1, shows a sample of this bitmap that contains the XP 
operating system in the related node. 

www.intechopen.com



 
Grid Computing – Technology and Applications, Widespread Coverage and New Horizons 

 

74

 

Fig. 1. A sample of OS type bitmap. 

A node having a special resource locates the numbers 01 in two related positions. Number 0 
is for counter and because this resource exists in the node itself, so the number would be 0 
and the next one (Number 1) indicates the availability of resources in this node (path). 
Another position would be 0 indicating that no resources would be available in the node or 
its children. Each node in our tree contains such a bitmap at the first step and in the next 
steps the contents of these positions will be changed. 

Our algorithm would be on a tree in which a weight will be allocated to any edge by the 
father nodes, i.e. each node allocates a special binary number to each child depending on the 
number of children. This node can determine the number of weight bits using following 
simple formula: 

2logny      

where n is the number of children of this node, and y is at least the number of bits that 
should be allocated to edges as weight. 

In Fig. 2, we show a weighted tree with its nodes and local resources which is regarded as 
the first step in constructing a weighted tree with local resources of nodes without 
considering the resources of children. In Fig. 3, we show same tree after gathering the 
children information by the father nodes which is the final form of the resource discovery 
tree. Now we describe the construction of the final form of a tree with an example. 

Suppose that our expected resource is an operating system (OS) as Fig. 1, depicts. Each pair 
position is representative of one type of resource (which here is one type of OS). In Fig. 2, 
node K has operating system XP (01 in the last two positions), node J has operating system 
Linux, node F has operating system MacOS etc. The weight of edges is also written on the 
edges. As said before, these weights, for example 0 between node A and node B is a number 
in which node A is considered for node B in its memory. Now these nodes should form the 
final form of the tree in order that the users’ requested resources can be found. 

For example, we explain the method of gathering information of children and construct the 
final form of the bitmap in node E. First consider nodes J, K and L. Node E as the father 
node, takes bitmaps of these three nodes, and analysis them, storing the final information on 
its bitmap. Suppose that node E takes the information of nodes J, K and L. First we begin 
from lower positions (from right to left). The first pair position of nodes J, K and L are 
removed. Two of them contain 00 and the other one contains 01, node E itself has 00, so 
there is only one resource that is located in node K, which should be registered in the first 
pair position of node E. Because this resource information is received through a path with 
weight 01, so we write in the first position the path that the resource information comes 
from, i.e. 01. We transform this binary number to a decimal number and then record. If the 

www.intechopen.com



 
A New Approach to Resource Discovery in Grid Computing 

 

75 

second position which is the counter, increased by two units, namely it would be 2 
(increased two units because the weights of node E are two bits). Finally, two numbers, 2 
and 1 are registered in the first two positions of node E. 

 

Fig. 2. Our proposed tree before gathering the children information. 

Now the next two positions of nodes J, K and L are surveyed (related to the Linux operating 
system). Two positions related to node K, are 0 0, and nodes J and L are 0 1, meaning that 
nodes J and L own this resource and the information of one of these resources should be 
registered in the bitmap of the father node (E). In our method, any one whose counter shows 
a small number indicates an association with higher levels of the tree. In this case both of 
them are equal, so we choose one of them randomly (node J). Finally, two numbers, 2 and 0 
are registered in the second two positions of node E. 

In the next two positions, because node E owns this resource, there is no need for the 
resource information of children to be replaced by its own resource information. So, these 
two positions remain as 0 and 1. 

The remaining nodes are made in this way using the suggested method. We show in Fig. 3, 
all related information and our resource discovery tree is formed as mentioned. 

www.intechopen.com



 
Grid Computing – Technology and Applications, Widespread Coverage and New Horizons 

 

76

 

Fig. 3. Our proposed tree after gathering the children information. 

3.1 Resource discovery 

When any user sends his request to one of the nodes of our resource discovery tree which 
should be in the form of bitmaps stored in nodes, i.e. in the previous tree structure, the 
user’s query should be in the form of a bitmap with the length of six positions (Fig. 4). The 
user should allocate number 1 in the pair position (1 1) related to the resource he requires. In 
Fig. 5, we show the method of resource discovery. 

 

Fig. 4. A sample of query bitmap. 

Suppose that a user needs the operating system XP. The user should create a query in the 
form of a bitmap that has been shown in Fig. 4. All positions of the query bitmap are 
multiplied with the stored bitmap in the nodes. If the result is 0, the query will be sent to the 
father node. Otherwise the resulted numbers will be used for resource discovery. 

www.intechopen.com



 
A New Approach to Resource Discovery in Grid Computing 

 

77 

Suppose in this example, the query is first sent to node H. All positions are multiplied with 
each other and the result would be 0. So, the request will be sent to its father node i.e. C (as Fig. 
5). In node C, all positions of request are multiplied with the stored bitmap in this node and 
the result again would be 0. So the request will be sent to its father node i.e. A. It is observed 
that the result of multiplication in the node would be the numbers except 0 (5 5). So, number 5 
should be changed into a binary number with length 5 so the result is 00101. Using this binary 
number, we can directly obtain the node which contains the requested resource; the binary 
number is taken through left to right and goes forward in the edges of the path. The result 
node would be the target node. Fig. 5 shows this search which resulted in the resource 
discovery in node K. As soon as a number except zero is achieved, we can directly refer to the 
destination node without any referring to an extra and unnecessary node. 

 

Fig. 5. An example of resource discovery in our weighted tree. 

3.2 Improvement the method in a real grid environment 

In the current method, the weight of edges in each node is identified and after changing into 
a decimal number, they are stored in their related places.  

The method can be corrected in a real grid environment, because if we suppose a real grid 
environment with many nodes and edges, the number of 0 and 1s which are to be attached 

www.intechopen.com



 
Grid Computing – Technology and Applications, Widespread Coverage and New Horizons 

 

78

to each other will be large and in storing or converting them into their equivalent decimal, a 
very large number will result (maybe incomputable).  

The solution would be that for storing 0 and 1s, we suppose a threshold number. When a 
node takes information from its children nodes, including the bitmap, the node first takes 
the contents of this bitmap then converts the contents of the path position to its equivalent 
binary number (in the length of counter) and attaches the weight of edge. If the resulted 
binary number is larger than threshold, this node instead of storing this large number, 
supposes that the node which this a large number comes from there, is a target node, 
namely this resource exists in this node, and so stores just the related weight of the edge in 
the counter, and in fact, the counter in the bitmap starts again. Then this information is sent 
to the father node and the above operation again will be performed.  

Now, when the request reaches one of the nodes and is directed to the target node, a 

comparison should be made in the target node to identify if the stored number in the target 

node is 0 and 1, which means the resource is available in this node, otherwise the existing 

number moves forward of the target node and the above operation again will be performed. 

Fig. 6, shows this method with threshold = 2 bit, that when the length of bits becomes large 

in node B from 2 bits, so node B supposes that node C is a target node and stores the address 

of node C in its bitmap, and in fact from node B the counter will start again. 

 

Fig. 6. An example of resource discovery tree with threshold = 2. 

Another problem is the large number of the participating nodes and heterogeneity of their 
available resources. A user may need several resources which may send them in the form of 

www.intechopen.com



 
A New Approach to Resource Discovery in Grid Computing 

 

79 

several query bitmaps. It means that a lot of information will not be sent in the form of a 
unique query. But, we should identify the queries in nodes, i.e. if the query reached, relates 
to resource 1 or resource 2 etc. (for example OS, CPU, . . . ). 

We can add some bits to any query bitmap to identify the resource. For example, if there are 
16 types of resources in our grid environment, we can add 4 bits to any query bitmap, in 
order that the receiver can identify with which resource the bitmap should be compared to. 
This enables us to manage several resources in the grid environment. 

3.3 Complexity analysis 

Here, the time and space complexities for our method will be investigated. We suppose that 
there are n nodes and r resources in the grid environment. Every resource has a attributes 
and the length of the bitmap would be b bits (Chang & Hu, 2010). Also assume the 
maximum number of children for a node would be m. 

3.3.1 Time complexity 

Our method applies to a tree structure. Users send their requests to one of the nodes and the 
request moves in the tree paths for the proper resource to be found. The consumed time 
includes the required time for computations and communications. 

The computation time would be the time consumed in every node to compare the query 
bitmap with local bitmaps. So, we can calculate the number of nodes visited in resource 
discovery in our tree for computation time. 

The latter would be the time lost between nodes to send a query. Here we can also calculate 
the number of links. The number of links and visited nodes in resource discovery would be 
in the same order in tree paths, so both times are supposed the same. One of these times 
would be larger depending on the network conditions and type of nodes. Because most 
nodes in the grid environment are of good computation power, but are located in distant 
intervals in various networks, in the following we assume the communication time through 
a link is larger than the computation time in a node. 

In Our method like (Chang & Hu, 2010), the worst case in the resource discovery is the 
number of visited links from a leaf node upward to the root then downward to another leaf 
node. Therefore, the time complexity for our method will be O (logn m) in the worst case. 

3.3.2 Space complexity 

To calculate the space complexity, every node in our tree requires 2 × r × a × b places for the 

path bitmap (any attribute needs two places in the path bitmap) and r × a × b places for the 

counter bitmap and (m + 1) links. Like (Chang & Hu, 2010), if supposing that every place 
and each link needs 32 bits, the total number of bits required is n × (32 × (2 × r × a × b + r × a × 

b + (m + 1))) = O(nrab + nm).  

3.4 Update method 

For updating, an extra bitmap called a ‘‘counter bitmap’’ will be used. The number of 
positions in this bitmap depends on the number of types of resources in the grid 

www.intechopen.com



 
Grid Computing – Technology and Applications, Widespread Coverage and New Horizons 

 

80

environment. For example, if there are 5 kinds of operating systems, this counter bitmap 
will also have 5 positions. The current bitmap represents the number of resources existing in 
children or descendant of that node.  

The method is that the user places two 1s in pair positions which are requested for that 

resource, and if the request reaches a node, multiplies with the bitmap present in that node 

until it reaches a node in which its multiplication result would be a number except zero. 

Using these two numbers and the weight of edges, the target will be found. In the update 

method, when a request reaches a node with information opposite zero, numbers are 

removed from the pair positions of that node and two number 0s are placed in two positions 

which the numbers are removed from and this process will be continued in the path nodes 

until reaching the target node. When reaching the target node, the numbers 0 and 1 

available in two related positions would be 0 and 0. 

If the expected resource is to be delivered to the user, no node must have access to the 

resource address, in other words another user cannot use it. In the current method, the path 

nodes wait some time after the user’s query makes some changes in their path and counter 

bitmaps, until a message is received from the same path to which the user’s query had been 

sent, to update the changed positions (0 0). If the period of time (time out) ends, this node 

restores its previous information to the related places. 

Otherwise it receives a bitmap. First, this node investigates the pair positions which have 

been changed in its bitmap. If it contains the information of a resource, puts the contents of 

the mentioned pair positions in a related place in its bitmap and sends this to its father node 

and the father node again iterates the process, and because it observes that the contents of 

these two positions are opposite zero, it tries to reach the root which then the tree is 

updated. 

In the next state, the pair positions that have arrived from the child contain the address of no 

resource (to be 0 0), so the node checks the contents of the related position in its counter 

bitmap. If this position is zero, it means that there is no resource in the children and 

descendant of this node and the bitmap will be sent to its father node, otherwise if this 

position is any number except zero, there will at least be information related to the expected 

resource in one of its children. So, this node takes from its children, the path bitmaps, and 

finds the address of considered resource from one of children, and replaces it with the 

removed pair positions and then delivers the path bitmap to its father node and the father 

node, there will be no need to collect the information of children and only the path bitmap 

which when the contents of its two positions is changed moves to the root node until it 

stops. In Fig. 7, we show an example of update. Suppose that there are two types of 

resources in this grid environment, so our path bitmap will have 4 positions and the counter 

bitmap 2 positions. If a request sent to node B, as (Fig. 7), the result of multiplication of this 

request with the path bitmap of node B would be zero and the request will be sent to the 

father node i.e. node A, there is a resource in address 3 6 (110). 

The request removes 3 6 from path bitmap of node A, and also decreases by one unit the 

contents of the related position in the counter bitmap. Then the request goes to node C and 

the process continues. Finally, it reaches node F, the target node, so its contents which have 

been 0 1 will be 0 0 and it reserves this resource. 

www.intechopen.com



 
A New Approach to Resource Discovery in Grid Computing 

 

81 

 

Fig. 7. An example of tree update. 

In the update path, node F sends its changed bitmap to node C. If this information does not 

reach before the time that node C has been considered, node C restores its bitmap to the 

previous state, otherwise node C, after receiving the bitmap of node F, investigates the 

condition of removed pair positions and checks the related position of these pair positions in 

the counter bitmap which is 1 in node C (a nonzero number), so for the information of a 

resource available in one of the children of node C (nodes D or E), node C takes the 

information of the children nodes (except a child which has taken that changed bitmap (here 

node F)). Finally, node C, places numbers 4 and 5 in the condition of removed positions after 

investigating the information of nodes D and E. So, the bitmap will be sent to node A. Node 

A after observing that the contents of related pair positions are nonzero, sees there is no 

need to collect the information of the children, and with this information, updates its 

previous information. In our update method, information of children is gathered only in one 

of levels, and all through the path, just visited by one node in any level of tree. 

www.intechopen.com



 
Grid Computing – Technology and Applications, Widespread Coverage and New Horizons 

 

82

4. Simulation results 

In this section, we compare our simulation results with the recommended algorithm in (Chang 
& Hu, 2010), flooding-based approach and the algorithm proposed in (Marzolla et al., 2005; 
Marzolla et al., 2007) (MMO). In the first simulation tests, the total number of nodes which are 
visited during in the resource discovery and in updating are compared with algorithm (Chang 
& Hu, 2010) for 400 queries. In the second experiment, the nodes which queries send during 
resource discovery for the flooding-based approach, MMO algorithm and resource discovery 
tree algorithm, are shown and compared with our method. 

As we know, for calculating the traffic which a method causes, we can calculate the number 
of links which are occupied for resource discovery or updating in the method. If the number 
of links visited for resource discovery or updating in a method is lower, the method has 
lower traffic and would be more efficient. 

In the next simulation tests, the traffic in our method which is caused by the increased 
number of tree nodes in resource discovery and updating is indicated and the results are 
obtained for different nodes with 300 and 1000 queries. In the last simulation, we observe 
that the traffic caused in our method would be lower than other methods. This test is 
performed supposing there are 300 queries for different nodes, and the flooding-based, 
MMO, resource discovery tree and our methods are compared. 

4.1 Simulation settings 

We performed the simulation in the MATLAB environment. Our resource discovery tree is a 
full n-ary tree. It means that any non leaf node should have exactly n children. According to 
Mastroianni et al. (2007), and Chang & Hu (2010), we also assume that the resource 
discovery tree for simulation has height 4. 

In the first experiment tests, we compare our algorithm with a resource discovery tree with 
a different number of index servers. Like (Chang & Hu, 2010), in this experiment there are 
200 nodes in resource discovery tree and we perform this experiment with 180 queries. 

We place the resources randomly in each node and then queries are sent through tree paths 
and compare the number of nodes that visited in each method. In Fig. 8, the difference 
between the number of visited nodes with two methods are observed. In this experiment, 
the number of visited nodes is investigated with changing the number of index servers. For 
example, when the number of index servers in tree is 10, so there are 10 nodes in level 1 and 
190 nodes in level 2 (19 children for each node in level 1) for a tree with height 3. Because 
our method in the forward path just visits one node in every level so in Figs. 8, the 
simulations related to our method almost show the fix values. 

In the second simulation tests, we assume there are 300 queries and a tree with height 4. In 
Fig. 9, we compare the number of nodes that queries send in our algorithm with the 
resource discovery tree and show that the number of nodes visited in our proposed method 
is lower than the previous method. 

In the third simulation tests, we show the total number of nodes that were visited in the 
resource discovery path and for tree updating with assume 400 queries and different 
number of nodes for our method and compare with the other one. In Fig. 10, it is indicated 
that in our algorithm, fewer nodes are visited compared with the previous one. 

www.intechopen.com



 
A New Approach to Resource Discovery in Grid Computing 

 

83 

 

0 2000 4000 6000

10

15

20

25

30

Number of visited nodes

N
u

m
b

e
r
 o

f 
In

d
e

x
 S

e
r
v

e
r
s Our method

Tree height 4

 

 

Fig. 8. The number of nodes that queries are forwarded to for 180 queries. 

 
 

0 1000 2000

15

40

85

156

259

Number of visited nodes

G
ri

d
 s

iz
e

Our method

Tree height…

 

 

Fig. 9. The number of nodes that queries are forwarded to. 

www.intechopen.com



 
Grid Computing – Technology and Applications, Widespread Coverage and New Horizons 

 

84

 

Fig. 10. Total number of nodes that are visited in resource discovery and updates. 

In the next simulation tests, our method is compared with flooding-based method, MMO 
and resource discovery tree algorithm. In the current experiment supposing that there are 
300 queries, in Fig. 11, it is indicated that the average number of nodes that queries are sent 
to is lower than other methods in our proposed method. The test is performed in a tree with 
height 4. 

 

Fig. 11. Average number of nodes that queries are forwarded to using different methods. 

In the next simulation tests, the number of occupied links in our method during the resource 
discovery phase and update phase is observed for different nodes with 300 and 1000 
queries. In Fig. 12, we show the occupied links (traffic) for resource discovery and updating 
for 300 (Fig. 12) and 1000 queries (Fig. 13). 

www.intechopen.com



 
A New Approach to Resource Discovery in Grid Computing 

 

85 

 

 
 

Fig. 12. Number of links that resource discovery queries and updates are forwarded to for 
300 queries. 

 

 
 

Fig. 13. Number of links that resource discovery queries and updates are forwarded to for 
1000 queries. 

www.intechopen.com



 
Grid Computing – Technology and Applications, Widespread Coverage and New Horizons 

 

86

 

Fig. 14. Number of links that are visited by resource discovery queries for 300 queries. 

In the last experiment, we supposed that there are 300 queries, and we show the visited 
links (traffic) which are caused during resource discovery in our method and compared 
with flooding-based, MMO and the resource discovery tree and for different numbers of 
nodes. In Fig. 14, we can see the traffic caused in our method is lower than other methods 

5. Conclusions and future work 

In this work, we use a tree structure in which the edges have weight. The advantage of our 
method is that any node in our weighted tree has a unique path, so the user’s query against 
all of previous methods is not sent to the extra and unnecessary paths. We can directly reach 
the target node using a resource footprint which is stored in nodes.  

Furthermore, for resource discovery we only use one bitmap in every node which is for the 
storing of information about its local resources and the resources of its children and 
descendant. Also it preserves a footprint of resources and if we need a resource which is 
available in its children or descendant, we can directly and without any referring to 
unnecessary and extra nodes, reach the target node. This method significantly reduces the 
system traffic and increases the performance of system. 

We compare our algorithm with previous algorithms using simulations and results and 
show that the number of nodes visited in our resource discovery algorithm is less than that 
for other algorithms, and the difference would be significant with an increase in the number 
of nodes. Also the cost of update in our proposed algorithm is low. 

In future, if we could a present a technique that could locate several heterogeneous 
resources (with different attributes) of a grid environment in smaller forms with a lower 
volume, or placed in one bitmap involving some factors, for example allocated costs for 
resources etc., we could improve the algorithm. 

www.intechopen.com



 
A New Approach to Resource Discovery in Grid Computing 

 

87 

6. References  

Al-Dmour, N.A. & Teahan, W.J. (2005). Peer-to-Peer protocols for resource discovery in the 
grid, in: Parallel and Distributed Computing and Networks, Innsbruck, Austria. 

Ali, K.;  Datta, S.; Aboelaze, M. (2005). Grid resource discovery using small world overlay 
graphs, in: Proceedings of the 18th IEEE Canadian Conference on Electrical and 
Computer Engineering. 

Basu, S.; Banerjee, S.; Sharma, P.; Lee, S. (2005). NodeWiz: peer-topeer resource discovery for 
grids, in: 5th International Workshop on Global and Peer-to-Peer Computing 
(GP2PC) in Conjunction with CCGrid. 

Berman, F. & et al. (2003). Adaptive computing on the grid using AppLeS, TPDS 14 (4). 
Bharambe, A.R.; Agrawal, M. & Seshan, S. (2004). Mercury: Supporting scalable 

multiattribute range queries, in: Proc. of ACM SIGCOMM, pp. 353–366. 
Bradley, A.; Curran, K.; Parr, G., (2006). Discovering resource in computational GRID 

environments. Journal of Supercomputing 35, 27–49. 
Cai, M. & Hwang, K. (2007). Distributed aggregation algorithms with load- balancing for 

scalable grid resource monitoring, in: Proc. of IPDPS. 
Chang, R.-S. &  Hu, M.-S. (2010). A resource discovery tree using bitmap for grids, Future 

Gener. Comput. Syst. 26 29–37. 
Chien, A.; Calder, B.; Elbert, S. & Bhatia, K. (2003). Entropia: Architecture and performance 

of an enterprise desktop grid system, J. Parallel Distrib. Comput. 63 (5). 
Deng, Y.; Wang, F.; Ciura, A. (2009). Ant colony optimization inspired resource discovery in 

P2P Grid systems, J Supercomput 49: 4–21. 
Foster, I. & Kesselman, C. (1997). Globus: A metacomputing infrastructure toolkit, Int. J. 

High Perform. Comput. Appl. 2 115–128. 
Foster, I. & Kesselman, C. (2003). The Grid 2: Blueprint for a New Computing Infrastructure, 

Morgan Kaufmann Publishers Inc., San Francisco, CA. 
Germain, C.; Neri, V.; Fedak, G.; Cappello, F. (2000). XtremWeb: Building an experimental 

platform for global computing, in: Proc. of IEEE/ACM Grid, December. 
Iamnitchi, A.; Foster, I.; Nurmi, D. C. (2002). A peer-to-peer approach to resource location in 

grid environments, in: Proceedings of the 11th Symposium on High Performance 
Distributed Computing, Edinburgh, UK, August. 

Iamnitchi, A. & Talia, D. (2005). P2P computing and interaction with Grids, Future Gener. 
Comput. Syst. 21 (3) 331–332. 

Khanli, L.M. & Kargar, S. (2011). FRDT: Footprint Resource Discovery Tree for grids, Future 
Gener. Comput. Syst. 27 148–156. 

Koo, S.G.M.; Kannan, K. & Lee, C.S.G. (2006). On neighbor selection strategy in hybrid Peer-
to-Peer networks, Future Gener. Comput. Syst. 22, 732–741. 

Li, J. (2010).  Grid resource discovery based on semantically linked virtual organizations, 
Future Gener. Comput. Syst. 26, 361–373. 

Li, J. & Vuong, S. (2005). Grid resource discovery using semantic communities, in: Proceedings 
of the 4th International Conference on Grid and Cooperative Computing, Beijing, China 

Liu, H.; Luo, P. & Zeng, Z. (2006). A structured hierarchical P2P model based on a rigorous 
binary tree code algorithm, Future Gener. Comput. Syst. 

Marzolla, M.; Mordacchini, M. & Orlando, S. (2005). Resource discovery in a dynamic 
environment, in: Proceedings of the 16th International Workshop on Database and Expert 
Systems Applications, DEXA’05, pp. 356–360. 

www.intechopen.com



 
Grid Computing – Technology and Applications, Widespread Coverage and New Horizons 

 

88

Marzolla, M.;  Mordacchini, M. & Orlando, S. (2007). Peer-to-peer systems for discovering 
resources in a dynamic grid, Parallel Comput. 33 (4–5) 339–358. 

Mastroianni, C.; Talia, D. & Verta, O. (2005). A super-peer model for resource discovery 
services in large-scale grids, Future Gener. Comput. Syst. 21 (8) 1235–1248. 

Mastroianni, C.; Talia, D. & Versta, O. (2007). Evaluating resource discovery protocols for 
hierarchical and super-peer grid information systems, in: Proceedings of the 15th 
EUROMICRO International Conference on Parallel, Distributed and Network-Based 
Processing, PDP’07, pp. 147–154. 

Mutka, M.; Livny, M. (1987). Scheduling remote processing capacity in a workstation 
processing bank computing system, in: Proc. of ICDCS, September. 

Nazir, F.; Ahmad, H.F.; Burki, H.A.; Tarar, T.H.; Ali, A. & Suguri, H. (2005). A Resource 
Monitoring and Management Middleware Infrastructure for Semantic Resource 
Grid, SAG 2004, in: LNCS, vol. 3458, pp. 188–196. 

Neary, M.O.; Brydon, S.P.; Kmiec, P.; Rollins, S. & Capello, P. (1999). JavelinCC: Scalability 
issues in global computing, Future Gener. Comput. Syst. J. 15 (5–6), 659–674. 

Nejdl, W.; Wolf, B.; Qu, C.; Decker, S.; SIntek, M.; Naeve, A.; Nilsson, M.; Palmer, M.; Risch, 
T.; Edutella. (2002). A P2P networking infrastructure based on RDF, in: Proceedings 
of the WWW2002, May 7–11, Honolulu, Hawaii, USA, pp. 604–615. 

Oppenheimer, O.; Albrecht, J.; Patterson, D.; Vahdat, A. (2004). Scalable wide-area resource 
discovery, Technical Report TR CSD04-1334, Univ. of California. 

Pipan, G. (2010). Use of the TRIPOD overlay network for resource discovery, Future 
Generation Computer Systems 26, 1257_1270. 

Qi, X.S.; Li, K.L. & Yao, F.J. (2006). A time-to-live based multi-resource reservation algorithm 
on resource discovery in Grid environment, in: Proceedings of the 2006 1st 
International Symposium on Pervasive Computing and Applications, pp. 189–193. 

Ramos, T.G. & de Melo, A.C.M.A. (2006). An extensible resource discovery mechanism for 
grid computing environments, in: Proceedings of the Sixth IEEE International 
Symposium on Cluster Computing and the Grid, CCGRID’06, pp. 115–122. 

Shen, H. (2009). A P2P-based intelligent resource discovery mechanism in Internetbased 
distributed systems, J. Parallel Distrib. Comput. 69, 197–209. 

Talia, D.; Trunfio, P.; Zeng, J. & Högqvist, M. (2006). A DHT-based Peer-to-Peer framework 
for resource discovery in grids. Technical Report TR-0048, Univ. of California. 

Tangpongprasit, S.; Katagiri, T.; Honda, H. & Yuba, T. (2005). A time-to-live based 
reservation algorithm on fully decentralized resource discovery in grid computing, 
Parallel Comput. 31 (6) 529–543. 

Trunfio, P.; Talia, D.; Papadakis, H.; Fragopoulou, P.; Mordacchini, M.; Pennanen, M.; 
Popov, K.; Vlassov, V. & Haridi, S. (2007). Peer-to-Peer resource discovery in Grids: 
Models and systems, Future Gener. Comput. Syst. 23, 864–878. 

Zerfiridis, K.G.; Karatza, H.D. (2003). Centralized and decentralized service Discovery on a 
peer-to-peer Network – a simulation study, in: Proceedings of the Sixth United 
Kingdom Simulation Society Conference, UKSim 2003, Cambridge, England, 9th–
11th April, pp. 171–177. 

Zhu, C.; Liu, Z.; Zhang, W.; Xiao, W.; Xu, Z. & Yang, D. (2005). Decentralized grid resource 
discovery based on resource information community, J. Grid Comput.  

Zhuge, H. (2004). Semantics, resource and grid, Future Gener. Comput. Syst. 20 (1) 1–5. 

www.intechopen.com



Grid Computing - Technology and Applications, Widespread

Coverage and New Horizons

Edited by Dr. Soha Maad

ISBN 978-953-51-0604-3

Hard cover, 354 pages

Publisher InTech

Published online 16, May, 2012

Published in print edition May, 2012

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

Grid research, rooted in distributed and high performance computing, started in mid-to-late 1990s. Soon

afterwards, national and international research and development authorities realized the importance of the

Grid and gave it a primary position on their research and development agenda. The Grid evolved from tackling

data and compute-intensive problems, to addressing global-scale scientific projects, connecting businesses

across the supply chain, and becoming a World Wide Grid integrated in our daily routine activities. This book

tells the story of great potential, continued strength, and widespread international penetration of Grid

computing. It overviews latest advances in the field and traces the evolution of selected Grid applications. The

book highlights the international widespread coverage and unveils the future potential of the Grid.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Leyli Mohammad Khanli, Saeed Kargar and Ali Kazemi Niari (2012). A New Approach to Resource Discovery

in Grid Computing, Grid Computing - Technology and Applications, Widespread Coverage and New Horizons,

Dr. Soha Maad (Ed.), ISBN: 978-953-51-0604-3, InTech, Available from:

http://www.intechopen.com/books/grid-computing-technology-and-applications-widespread-coverage-and-

new-horizons/a-new-approach-to-resource-discovery-in-grid-computing



© 2012 The Author(s). Licensee IntechOpen. This is an open access article

distributed under the terms of the Creative Commons Attribution 3.0

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.


