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1. Introduction

Actual task execution models over the networked processors, e.g., cluster, grid and utility
computing have been studied and developed for maximizing the system throughput by
utilizing computational resources. One of major trends in task execution types is to divide
the required data into several pieces and then distribute them to workers like "master-worker
model". In contrast to such a data intensive job, how to divide a computational intensive
job into several execution units for parallel execution is under discussion from theoretical
points of view. If we take task parallelization into account in a grid environment such as a
computational grid environment, an effective task scheduling strategy should be established.
In the light of combining task scheduling concepts and grid computing methodologies,
heterogeneity with respect to processing power, communication bandwidth and so on should
be incorporated into a task scheduling strategy. If we assume the situation where multiple jobs
are being submitted in the unknown number of computational resources over the Internet,
objective functions can be considered as follows: (i) Minimization of the schedule length (the
time duration from per each job, (ii) Minimization of the completion time of the last job, (iii)
Maxmization of the degree of contribution to the total speed up ratio for each computational
resources. As one solution for those three objective functions, in the literature(Kanemitsu,
2010) we proposed a method for minimizing the schedule length per one job with a small
number of computational resources (processors) for a set of identical processors. The objective
of the method is “utilization of computational resources”. The method is based on “task
clustering” (A. Gerasoulis, 1992), in which tasks are merged into one “cluster” as an execution
unit for one processor. As a result, several clusters are generated and then each of which
becomes one assignment unit. The method proposes to impose the lower bound for every
cluster size to limit the number of processors. Then the literature theoretically showed the
near-optimal lower bound to minimize the schedule length.

However, which processor should be assigned to a cluster is not discussed because the
proposal assumes identical processors. If we use one of conventional cluster assignment
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2 Will-be-set-by-IN-TECH

methods such as CHP(C. Boeres, 2004), triplet(B. Cirou, 2001), and FCS(S. Chingchit, 1999),
almost all processors may be assigned to clusters because they try to achieve the maximum
task parallelism to obtain the minimized schedule length. Thus, the third objective function
may not be achieved by those cluster assignment strategies.

In this chapter, we propose a method for deriving the lower bound of the cluster size
in heterogeneous distributed systems and a task clustering algorithm. From results of
experimental simulations, we discuss the applicability of the proposal to obtain better
processor utilization.

The remainder of this chapter is organized as follows. Sec. 2 presents other conventional
approaches related to task clustering for heterogeneous distributed systems, and sec. 3
presents our assumed model, then the lower bound of the cluster size is derived in sec. 4.
Sec. 5 presents a task clustering algorithm which adopts the lower bound shown in sec. 4.
Experimental results are shown in sec. 6, and finally we present conclusion and future works
in sec. 7.

2. Related works

In a distributed environment, where each processor is completely connected, task
clustering(A. Gerasoulis, 1992; T. Yang, 1994; J. C. Liou, 1996) has been known as one of task
scheduling methods. In a task clustering, two or more tasks are merged into one cluster by
which communication among them is localized, so that each cluster becomes one assignment
unit to a processor. As a result, the number of clusters becomes that of required processors.
On the other hand, if we try to perform a task clustering in a heterogeneous distributed
system, the objective is to find an optimal processor assignment, i.e., which processor should
be assigned to the cluster generated by a task clustering. Furthermore, since the processing
time and the data communication time depend on each assigned processor’s performance,
each cluster should be generated with taking that issue into account. As related works for
task clustering in heterogeneous distributed systems, CHP(C. Boeres, 2004), Triplet(B. Cirou,
2001), and FCS(S. Chingchit, 1999) have been known.

CHP(C. Boeres, 2004) firstly assumes that "virtual identical processors", whose processing
speed is the minimum among the given set of processors. Then CHP performs task clustering
to generate a set of clusters. In the processor assignment phase, the cluster which can be
scheduled in earliest time is selected, while the processor which has possibility to make
the cluster’s completion time earliest among other processors is selected. Then the cluster
is assigned to the selected processor. Such a procedure is iterated until every cluster is
assigned to a processor. In CHP algorithm, an unassigned processor can be selected as a next
assignment target because it has no waiting time. Thus, each cluster is assigned to different
processor, so that many processors are required for execution and therefore CHP can not lead
to the processor utilization.

In Triplet algorithm(B. Cirou, 2001), task groups, each of which consists of three tasks, named
as "triplet" according to data size to be transferred among tasks and out degree of each task.
Then a cluster is generated by merging two triplets according to its execution time and data
transfer time on the fastest processor and the slowest processor. On the other hand, each
processor is grouped as a function of its processing speed and communication bandwidth,
so that several processor groups are generated. As a final stage, each cluster is assigned to a
processor groups according to the processor group’s load. The processor assignment policy in
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On the Effect of Applying the Task Clustering for Identical Processor Utilization to Heterogeneous Systems 3

Triplet is that one cluster is assigned a processor groups composed of two or more processors.
Thus, such a policy does not match with the concept of processor utilization.

In FCS algorithm(S. Chingchit, 1999), it defines two parameters, i.e., β: total task size to total
data size ratio (where task size means that the time unit required to execute one instruction)
for each cluster and τ: processing speed to communication bandwidth ratio for each processor.
During task merging steps are performed, if β of a cluster exceeds τ of a processor, the cluster
is assigned to the processor. As a result, the number of clusters depends on each processor’s
speed and communication bandwidth. Thus, there is one possibility that "very small cluster"
is generated and then FCS can not match with the concept of processor utilization.

3. Assumed model

3.1 Job model

We assume a job to be executed among distributed processor elements (PEs) is a Directed
Acyclic Graph (DAG), which is one of task graphs. Let Gs

cls = (Vs, Es, Vs
cls) be the DAG, where

s is the number of task merging steps(described in sec. 3.2), Vs is the set of tasks after s task
merging steps, Es is the set of edges (data communications among tasks) after s task merging
steps, and Vs

cls is the set of clusters which consists of one or more tasks after s task merging
steps. An i-th task is denoted as ns

i . Let w(ns
i ) be a size of ns

i , i.e., w(ns
i ) is the sum of unit times

taken for being processed by the reference processor element. We define data dependency
and direction of data transfer from ns

i to ns
j as es

i,j. And c(es
i,j) is the sum of unit times taken for

transferring data from ns
i to ns

j over the reference communication link.

One constraint imposed by a DAG is that a task can not be started execution until all data from
its predecessor tasks arrive. For instance, es

i,j means that ns
j can not be started until data from

ns
i arrives at the processor which will execute ns

j . And let pred(ns
i ) be the set of immediate

predecessors of ns
i , and suc(ns

i ) be the set of immediate successors of ns
i . If pred(ns

i ) = ∅, ns
i is

called START task, and if suc(ns
i ) = ∅, ns

i is called END task. If there are one or more paths
from ns

i to ns
j , we denote such a relation as ns

i ≺ ns
j .

3.2 Task clustering

We denote the i-th cluster in Vs
cls as clss(i). If ns

k is included in clss(i) by "the s + 1 th task
merging", we formulate one task merging as clss+1(i) ← clss(i) ∪ {ns

k}. If any two tasks, i.e.,
ns

i and ns
j , are included in the same cluster, they are assigned to the same processor. Then

the communication between ns
i and ns

j is localized, so that we define c(es
i,j) becomes zero.

Task clustering is a set of task merging steps, that is finished when certain criteria have been
satisfied.

Throughout this chapter, we denote that clss(i) is “linear” if and only if clss(i) contains no
independent task(A. Gerasoulis, 1993). Note that if one cluster is linear, at least one path
among any two tasks in the cluster exists and task execution order is unique.

3.3 System model

We assume that each PE is completly connected to other PEs, with non-identical processing
speeds and communication bandwidths The set of PEs is expressed as P = {P1, P2, . . . , Pm},
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Parameter Definition

tops(i)
{

ns
k|∀ns

l ∈ pred(ns
k)s.t., ns

l /∈ clss(i)
}

∪ {START Tasks ∈ clss(i)}.

ins(i)
{

ns
k|∃ns

l ∈ pred(ns
k)s.t., ns

l /∈ clss(i)
}

∪ {START Tasks ∈ clss(i)}.

outs(i)
{

ns
k|∃ns

l ∈ suc(ns
k)s.t., ns

l /∈ clss(i)
}

∪ {END Tasks ∈ clss(i)}.

btms(i)
{

ns
k|∀ns

l ∈ suc(ns
k), s.t., ns

l /∈ clss(i)
}

∪ {END Tasks ∈ clss(i)}.

desc(ns
k, i) {ns

l |ns
k ≺ ns

l , ns
l ∈ clss(i)} ∪ {ns

k}
S(ns

k, i) ∑ns
l∈clss(i) tp(ns

l , αp)− ∑ns
l∈desc(ns

k ,i) tp(ns
l , αp)

tlevel(ns
k)

{

max
ns

l∈pred(ns
k)

{

tlevel(ns
l ) + tp(ns

l , αp) + tc(el,k, βq,p)
}

, i f ns
k ∈ tops(i).

TLs(i) + S(ns
k, i), otherwise.

TLs(i) max
ns

k∈tops(i)

{

tlevel(ns
k)
}

blevel(ns
k) max

ns
l∈suc(ns

k)

{

tp(ns
k, αp) + tc(es

k,l , βp,q) + blevel(ns
l )
}

level(ns
k) tlevel(ns

k) + blevel(ns
k)

BLs(i) max
ns

k∈outs(i)

{

S(ns
k, i) + blevel(ns

k)
}

LVs(i) TLs(i) + BLs(i) = max
ns

k∈clss(i)

{

level(ns
k)
}

φs {. . . ,< clss(i), Pp >, . . . }
slw(Gs

cls, φs) max
clss(i)∈Vs

cls

{LVs(i)}

Table 1. Parameter Definition Related to slw(Gs
cls) (Here ns

k ∈ clss(i)).

and let the set of processing speeds as alpha, i.e., α = {α1, α2, . . . , αm}. Let the set of
communication bandwidths as β, i.e.,

β =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

∞ β1,2 β1,3 . . . β1,m

β2,1 ∞ β2,3 . . . β2,m

β3,1 β3,2 ∞ . . . β3,m
...

...
...

...
...

βm,1 βm,2 βm,3 . . . ∞

⎞

⎟

⎟

⎟

⎟

⎟

⎠

. (1)

βi,j means the communication bandwidth from Pi to Pj. The processing time in the case that
ns

k is processed on Pi is expressed as tp(ns
k, αi) = w(ns

k)/αi. The data transfer time of es
k,l over

βi,j is tc(es
i,j, βk,l) = c(es

i,j)/βk,l . This means that both processing time and data transfer time

are not changed with time, and suppose that data transfer time within one PE is negligible.

4. Processor utilization

4.1 The indicative value for the schedule length

The schedule length depends on many factors, i.e., execution time for each task,
communication time for each data exchanged among tasks, execution order after the task
scheduling, processing speed, and communication bandwidth. Furthermore, whether a data
transfer time can be localized or not depends on the cluster structure. The proposed method
is that a cluster is generated after the lower bound of the cluster size (the total execution
time of every task included in the cluster) has been derived. The lower bound is decided
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On the Effect of Applying the Task Clustering for Identical Processor Utilization to Heterogeneous Systems 5

when the indicative value for the schedule length is minimized. In this chapter, the indicative
value is defined as slw(Gs

cls, φs), that means the indicative value for the schedule length
after s task merging steps and φs is the set of mapping between PEs and clusters after s
task merging steps. slw(Gs

cls, φs) is the maximum value of the execution path length which
includes both task execution time and data transfer time, provided that each task is scheduled
as late as possible and every data from its immediate predecessors has been arrived before
the scheduled time (its start time). Table 1 shows notations and definitions for deriving
slw(Gs

cls, φs). In the table, assigned PEs for clss(i) and clss(j) are Pp and Pq, respectively. And
suppose ns

k ∈ clss(i), ns
l ∈ clss(j). In table 1, especially S(ns

k, i) means the degree of increase of
execution time by independent tasks for ns

k. Threrfore, the smaller S(ns
k, i), the earlier ns

k can be
scheduled. The task ns

k which dominates slw(Gs
cls, φs) (In the case of slw(Gs

cls, φs) = level(ns
k))

means that the schedule length may be maximized if ns
k is scheduled as late as possible.

Example 1. Fig. 1 shows one example for deriving slw(Gs
cls, φs)(s = 5). In the figure, there are two

PEs, i.e., P1 and P2. The DAG has two clusters, i.e., cls5(1) and cls5(4) after 5 task merging steps.
In (a), numerical values on tasks and edges mean the time unit to be processed on the reference PE
and the time unit to be transferred among reference PEs on the reference communication bandwidth.
On the other hand, (b) corresponds to the state that cls5(1) and cls5(4) have been assigned to P1 and
P2, respectively. The bottom are shows the derivation process for slw(G5

cls, φ5). From the derivation

process, it is shown that the schedule length may be maximized if n5
2 is scheduled as late as possible.

4.2 Relationship between slw(Gs
cls, φs) and the schedule length

Our objective is to minimize slw(Gs
cls, φs) with maintaining the certain size of each cluster for

processor utilization. The schedule length can not be known before scheduling every task,
we must estimate it by using slw(Gs

cls, φs). Thus, it must be proved that slw(Gs
cls, φs) can

effect on the schedule length. In this section, we show that minimizing slw(Gs
cls, φs) leads

to minimizing the schedule length to some extent. In this section we present that relationship
between Table 2 shows notations for showing characteristics of slw(Gs

cls, φs). In an identical
processor system, provided that every processor speed and communication bandwidth are
1, no processor assignment policy is needed. Thus, let slw(Gs

cls, φs) in an identical processor
system as slw(Gs

cls). In the literature (Kanemitsu, 2010), it is proved that minimizing slw(Gs
cls)

leads to minimizing the lower bound of the schedule length as follows.

Lemma 1. In an identical processor system, let ∆sls−1
w,up which satisfies slw(Gs

cls)− cp ≤ ∆sls−1
w,up and

be derived before s task merging steps. Then we obtain

sl(Gs
cls) ≥

slw(Gs
cls)− ∆sls−1

w,up

1 + 1
gmin

, (2)

where cp and gmin are defined in table 2, and sl(Gs
cls) is the schedule length after s task merging steps.

�

As for ∆sls−1
w,up, it is defined in the literature (Kanemitsu, 2010). Furthermore, it can be proved

that the upper bound of the schedule length can be reduced by reducing slw(Gs
cls) by the

following lemma.
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5cls (1)

5cls (4)

1P 2P
1,2 0.5β =

2,1  2β =

assign

assign

1 = 4α 2 = 2α

5cls (1)

5cls (4)

5

1n

5

2n
5

3n

5

6n

5

4n

5

5n

5

7n

5

5 4

5

6 5 p 4

5 5 5 5

4 p 4 5 6

5

4

- - - - - - cls (4) section- - - - - -

TL (4) = tlevel(n ) = 0.5 +8 = 8.5,

tlevel(n ) = TL (4) + t (n ) = 8.5 + 0.5 = 9,

blevel(n ) = t (n ) + max{1+ blevel(n ), blevel(n )}

                 = 0.5 + max{1+12,3.5} = 13.5

level(n ) = 22,

tlev

5
k 5

5 5 5

7 5 p 4 p 6

5

7

5

7

5 5

5 k k
n out (4)

5 5

4 4

5

5 5 5 4

el(n ) = TL (4) + t (n ) + t (n ) = 8.5 + 0.5 + 2.5 = 11.5,

blevel(n ) = 1, 

level(n ) = 12.5,

BL (4) = max {S(n ,4) + blevel(n )}

          = S(n ,4) + blevel(n ) = 0 +13.5 13.5,

LV (4) = TL (4) + BL (4) = level(n ) 8.

∈

=

=

5

5 5

w cls 5 5 5 2

5 +13.5 = 22.

- - - - - - cls (4) section END- - - - - -

sl (G , ) = max{LV (1),LV (4)} = LV (1) = level(n ) = 25.φ

5

1n

5

2n
5

3n 5

4n

5

6n5

5n

5

7n

5 5

5 1 5 4

5 5 5 5

5 1 5 5 4 7

5 5 5 5 5

5 1 2 5 5 4 7

5 5 5

5 2 5 5 7

5

5

5 1

5

2 5

top (1) = {n }, top (4) = {n },

in (1) = {n ,n },in (4) = {n ,n }

out (1) = {n ,n ,n }, out (4) = {n ,n }

btm (1) = {n ,n }, btm (4) = {n }

- - - - - - cls (1) section- - - - - -

TL (1) = tlevel(n ) = 0, 

tlevel(n ) = TL (1 5 5 5 5

2 p 1 1 p 3 1 p 5 1

5 5 5 5

2 p 2 2,7 1,2 7

5

2

5 5 5 5

3 5 3 p 1 p 2

5 5

3 p 3

) +S(n ,1) = 0 + t (n , ) + t (n , ) + t (n , ) = 3,

blevel(n ) = t (n ) + t (e , ) + blevel(n ) = 1+ 20 +1 = 22,  

level(n ) = 25,

tlevel(n ) = TL (1) +S(n ,1) = 0 + t (n ) + t (n ) = 0.5 1 1.5,

blevel(n ) t (n ) + t (

c

c

α α α

β

+ =

= 5 5

3,5 1,2 5

5

3

5

1

5 5 5 5 5 5

1 p 1 2 3 1,4 1,2 4

5

1

e , ) + blevel(n ) 1.5 0 1 10 1 13.5,

level(n ) 15,

S(n ,1) = 0, 

blevel(n ) = t (n ) + max{blevel(n ), blevel(n ), t (e , ) + blevel(n )}

                = 0.5 + max{22, 13.5, 8 +13.5} = 22.5 level(n

c

β

β

= + + + + =

=

=

5
k 5

5 5 5 5 5

5 5 5 p 1 p 2 p 3

5

5

5

5

5 5

5 k k
n out (1)

5 5

2 2

5 5 5

), 

tlevel(n ) = TL (1) +S(n ,1) = 0 + t (n ) + t (n ) + t (n ) = 3,

blevel(n ) = 4 + 5 + 2 = 12,  

level(n ) = 15,

BL (1) = max {S(n ,1) + blevel(n )}

          = S(n ,1) + blevel(n ) = 25,

LV (1) = TL (1) + BL (1) = level

∈

5

2

5

(n ) = 25.

- - - - - - cls (1) section END- - - - - -

(a) After 5 tesk merging steps have been done. (b) After processor assignments have been done.

Fig. 1. Example of slw(G5
cls, φ5) derivation.

Lemma 2. In an identical processor system, if sl(GS
cls) ≤ cp, then we obtain

sl(GS
cls) ≤ slw(G

S
cls) +max

p∈G0
cls

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

∑
n0

k ,n0
l ∈p,

n0
k∈pred(n0

l )

c(e0
k,l)

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

.� (3)
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Proof. In seq≺s , some edges are localized and others may be not localized. Furthermore, edges
in seq≺s do not always belong to the critical path. Then we have the following relationship.

− max
p∈G0

cls

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

∑
n0

k ,n0
l ∈p,

n0
k∈pred(n0

l )

c(e0
k,l)

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

≤ slw(G
S
cls)− cp. (4)

Also, only in the case of sl(GS
cls) ≤ cp, we have the following rlationship.

slw(G
S
cls)− cp ≤ slw(G

S
cls)− sl(GS

cls)

⇔ − max
p∈G0

cls

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

∑
n0

k ,n0
l ∈p,

n0
k∈pred(n0

l )

c(e0
k,l)

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

≤ slw(G
S
cls)− sl(GS

cls)

⇔ sl(GS
cls) ≤ slw(G

S
cls) +max

p∈G0
cls

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

∑
n0

k ,n0
l ∈p,

n0
k∈pred(n0

l )

c(e0
k,l)

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

. (5)

From lemma 1 and 2, it is concluded that in an identical processor system the schedule length
can be minimized if slw(Gcls) is minimized.

As a next step, we show the relationship between slw(Gs
cls, φs) and the schedule length in a

heterogeneous distributed system. The following lemma is proved in the literature (Sinnen,
2007).

Lemma 3. In an identical processor system, we have

cpw ≤ sl(Gs
cls).� (6)

In a heterogeneous distributed system, we assume the state like fig. 2, i.e., at the initial state
every task is assigned a processor with the fastest and the widest communication bandwidth
(let the processor as Pmax). In fig. 2 (a), each task belongs to respective processor. Furthermore,
we virtually assign Pmax to each task to decide the processing time for each task and the data
transfer time among any two tasks. Let the mapping as φ0. Under the situation, we have the
following corollary.

Corollary 1. In a heterogeneous distributed system, let cpw(φ0) as the one with the mapping φ0 in
the table 2. Then we have

cpw(φ0) ≤ sl(Gs
cls, φs).� (7)

As for the relationship between cp and cpw, in the literature (Sinnen, 2007), the following is
proved.
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assign

0

1n

0

2n
0

3n
0

4n

0

6n0

5n

0

7n

assign

0

cls 0(a) Initial state (DAG : G , Assignment : ).φ

5

1n

5

2n
5

3n
5

4n

5

6n5

5n

5

7n

5cls (1)

5cls (4)

assign
assign

0cls (1)

0cls (2)

5

cls 5(b) The state after task clustering (DAG : G , Assignment : ).φ

0cls (3)

0cls (4)

0cls (5)
0cls (6)

1P 2PmaxP

maxP

maxP

maxP

maxP

maxP

{ }
i

icpu speed max
α ∈α

= α { }
i , j

i, jbandwidth  max
β ∈β

= β

Fig. 2. Assumed condition during cluster generation procedures.

Parameter Definition

p One path of G0
cls, i.e., {n0

0, n0
1, n0

2, . . . , n0
k} ∪ {e0

0,1, e0
1,2, . . . e0

k−1,k},

by which a sequence < n0
0, n0

1, n0
2, . . . , n0

k > is constructed, where e0
l−1,l ∈ E0,

n0
0 is a START task and n0

k is an END task.

seq≺s One path in which every task belongs to seqs.

seq≺s (i) Set of subpaths in each of which every task in clss(i) belongs to seq≺s .

proc(ns
k) The processor to which ns

k has been assigned.

cp max
p

⎧

⎨

⎩

∑
n0

k∈p

w(ns
k) + ∑

e0
k,l∈p

c(es
k,l)

⎫

⎬

⎭

.

cp(φs) max
p

{

∑
ns

k∈p
tp(ns

k, αp) + ∑
es

k,l∈p
tc(c(es

k,l), βp,q)

}

, where ns
k, ns

l are assigned to Pp, Pq.

cpw max
p∈G0

cls

{

∑
n0

k∈p

w(n0
k)

}

.

cpw(φs) max
p∈Gs

cls

{

∑
ns

k∈p
tp(ns

k, αp)

}

gmin min
n0

k∈V0
cls

⎧

⎪

⎨

⎪

⎩

min
n0

j
∈pred(n0

k
)

{

w(n0
j )
}

max
n0

j
∈pred(n0

k
)

{

c(e0
j,k)

} ,

min
n0

l
∈suc(n0

k
)
{w(n0

l )}
max

n0
l
∈suc(n0

k
)
{c(e0

k,l)}

⎫

⎪

⎬

⎪

⎭

.

gmax max
n0

k∈V0
cls

⎧

⎪

⎨

⎪

⎩

max
n0

j
∈pred(n0

k
)

{

w(n0
j )
}

min
n0

j
∈pred(n0

k
)

{

c(e0
j,k)

} ,

max
n0

l
∈suc(n0

k
)
{w(n0

l )}
min

n0
l
∈suc(n0

k
)
{c(e0

k,l)}

⎫

⎪

⎬

⎪

⎭

.

Table 2. Parameter Definitions which are used in analysis on slw(Gs
cls, φs).
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Lemma 4. In an identical processor system, by using gmin defined in table 2, we have

cp ≤
(

1 +
1

gmin

)

cpw.� (8)

By using lemma 4, in a heterogeneous distributed system, the following is derived.

Corollary 2. In a heterogeneous distributed system, we have

cp(φs) ≤
(

1 +
1

gmin(φs)

)

cpw(φs).� (9)

From corollary 1, the following is derived.

Corollary 3. In a heterogeneous distributed system, we have

cpw(φ0) ≤ cpw(φs) ≤ sl(Gs
cls, φs).� (10)

From corollary 2 and 3, the following theorem is derived.

Thorem 4.1. In a heterogeneous distributed system, let the DAG after s task merging steps as Gs
cls.

And assume every cluster in Vs
cls is assigned to a processor in P. Let the schedule length as sl(Gs

cls, φs).

If we define ∆sls−1
w,up that satisfies slw(Gs

cls, φs)− cp(φ0) ≤ ∆sls−1
w,up, the following relationship is

derived.

sl(Gs
cls, φs) ≥

slw(Gs
cls, φs)− ∆sls−1

w,up

1 + 1
gmin(φ0)

. (11)

Proof. From the assumption and corollary 2, we have

slw(G
s
cls, φs)−

(

1 +
1

gmin(φ0)

)

cpw(φ0) ≤ ∆sls−1
w,up. (12)

Also, from corollary 3, we obtain cpw(φ0) ≤ sl(Gs
cls, φs). Thus if this is applied to (12), we

have

slw(G
s
cls, φs)−

(

1 +
1

gmin(φ0)

)

sl(Gs
cls, φs) ≤ ∆sls−1

w,up (13)

⇔ (14)

sl(Gs
cls, φs) ≥

slw(Gs
cls, φs)− ∆sls−1

w,up

1 + 1
gmin(φ0)

. (15)

Assume that ∆sls−1
w,up is the value which is decided after s − 1 task merging steps. Since

cp(φ0) = slw(G
0
cls, φ0), (16)
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this value is an upper bound of increase in terms of slw(Gs
cls, φs) and can be defined in any

policy, e.g., the slowest processor is assigned to each cluster and so on. However, at least
∆sls−1

w,up must be decided before s task merging steps. From the theorem, it can be said

that reducing slw(Gs
cls, φs) leads to reduction of the lower bound of the schedule length in

a heterogeneous distributed system.

As for the upper bound of the schedule length, the following theorem is derived.

Thorem 4.2. In a heterogeneous distributed sytem, if and only if
sl(Gs

cls, φs) ≤ cp(φ0) = sl(G0
cls, φ0), we have

sl(Gs
cls, φs) ≤ slw(G

s
cls, φs) + ζ − λ − µ, (17)

where

ζ = max
p

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

∑
n0

k ,n0
l ∈p,

n0
k∈pred(n0

l ),

tc(es
k,l ,max

βi,j∈β
{βi,j})=0

tc(e
0
k,l , max

βi,j∈β

{

βi,j

}

)

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

, (18)

λ = min
p

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

∑
n0

k∈p,

proc(ns
k)=pm

(

tp(n
s
k, αm)− tp(n

0
k , max

αi∈α
{αi})

)

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

, (19)

µ = min
p

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

∑
n0

k ,n0
l ∈p,proc(ns

k)=Pi,

proc(ns
l )=Pj ,

n0
k∈pred(n0

l )

(

tc(e
s
k,l , βi,j)− tc(e

0
k,l , max

βi,j∈β

{

βi,j

}

)

)

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎭

. (20)

p and proc(n0
k) are defined in table 2. That is, ζ, λ, µ is derived by scanning every path in the DAG.

Proof. After s task merging steps, there may be both localized edges and not localized edges
which compose slw(Gs

cls, φs). Obviously, we have slw(G0
cls, φ0) = cp(φ0), such edges are not

always ones which belongs to cp(φ0). Therefore the lower bound of slw(Gs
cls, φs)− cp(φ0) can

be derived by three factors, i.e., decrease of the data transfer time by localization in one path,
increase of the processing time by task merging steps (from φ0 to φs), and increase of data
transfer time for each unlocalized edges (from φ0 to φs). The localized data transfer time is
derived by taking the sum of localized data transfer time for one path. On the other hand, if
increase of the processing time is derived by taking the minimum of the sum of increase of
task processing time from φ0 to φs for each path, this value is λ or more. The unlocalized data
transfer time is expressed as µ. Then we have

− ζ + λ + µ ≤ slw(G
s
cls, φs)− cp(φ0). (21)
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If sl(Gs
cls, φs) ≤ cp(φ0) = sl(G0

cls, φ0), we obtain

−ζ + λ + µ ≤ slw(G
R
cls, φR)− sl(GR

cls, φR) (22)

⇔ sl(GR
cls, φR) ≤ slw(G

R
cls, φR) + ζ − λ − µ. (23)

Theorem 4.2 is true if we adopt a clustering policy such that sl(Gs
cls, φs) ≤ sl(Gs−1

cls , φs−1).
From theorem 4.1 and 4.2, it can be concluded that reducing the slw(Gs

cls, φs) leads to the
reduction of the schedule length in a heterogeneous distributed system. Thus, the first
objective of our proposal is to minimize slw(Gs

cls, φs).

4.3 The lower bound of each cluster size

To achieve processor utilization, satisfying only "slw(Gs
cls, φs) minimization" not enough,

because this value does not guarantee each cluster size. Thus, in this section we present how
large each cluster size should be. In the literature (Kanemitsu, 2010), the lower bound of each
cluster size in an identical processor system is derived as follows.

δopt =

√

√

√

√

√

√

cpw max
n0

k∈V0

⎧

⎪

⎨

⎪

⎩

max
n0

l ∈V0
cls

{

w(n0
l )
}

gmax

⎫

⎪

⎬

⎪

⎭

. (24)

(24) is the lower bound of each cluster size when slw(GR
cls) can be minimized, provided that

every cluster size is above a certain threshold, δ. And R corresponds to the number of merging
steps when every cluster size is δopt or more. If taking the initial state of the DAG in a
heterogeneous system into account, δopt is expressed by δopt(φ0) as follows.

δopt(φ0) =

√

√

√

√

√

√

√

√

cpw(φ0) max
n0

l ∈V0

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

max
n0

l ∈V0

{

tp(n0
l , max

αi∈α
{αi})

}

gmax(φ0)

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

. (25)

By imposing δopt(φ0), it can be said that at least slw(G0
cls, φ0) can be minimized. However,

for s ≥ 1 slw(Gs
cls, φs) can not always be minimized by δopt(φ0), because the mapping of each

cluster and each processor is changed and then slw(Gs
cls, φs) is not equal to slw(G0

cls, φ0). In
this chapter, one heuristic of our method is to impose the same lower bound (δopt(φ0)) for
every cluster which will be generated by the task clustering.

5. Task clustering algorithm

5.1 Overview of the algorithm

In the previous section, we presented how large each cluster size should be set for processor
utilization. In this section, we present the task clustering algorithm with incorporating the
following two requirements.

1. Every cluster size is δopt(φ0) or more.
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2. Minimize slw(GR
cls, φR), where R is the total number of merging steps until the first

requirement is satisfied.

Fig. 3 shows the task clustering algorithm. At first, the mapping φ0 is applied to every task.
Then δopt(φ0) is derived. Before the main procedures, two sets are defined, i.e., UEXs and
RDYs. UEXs is the set of clusters whose size is smaller than δopt(φ0), and RDYs is defined as
follow.

RDYs = {clss(r)|clss(r) ∈ UEXs, pred(ns
r′ ) = ∅, clss(r) = {ns

r′}}

∪
{

clss(r)|clss(r) ∈ UEXs, clss(q) /∈ UEXs,
ns

q′ ∈ clss(q), ns
q′ ∈ pred(ns

r′ ) f or ∀ns
r′ ∈ tops(r)

}

. (26)

RDYs is the set of clusters whose preceding cluster sizes are δopt(φ0) or more. That is, the
algorithm tries to merge each cluster in top-to-bottom manner.

The algorithm is proceeded during UEXs �= ∅, which implies that at least one cluster in UEXs

exists. At line 3, one processor is selected by a processor selection method, e.g., by CHP(C.
Boeres, 2004) (In this chapter, we do not present processor selection methods). At line 4, one
cluster is selected as pivots, which corresponds to "the first cluster for merging". Once the
pivots is selected, "the second cluster for merging", i.e., targets is needed. Thus, during line
5 to 7, procedures for selecting targets and merging pivots and targets are performed. After
those procedures, at line 7 RDYs is updated to become RDYs+1, and pivots is also updated to
become pivots+1. Procedures at line 6 and 7 are repeated until the size of pivots is δopt(φ0) or
more. The algorithm in fig. 3 has common parts with that of the literature (Kanemitsu, 2010),
i.e., both algorithms use pivots and targets for merging two clusters until the size of pivots

exceeds a lower bound of the cluster size. However, one difference among them is that the
algorithm in fig. 3 keeps the same pivots during merging steps until its size exceeds δopt(φ0),
while the algorithm in (Kanemitsu, 2010) selects the new pivots in every merging step. The
reason of keeping the same pivots is to reduce the time complexity in selection for pivots,
which requires scanning every cluster in RDYs. As a result, the number of scanning RDYs can
be reduced with compared to that of (Kanemitsu, 2010).

5.2 Processor assignment

In the algorithm presented in fig. 3, the processor assignment is performed before selecting
pivots. Suppose that a processor Pp is selected before the s + 1th merging step. Then we
assume that Pp is assigned to every cluster to which Pmax is assigned, i.e., no actual processor
has been assigned. By doing that, we assume that such unassigned clusters are assigned to
"an identical processor system by Pp" in order to select pivots. Fig. 4 shows an example of
the algorithm. In the figure, (a) is the state of φ2, in which the size of cls2(1) is δopt(φ0) or

more. Thus, RDY2 =
{

cls2(3) =
{

n2
3

}

, cls2(4) =
{

n2
4

}

, cls2(7) =
{

n2
7

}}

. The communication
bandwidth from P1 to Pmax is set as min

1≤q≤m,1 �=q

{

β1,q

}

in order to regard communication

bandwidth between an actual processor and Pmax bottleneck in the schedule length. In (b),
it is assumed that every cluster in UEX2 is assigned to Pp after Pp is selected. Bandwidths

among Pp are set as min
1≤q≤m,p �=q

{

βp,q
}

to estimate the slw(G2
cls, φ2) of the worst case. Therefore,

pivot2(in this case, cls2(3)) is selected by deriving LV value for each cluster in RDY2, provided
that such a mapping state. After (b), if the size of cls3(3) is smaller than δopt(φ0), every cluster
in UEX3 is still assigned to Pp to maintain the mapping state. In (d) if the size of cls4(3)

40 Grid Computing – Technology and Applications, Widespread Coverage and New Horizons

www.intechopen.com



On the Effect of Applying the Task Clustering for Identical Processor Utilization to Heterogeneous Systems 13

INPUT: G0
cls

OUTPUT: GR
cls

Set the mapping φ0 to the input DAG.
Define UEXs as a set of clusters whose size is under δopt(φ0);
Define RDYs as a set of clusters which statisies eq. (26).;

For each nk ∈ V, let n0
k ← nk , cls0(k) = {n0

k} and put cls0(k) into V0
cls.

0. Derive δopt(φ0) by eq. (25).

1. E0 ← E, UEX0 ← V0
cls, RDY0 ← {cls0(k)|cls0(k) = {n0

k}, pred(n0
k) = ∅};

2. WHILE UEXs �= ∅ DO
3. select a processor Pp from P;

4. pivots ← getPivot(RDYs);
5. WHILE size of pivots < δopt(φ0) DO

6. targets ← getTarget(pivots);
7. RDYs+1 ← merging(pivots, targets) and update pivots;
8. ENDWHILE
9. ENDWHILE

10. RETURN GR
cls;

Fig. 3. Procedures for the Task Clustering.

exceeds δopt(φ0), the mapping is changed i.e., clusters in UEX4 are assigned to Pmax to select
the new pivot4 for generating the new cluster.

5.3 Selection for pivots and targets

As mentioned in 5.1, one objective of the algorithm is to minimize slw(GR
cls, φR). Therefore, in

RDYs, pivots should have maximum LV value (defined in table 1), because such a cluster may

dominate slw(Gs
cls, φs) and then slw(G

s+1
cls , φs+1) after s + 1 th merging may became lower than

slw(Gs
cls, φs). Our heuristic behined the algorithm is that this policy for selecting pivots can

contribute to minimize slw(GR
cls, φR). The same requirement holds to the selection of targets,

i.e., targets should be the cluster which dominates LV value of pivots. In fig. 4 (b), cls2(3)
having the maximum LV value in RDY2 is selected. Then n2

6, i.e., cls2(6) dominating LV2(3)

is selected as target2. similarly in (c) n3
5, i.e., cls3(5) dominating LV3(3) is selected as target3.

5.4 Merging pivots and targets

After pivots and targets have been selected, the merging procedure, i.e.,

pivots+1 ← pivots ∪ targets (27)

is performed. This procedure means that every cluster in targets is included in pivots+1.
Then pivots and targets are removed from UEXs and RDYs. After this merging step has been
performed, clusters satisfying requirements for RDYs+1(in eq. (26)) are included in RDYs+1.
Furthermore, every cluster’s LV value is updated for selecting pivots+1 and targets+1 before
the next merging step.

6. Experiments

We conducted the experimental simulation to confirm advantages of our proposal. Thus, we
compared with other conventional methods in terms of the following points of view.
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Fig. 4. Example of the Task Clustering Algorithm.

1. Whether minimizing slw(GR
cls, φR) leads to minimzing the schedule length or not.

2. The range of applicability by imposing δopt(φ0) as the lower bound of every cluster size.

We showed by theorem 4.1 and 4.2 that both the lower bound and the upper bound of the
schedule length can be expressed by slw(Gs

cls, φs). Thus, in this experiment we confirm that
the actual relationship between the schedule length and slw(Gs

cls, φs).

6.1 Experimental environment

In the simulation, a random DAG is generated. In the DAG, each task size and each data size
are decided randomly. Also CCR (Communication to Computation Ratio)(Sinnen, 2005; 2007)
is changed from 0.1 to 10. The max to min ratio in terms of data size and task size is set to 100.
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Also we decided the Parallelism Factor (PF) is defined as ρ, taking values of 0.5, 1.0, and 2.0

(H. Topcuoglu, 2002). By using PF, the depth of the DAG is defined as

√
|V0|
ρ .

The simulation environment was developed by JRE1.6.0_0, the operating system is Windows
XP SP3, the CPU architecture is Intel Core 2 Duo 2.66GHz, and the memory size is 2.0GB.

6.2 Comparison about slw(GR
cls, φR) and the schedule length

In this experiment, we compared slw(GR
cls, φR) and the schedule length to confirm the validity

of theorem 4.1 and 4.2. Comparison targets are as follows.

No. α β CCR |VR
cls| slw(GR

cls, φR) Ratio sl(GR
cls, φR) Ratio

A B C A B C
1 5 5 0.1 168 1.000 1.054 1.097 1.000 1.018 1.123
2 1.0 56 1.000 1.241 1.391 1.000 1.131 1.209
3 5.0 34 1.000 1.320 1.514 1.000 1.140 1.288
4 10.0 19 1.000 1.378 1.611 1.000 1.219 1.341
5 5 10 0.1 160 1.000 1.072 1.105 1.000 1.012 1.073
6 1.0 49 1.000 1.203 1.419 1.000 1.144 1.248
7 5.0 30 1.000 1.355 1.428 1.000 1.172 1.301
8 10.0 16 1.000 1.329 1.503 1.000 1.237 1.344
9 10 5 0.1 150 1.000 1.032 1.066 1.000 1.016 1.071
10 1.0 47 1.000 1.177 1.284 1.000 1.097 1.198
11 5.0 41 1.000 1.209 1.615 1.000 1.173 1.291
12 10.0 26 1.000 1.482 1.598 1.000 1.227 1.302
13 10 10 0.1 187 1.000 1.069 1.044 1.000 1.044 1.050
14 1.0 67 1.000 1.292 1.157 1.000 1.179 1.132
15 5.0 44 1.000 1.344 1.419 1.000 1.203 1.297
16 10.0 28 1.000 1.461 1.433 1.000 1.272 1.301

Table 3. Comparison of slw(GR
cls, φR) and the Schedule Length in Random

DAGs(|V0| = 1000).

No. α β CCR |VR
cls| slw(GR

cls, φR) Ratio sl(GR
cls, φR) Ratio

A B C A B C
1 5 5 0.1 351 1.000 1.032 1.041 1.000 1.021 1.049
2 1.0 144 1.000 1.193 1.241 1.000 1.098 1.142
3 5.0 78 1.000 1.216 1.266 1.000 1.126 1.172
4 10.0 44 1.000 1.272 1.371 1.000 1.190 1.193
5 5 10 0.1 346 1.000 1.048 1.044 1.000 1.013 1.013
6 1.0 136 1.000 1.177 1.233 1.000 1.133 1.152
7 5.0 75 1.000 1.242 1.385 1.000 1.152 1.189
8 10.0 41 1.000 1.238 1.411 1.000 1.273 1.206
9 10 5 0.1 344 1.000 1.022 1.037 1.000 1.044 1.031
10 1.0 135 1.000 1.093 1.133 1.000 1.086 1.099
11 5.0 72 1.000 1.203 1.192 1.000 1.173 1.162
12 10.0 39 1.000 1.288 1.370 1.000 1.234 1.221
13 10 10 0.1 367 1.000 1.017 1.041 1.000 1.013 1.011
14 1.0 149 1.000 1.188 1.241 1.000 1.076 1.081
15 5.0 80 1.000 1.279 1.339 1.000 1.147 1.175
16 10.0 46 1.000 1.341 1.367 1.000 1.198 1.201

Table 4. Comparison of slw(GR
cls, φR) and the Schedule Length in FFT DAGs(|V0| = 2048).
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A. At first, the lower bound of the cluster size is derived as δopt(φ0). Then the task clustering
algorithm in fig. 4 is performed, while processor assignment policy is based on CHP(C.
Boeres, 2004).

B. The lower bound of the cluster size is derived as δopt(φ0). Then the task clustering policy
is based on "load balancing" (J. C. Liou, 1997), while processor assignment policy is based
on CHP(C. Boeres, 2004), in which merging step for generating one cluster is proceeded
until the cluster size exceeds δopt(φ0).

C. The lower bound of the cluster size is derived as δopt(φ0). Then the task clustering policy is
random-basis, i.e., two clusters smaller than δopt(φ0) are selected randomly to merge into
one larger cluster, while processor assignment policy is based on CHP(C. Boeres, 2004), in
which merging step for generating one cluster is proceeded until the cluster size exceeds
δopt(φ0).

The difference between A, B and C is how to merge clusters, while they have the common
lower bound for the cluster size and the common processor assignment policy. We compared
slw(GR

cls, φR) and the schedule length by averaging them in 100 random DAGs.

Table 3 and 4 show comparison results in terms of slw(GR
cls, φR) and the schedule length. The

former is the result in the case of random DAGs. On the other hand, the latter is the result in
the case of FFT DAGs. In both tables, α corresponds to max-min ratio for processing speed
in P, and β corresponds to max-min ratio for communication bandwidth in P. "slw(GR

cls, φR)

Ratio" and "sl(GR
cls, φR) Ratio" correspond to ratios to "A", i.e., a value larger than 1 means

that slw(GR
cls, φR) or sl(GR

cls, φR) is larger than that of "A". In table 3, it can be seen that both

slw(GR
cls, φR) and sl(GR

cls, φR) in "A" are better than "B" and "C" as a whole. Especially, the

larger CCR becomes, the better both slw(GR
cls, φR) and sl(GR

cls, φR) in "A" become. It can not be

seen that noteworthy characteristics related to slw(GR
cls, φR) and sl(GR

cls, φR) with varying the
degree of heterogeneity (i.e., α and β). The same results hold to table 4. From those results,
it can be concluded that minimizing slw(GR

cls, φR) leads to minimizing the schedule length as
theoretically proved by theorem 4.1 and 4.2.
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Fig. 5. Optimality for the Lower Bound of the Cluster Size.
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6.3 Applicabiligy of δopt(φ0)

In this experiment, we confirmed that how optimal the lower bound of the cluster size,
δopt(φ0) derived by eq. (25). Comparison targets in this experiment are based on "A" at
sec. 6.2, but only the lower bound of the cluster size is changed, i.e., δopt(φ0), 0.2δopt(φ0),
0.5δopt(φ0), 1.5δopt(φ0), and 2.0δopt(φ0). The objective of this experiment is to confirm the
range of applicability of δopt(φ0), due to the fact that δopt(φ0) is not a value when slw(Gs

cls, φs)
can be minimized for 1 ≤ s. Fig. 5 shows comparison results in terms of the optimality
of δopt(φ0). (a) corresponds to the case of the degree of heterogeneity (α, β) = (5, 5), and
(b) corresponds to (10, 10). From (a), it can be seen that δopt(φ0) takes the best schedule
length than other cases during CCR takea from 0.1 to 5.0. However, when CCR is 7 or more,
1.5δopt(φ0) takes the best schedule length. This is because δopt(φ0) may be too small for a data
intensive DAG. Thus, it can be said that 1.5δopt(φ0) is more appropriate size than δopt(φ0)
when CCR exceeds a certain value. On the other hand, in (b), the larger CCR becomes, the
better the schedule length by case of 1.5δopt(φ0) becomes. However, during CCR is less than
3.0, δopt(φ0) can be the best lower bound of the cluster size. As for other lower bounds, 2.0
δopt(φ0) has the local maximum value of the schedule length ratio when CCR takes from
0.1 to 2.0 in both figures. Then in larger CCR, the schedule length ratio decreases because
such size becomes more appropriate for a data intensive DAG. On the other hand, in the case
of 0.25δopt(φ0), the schedule length ratio increases with CCR. This means that 0.25δopt(φ0)
becomes smaller for a data intensive DAG with CCR increases.

From those results, it can be said that the lower bound for the cluster size should be derived
according to the mapping state. For example, if the lower bound can be adjusted as a function
of each assigned processor’s ability (e.g., the processing speed and the communication
bandwidth), the better schedule length may be obtained. For example in this chapter the
lower bound is derived by using the mapping state of φ0. Thowever, by using the other
mapping state, we may be obtain the better schedule length. To do this, it must be considered
that which mapping state has good effect on the schedule length. This point of view is an
issue in the future works.

7. Conclusion and future works

In this chapter, we presented a policy for deciding the assignment unit size to a processor and
a task clustering for processor utilization in heterogeneous distributed systems. We defined
the indicative value for the schedule length for heterogeneous distributed systems. Then
we theoretically proved that minimizing the indicative value leads to minimization of the
schedule length. Furthermore, we defined the lower bound of the cluster size by assuming
the initial mapping state. From the experimental results, it is concluded that minimizing the
indicative value has good effect on the schedule length. However, we found that the lower
bound of the cluster size should be adjusted with taking an assigned processor’s ability into
account.

As a future work, we will study on how to adjust the lower bound of the cluster size for
obtaining the better schedule length and more effective processor utilization.
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