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1. Introduction 

Duchenne muscular dystrophy (DMD) is a progressive neuromuscular disorder. The first 

symptoms involve the lower limbs and appear between the third and fifth year. Due to 

weakness of the knee and hip extensors, patients rise from a sitting position using the 

Gower's maneuver. Muscle weakness progresses to the shoulder girdle-, upper arm and 

trunk-muscles and patients loose ambulation before the age of 12 (Emery, 1993). Histological 

changes involve variation in fiber size with atrophic and hypertrophic fibers, degeneration 

and regeneration of the muscle fibers, infiltration of inflammatory cells and fibrosis. The 

fiber necrosis results in leakage of the enzyme creatine kinase (CK), resulting in very high 

serum CK levels in DMD patients (20,000 to 50,000 U/L compared to 80 to 250 U/L in 

unaffected individuals). These levels decline as patients get older and the overall muscle 

mass decreases progressively. The pathology is caused by mutations in the DMD gene, 

which was known to be on the X chromosome long before the responsible gene was cloned 

due to an X-linked recessive inheritance pattern. The protein product of the gene is a 427 

KDa protein called dystrophin. In the early 80s several groups were collaborating on the 

regional cloning of the gene responsible for DMD (Burghes et al., 1987; Monaco et al., 1985) 

which happened to co-localize with the locus for Becker muscular dystrophy (BMD) 

(Kingston et al., 1984). This is a milder disease, where patients are diagnosed in adolescence 

or adulthood, remain ambulant longer and survival is generally only slightly decreased 

(Emery, 2002). After a couple of years Monaco and colleagues confirmed that deletions in 

the identified locus caused DMD (Monaco et al., 1985) and BMD (Hoffman et al., 1988). In 

the following years, the coding sequence of the gene was identified, which turned out to 

occupy a huge genomic region. The complete cDNA and protein product of the DMD gene 

were published in 1987 (Hoffman et al., 1987; Koenig et al., 1987). The cloning of the 

genomic and coding sequence of the DMD gene allowed the development of tools for the 

molecular diagnosis of DMD. Deletions of one or more exons were found to be most 

common (65% of patients) and mainly localized in two hotspot regions in the gene (exons 2-

20 and 45-53). This led Chamberlain and colleagues to develop a multiplex PCR able to 

detect the most frequent mutations (Chamberlain et al., 1988). This technique has been used 

for years, but recently multiple ligation-dependent probe amplification (MLPA) has been 

developed that allows an exact characterization of exons involved in deletions and 

duplications (Janssen et al., 2005; Schwartz & Duno, 2004). For small mutations a more 
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labour-intensive method of PCR analysis of each exon, followed by direct sequencing is 

required (Spitali et al., 2009). The study of mutations and clinical features in DMD and BMD 

patients led to a deeper understanding of the disease, the gene and disease causing 

mutations. This made it possible to correlate genotype and phenotype and explain the 

discrepancy that mutations in one gene could lead to a severe DMD and a milder BMD 

phenotype. In 1989 two groups postulated that frame disrupting mutations were responsible 

for DMD while BMD was caused by frame maintaining mutations (Koenig et al., 1989; 

Monaco, 1989). This has been crucial for the development of certain potential therapies such 

as exon skipping and microdystrophins. 

2. Dystrophin and the associated glycoprotein complex (DGC) 

Dystrophin consists of 3685 amino acids and is a 427 kDa protein (Koenig et al., 1988). 

Dystrophin is composed of 4 domains, the first 240 N-terminal aminoacids define the actin-

binding domain, which contains two actin-binding sites (Jarrett & Foster, 1995; Koenig & 

Kunkel, 1990). This domain is followed by a central rod shaped domain, consisting of 24 

spectrin-like repeat units interrupted by 4 proline-rich hinge regions (Koenig & Kunkel, 

1990). It has been demonstrated that an extra actin binding domain is present between 

repeats 11 and 17 (Rybakova et al., 1996) and that repeat 16 and 17 contain an nNOS binding 

site (Lai et al., 2009). The cysteine-rich domain encompasses aminoacids 3080 to 3360 and 

includes 15 cysteines, two EF hand motifs and a ZZ domain (Koenig et al., 1988) and binds 

to ┚-dystroglycan. Finally the C-terminal domain consists of the last 325 amino acids 

involved in protein-protein interactions. Dystrophin is part of the dystrophin-associated 

glycoprotein complex (DGC) (Figure 1). The cysteine-rich and C-terminal domains of 

dystrophin bind to several parts of the DGC, which can be divided into the dystroglycan 

complex, the sarcoglycan-sarcospan complex and the cytoplasmatic, dystrophin containing 

complex (Blake et al., 2002; Yoshida et al., 1994). In skeletal muscle the dystroglycan 

complex consists of ┙-dystroglycan and ┚-dystroglycan, which are both heavily glycosylated 

(Ibraghimov-Beskrovnaya et al., 1992). Dystrophin binds to ┚-dystroglycan, a 

transmembrane protein that binds to the extra-cellular ┙-dystroglycan; ┙-dystroglycan on its 

part binds to the extracellular matrix component laminin-2 (Hohenester et al., 1999; 

Rentschler et al., 1999; Suzuki et al., 1994). The sarcoglycan-sarcospan complex includes ┙-, 

┚-, ┛- and ├-sarcoglycan and sarcospan (Blake et al., 2002). The cytoplasmatic part of the 

DGC includes dystrophin itself, syntrophin and ┙-dystrobrevin, which binds to both 

dystrophin and syntrophin (Ahn et al., 1996). Alpha-syntrophin also binds to dystrophin 

and, additionally, it recruits the enzyme nNOS to the sarcolemma (Ahn & Kunkel, 1995; 

Brenman et al., 1995; Yoshida et al., 1995), although it has been recently demonstrated that 

the recruitment of nNOS by dystrophin repeats 16 and 17 is more important (Lai et al., 

2009). Dystrophin also binds to and influences microtubules organization in the cytoplasm 

(Prins et al., 2009). In BMD patients, internally deleted dystrophins maintaining the N-

terminal and C-terminal domains are able to bind to the DGC complex at the sarcolemma 

(Matsumura et al., 1994; Matsumura et al., 1993; Mirabella et al., 1998), while in DMD 

patients the absence of dystrophin results in the complete loss or decrease of other DGC 

proteins, and in the loss of nNOS at the sarcolemma (Brenman et al., 1995; Ervasti et al., 

1990; Ohlendieck & Campbell, 1991). The function of the DGC is still largely unknown. 

However, since the complex forms a mechanical link between the cytoskeleton and the 
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extracellular matrix, it is assumed that the DGC has a function in maintaining sarcolemma 

stability during contraction (Matsumura & Campbell, 1994). 

3. Pathology 

Dystrophin loss leads to a high susceptibility of muscle fibers to injury after repeated 
eccentric contractions. This results in a chronic inflammation state, which provokes damage 
and necrosis. Muscle tissue is lost and replaced by fibrosis after exhausted cycles of damage 
and repair. Recent data suggest that stretched contractions activate reactive oxygen species 
(ROS) production, which causes opening of stretch-activated channels (SACs) and Ca2+ 
entry via src kinase activation induced by caveolin-3 (Allen et al., 2010). Oxidative stress 
may amplify the process inducing activation of the inflammatory transcription factor NF-κB, 
and thus functional impairment of force-generating capacity (Lawler, 2011). 

 

Fig. 1. Schematic representation of the dystrophin associated glycoprotein complex (DGC). 
┙DG: ┙-dystroglycan; ┚DG: ┚-dystroglycan; ┙SG: ┙-sarcoglycan; ┚SG: ┚-sarcoglycan; ┛SG: 
┛-sarcoglycan; ├SG: ├-sarcoglycan; spn: sarcospan; N-term: dystrophin aminoterminal 
domain; Cys-rich: dystrophin cystein rich domain; C-term: dystrophin carboxyterminal 
domain; nNOS: neuronal nitric oxide synthase; Syn: syntrophin. 

4. Current treatment 

There is currently no therapy for DMD. Nevertheless the lifespan and quality of life of DMD 
patients has significantly improved during the last 2 decades due to improved health care, 
especially assisted ventilation (Eagle et al., 2002). The mean age of death in the 1960s was 
14.4 years, whereas for those ventilated since 1990 it was 25.3 years. The chances of survival 
to 25 years have increased from 0% in the 1960s to 4% in the 1970s and 12% in the 1980s, and 
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that the impact of nocturnal ventilation has further improved this chance to 53% for those 
ventilated since 1990. Another crucial step has been the use of corticosteroids (mainly 
prednisone (Moxley, III & Pandya, 2011) and deflazacort (Biggar et al., 2001)), which reduce 
the inflammatory response in patients’ muscle and the accompanied damage and fibrosis, 
thus longer maintaining muscle quality. The benefit of corticosteroids has been clearly 
demonstrated for DMD patients in a double-blind randomized controlled trial in more than 
100 boys (Mendell et al., 1989). Corticosteroids treatment extends the ambulation of patients 
for about 2 years and reduces scoliosis (King et al., 2007). The prolonged use of 
corticosteroids has however known side effects, which include weight gain, hypertension, 
bone demineralization, vertebral compression fractures and sometimes behavior disorders. 
Guidelines for DMD patients’ management have been published in order to harmonize the 
standards of clinical practice (Bushby et al., 2010a; Bushby et al., 2010b). 

There are numerous therapeutic approaches under development for DMD. Some aim at 

addressing specific issues of pathology such as Idebenone, or green tea extract to reduce 

oxidative stress (Dorchies et al., 2009; Nagy & Nagy, 1990), or myostatin inhibition to 

increase muscle mass (Bish et al., 2011; Dumonceaux et al., 2010), while others directly aim 

at dystrophin restoration. In this chapter we will focus on the latter. 

5. Therapeutic approaches 

5.1 Stop codon read-through 

This approach has been developed to address nonsense mutations, which are responsible for 
14% of DMD cases (Aartsma-Rus et al., 2009). The rationale is to use a compound that 
interacts with the translation machinery to incorporate an amino acid instead of terminating 
protein translation at the site of a premature stop codon. This will result in a protein that is – 
aside from a one amino acid change at the location of the stop mutation – completely normal 
(Aurino & Nigro, 2006; Kaufman, 1999; Linde & Kerem, 2008; Malik et al., 2010a). This 
approach can also induce read-through of real stop codons, but this is thought to be less 
efficient due to differences in sequence context and location of real vs. aberrant stop codons 
(Manuvakhova et al., 2000). So far, three compounds have been reported induce efficient 
read-through stop codons in the DMD mRNA. 

5.1.1 Gentamicin 

Gentamicin is an aminoglycoside antibiotic binding to the 40S ribosomal subunit when this 
recognizes a stop codon (Palmer et al., 1979; Singh et al., 1979; Yoshizawa et al., 1998). This 
causes the insertion of an amino acid at the stop codon position. It has first been shown that 
it can act on each type of stop codon without any preference in vitro (Howard et al., 2004). 
Gentamicin (and negamycin) can induce the read-through stop codon in the mdx mouse 
(Arakawa et al., 2003; Barton-Davis et al., 1999), the most used mouse model for DMD which 
carries a nonsense mutation in exon 23 (Danko et al., 1992). However, in another report 
gentamicin was unable to restore dystrophin expression in the same mouse model (Dunant 
et al., 2003). It was later revealed that there are a number of gentamicin isomers, which all 
have different read-through efficiencies, and that different gentamicin batches consist of 
different mixes of these isomers, which can explain these controversial results (Aartsma-Rus 
et al., 2010; Yoshizawa et al., 1998). Three different clinical trials have been undertaken in 
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DMD patients using gentamicin (Malik et al., 2010b; Politano et al., 2003; Wagner et al., 
2001). In the last one Malik and colleagues used the most active gentamicin isomer and 
treated the patients for 6 months. For 3 out of 12 patients the number of dystrophin positive 
fibers increased as assessed by immune histochemical analysis, while the effect was less 
clear by western blot analysis, as dystrophin was already visible before treatment, possibly 
due to spontaneous read-through or exon skipping (see below). Since chronic gentamicin 
use, is known to result in reversible kidney toxicity and irreversible ototoxicity, long term 
treatment with gentamicin – which would be required for DMD patients – is not realistic. 

5.1.2 Ataluren 

Ataluren, also called PTC124, was identified via in vitro screening in a luciferase assay. It is 
more selective for premature stop codons than regular ones, and it can be taken orally 
unlike gentamicin, which is administered intravenously. Studies in the mdx mouse showed 
that dystrophin expression could be restored after subcutaneous ataluren treatment (Welch 
et al., 2007). The compound was first tested in healthy volunteers where it was well 
tolerated (Hirawat et al., 2007). Then different doses were tested in DMD patients and an 
increase in dystrophin was reported for 18/38 patients 
(http://www.drugs.com/clinical_trials/ptc-therapeutics-announces-additional-results-
phase-2-study-ptc124-duchenne-muscular-dystrophy-2308.html). In a subsequent placebo-
controlled phase IIb trial 174 DMD and BMD patients were treated with two doses or 
placebo for 48 weeks, and then all were treated with the high dose in an open label 
extension study (Finkel, 2010). Treatment was well tolerated, but the primary outcome – set 
at 30 meter increase compared to placebo treated patients in the six minute walk test 
(6MWT) - was not reached, and the extension study was put on hold. From the data released 
(http://ptct.client.shareholder.com/releasedetail.cfm?ReleaseID=518941) it could be 
inferred that the low dose worked better than the high dose. It has been postulated that 
ataluren efficiency works through a bell shaped curve, which could explain this finding. 
Dystrophin analysis is pending, and different analyses of subgroups of patients is currently 
ongoing, as well as studies to identify the most optimal dose. Recently (May 2011) Genzyme 
and PTC Therapeutics announced that they are planning a follow-up clinical study for DMD 
patients who previously participated in the clinical trials in the UK, Europe, Israel and 
Australia, starting December 2011. This will provide access to ataluren to patients who have 
been involved in earlier clinical trials, as the trial in the USA had already been reinititated.  

It has been recently published that the results obtained with the in vitro luciferase screening 
used to identify ataluren may have been biased, as atluren derivatives can stabilize the 
luciferase enzyme, giving rise to a false positive (Auld et al., 2010; Auld et al., 2009). 
However, it has been shown that ataluren has at least some read-through potential (Du et 
al., 2008; Welch et al., 2007), though it is uncertain whether the levels of dystrophin 
restoration will be sufficient to restore muscle function.  

5.1.3 RTC13  

RTC13 is a new compound for stop codon read through. Promising preliminary data were 
presented at the 14th annual meeting of the American Society of Gene and Cell Therapy 
(http://www.cureduchenne.org/site/PageServer?pagename=research_index). In the 
mdx mouse model RTC13 was able to restore dystrophin expression as assessed by 
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western blot and immune-fluorescent analyses. Muscle fiber uptake was improved 
compared to the previous tested compounds. After 6 weeks of treatment mice showed 
improvement in muscle strength that was dependent on dystrophin recovery. Serum CK 
levels dropped and no toxicity was detected. Research to assess if RTC13 oral treatment is 
feasible is ongoing. 

5.1.4 Nonsense mediated decay  

A modifying factor which can play a role in the stop codon-read through is nonsense-

mediated decay (NMD). This mechanism breaks down mRNAs that carry premature stop 

codons, thus resulting in less target mRNAs for stop codon read through compounds. It is 

known that NMD efficiency varies among individuals, for different stop codons, location 

within the mRNA, and sequence context. In a study of cystic fibrosis patient-derived cell 

cultures carrying premature stop mutations in their CFTR gene, it was shown that NMD 

was more active in patients who did not respond to gentamicin treatment than in patients 

who did respond to gentamicin patients (Linde et al., 2007). When NMD was blocked in 

non-responders’ cells, they became more responsive to gentamicin treatment (Linde et al., 

2007). It is anticipated that NMD influences other stop codon read through approaches. 

5.2 Exon skipping 

The idea of the exon skipping approach is based on the observation that the milder BMD 

phenotype is due to mutations in which the mRNA reading frame is maintained, while the 

more severe DMD phenotype is caused by frame disrupting mutations. The rationale is to 

restore the open reading frame. Most (~65%) of the DMD causing mutations are deletions 

(Aartsma-Rus et al., 2009). Scientists have tried to reframe these mutations by inducing the 

skipping of additional exons adjacent to the out of frame deletions during pre-mRNA 

splicing (Figure 2). The reframed mRNA will then allow translation into a smaller, partially 

functional, BMD-like dystrophin protein. Several groups have worked on this approach 

using antisense oligonucleotides (AONs) or snRNAs to induce the specific exon skipping in 

patients’ cells in vitro and in several animal models. 

 

Fig. 2. a. Schematic representation of the DMD genomic region encompassing exons 47 to 52. 
b. Deletion of exons 48 to 50 leads to an out-of-frame mRNA which can be corrected into an 
in-frame deletion with the use of antisense oligonucleotides (c). 

There are two AON chemistries used in clinical trials for DMD: 2-O-Methyl-
Phosphorothioates (2OMePS) and phosphorodiamidate morpholino oligomers (PMOs). 
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5.2.1 2OMePS studies 

2OMePS have a methyl group at the 2'-O position of the ribose, which increases the AON 

affinity for RNA and avoids RNase H activation of RNA:RNA hybrids (Dominski & Kole, 

1993; Sproat et al., 1989). The PS modification is required to further increase the AON 

nuclease resistance, enhance cellular uptake and increase the serum half-life in vivo.  

Proof of principle for the exon skipping approach and dystrophin restoration has been 

achieved in DMD derived cells and in murine cells (Aartsma-Rus et al., 2003; Errington et 

al., 2003; Mann et al., 2002; Van Deutekom et al., 2001). To test the feasibility of the approach 

in vivo the mdx mouse model was mainly used. The premature stop codon in exon 23 leads 

to a complete absence of dystrophin, and a mild dystrophic phenotype in mice, probably 

due to a better regenerative capacity. Mouse dystrophin exon 23 is an in frame exon, so it is 

possible to skip this exon, inducing an exon 22-exon 24 junction which preserves the reading 

frame. Intramuscular injection of AONs targeting the exon 23 donor splice site resulted in 

exon 23 skipping and dystrophin synthesis (Lu et al., 2003; Mann et al., 2002). This was 

accompanied by rescued sarcoglycan expression at the sarcolemma, improved titanic force, 

while no antibodies against the newly synthesized dystrophin were found in the serum. 

Gene expression profiling to evaluate AON efficacy and safety was tested in preclinical 

experiments. AONs were delivered using different carriers (PEI – F127 – Optison) to 

enhance muscle fibers uptake, or with recombinant adeno-associated virus (rAAV) 

expressing antisense sequences incorporated in a U7 snRNP gene. Exon skipping induced a 

shift towards wild type expression levels, which became statistically significant when high 

exon skipping levels were induced ('t Hoen et al., 2006). Since AON-PEI complexes 

worsened the muscle inflammation, while F127 and Optison did not enhance AON efficacy 

in vivo, following experiments were performed using naked AONs. These studies all tested 

local intramuscular injection, while whole body treatment is required for DMD. It is known 

that 2OMePS AONs have a favorable serum half-life, as the PS backbones binds to serum 

proteins with low affinity, which prevents renal filtration and excretion in urine. Normally, 

2OMePS AONs are primarily taken up by liver and kidney and the uptake in muscle is 

poor. However, due to the dystrophic pathology of skeletal muscle in DMD patients, AON 

uptake is up to 10-fold higher, resulting in sufficient AON levels for exon skipping and 

dystrophin restoration in skeletal muscles in mdx mice after systemic AON administration 

(Heemskerk et al., 2009; Lu et al., 2005). In a comparison of intravenous, subcutaneous and 

intraperitoneal delivery, subcutaneous and intraperitoneal delivery showed the most 

preferable pharmacokinetic and pharmacodynamic profiles (lower uptake by liver and 

kidney), while slightly higher exon skipping levels were achieved by intravenous injections 

(Heemskerk et al., 2010). Based on these results and the relative easy and low invasiveness 

of subcutenaous injection, this delivery route was selected for systemic clinical trials. 

5.2.1.1 Clinical trials with 2OMePS 

Since the exon skipping is a mutation specific approach clinical experimentation started 
with the largest patient cohort that would potentially benefit of skipping a single exon, i.e. 
exon 51 (13% of all DMD patients (Aartsma-Rus et al., 2009)). Deep phenotypic screening of 
two BMD patients carrying deletions that could result from exon 51 skipping, showed that 
these dystrophins can be largely functional (Helderman-van den Enden AT et al., 2010). A 
first clinical trial was coordinated by Prosensa/GSK in collaboration with the Leiden 
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University Medical Center, using an AON targeting exon 51 (PRO051, currently called 
GSK2402968). This trial involved 4 patients who were each injected intramuscularly with 0.8 
mg GSK2402968 in their tibialis anterior muscle. This induced specific exon 51 skipping and 
dystrophin recovery in 64-97% of muscle fibers at levels of 17-35% and 3-12% when 
quantified by immune-histochemical and western blot analysis, respectively) (Van 
Deutekom et al., 2007). After these encouraging results, the same AON was used in a 
subsequent Phase I/IIb clinical trial in which patients were subcutaneously injected and 
divided into 4 cohorts of 3 patients each based on the dose used (0.5 – 2 - 4 - 6 mg/kg). The 
AON was well tolerated, and patients showed a dose dependent dystrophin recovery in 60-
100% of fibers (Goemans et al., 2011). Dystrophin amounts were quantified via fluorescent 
signal intensities in immune-histochemical analysis (4 to 11% dystrophin recovery) and via 
western blot analysis (2 to 20% dystrophin recovery). All patients were included in an open 
label extension study where they received weekly, subcutaneous treatments of the highest 
dose (6 mg/kg). The 6-minutes walk test was used as a functional outcome parameter and for 
most of the patients an improvement in walking distance was found after 3 months (Goemans 
et al., 2011). This trial did not have a placebo group, so these results, while promising, have to 
be interpreted with caution. A phase III double blind clinical trial in 180 DMD patients is 
ongoing to determine whether long term treatment with 6 mg/kg/week GSK2402968 is safe 
and effective ((http://clinicaltrials.gov/ct2/show/NCT01254019?term=duchenne&rank=4). 
Furthermore, a trial comparing weekly and biweekly dosing at 6 mg/kg is ongoing 
(http://clinicaltrials.gov/ct2/show/NCT01153932?term=duchenne&rank=11). Finally, a 
phase I double-blind, escalating dose, randomized, placebo-controlled study assessing 
pharmacokinetics, safety, and tolerability in non-ambulant DMD patients is ongoing 
(http://clinicaltrials.gov/ct2/show/NCT01128855?term=GSK2402968&rank=3) in which 
patients will receive different dosages (3 – 6 - 9 -12 mg/kg).  

5.2.2 PMOs 

PMOs contain a morpholino moiety instead of the ribose sugar and phosphoroamidate 
intersubunit linkages instead of phosphodiester bonds (Kurreck, 2003). PMOs have an 
affinity for RNA that is comparable to DNA oligos, are nuclease resistant and non-toxic 
(Summerton, 1999). Their backbone is uncharged, which makes them difficult to transfect in 
vitro, and as they do not bind serum proteins, their serum half-life is limited as they are 
filtered out by the kidneys. PMOs have been shown to induce exon skipping and dystrophin 
restoration in the mdx mouse after intramuscular (Gebski et al., 2003) and systemic 
injections (Alter et al., 2006; Malerba et al., 2011a; Wu et al., 2010). Upon direct comparison 
with 2OMePS they were shown to be more effective in inducing exon 23 skipping in the 
mdx mouse (Heemskerk et al., 2009). However, in all studies exon skipping and dystrophin 
restoration was only observed in skeletal muscle and not in heart, or only at very low levels 
unless heroic doses (up to 3 g/kg!) or microbubbles to improve uptake in heart were used 
(Alter et al., 2009; Wu et al., 2010). It has become clear that repeated low dose injections are 
more effective than single high dosage injections (Malerba et al., 2011b; Malerba et al., 2009), 
probably because of the fast PMOs clearance from the body by the kidneys (Heemskerk et 
al., 2010). Survival studies show that high doses of PMOs could correct the pathology and 
were well tolerated (Wu et al., 2011b). PMOs have also been used to restore dystrophin 
expression in the canine model of Duchenne, the golden retriever muscular dystrophy 
model (GRMD). GRMD dogs carry a splice site mutation in intron 6 leading exon 7 
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skipping. The skipping of exons 6 and 8 produces an in-frame exon-exon junction. Three 
dogs have been treated with an equimolar mixture of 3 morpholinos (2 targeting exon 6 and 
1 targeting exon 8 in a cumulative dose of 120-200 mg/kg). PMOs were injected 5 to 11 times 
at weekly or biweekly intervals and tissue examination was performed 2 weeks after the last 
injection. Dystrophin restoration was achieved showing that exon skipping represents a 
possible choice also for complex mutations for which more than one exon needs to be 
skipped (Yokota et al., 2009). 

5.2.2.1 Clinical trials with PMOs 

Before starting clinical studies optimization of PMOs targeting exon 51 was done in cells 
and in the hDMD mouse (Arechavala-Gomeza et al., 2007). Clinical studies in DMD patients 
using PMOs targeting exon 51 (AVI-4658) were performed in the UK by the MDEX 
consortium in collaboration with AVI Biopharma. Local intramuscular injection in the 
extensor digitorum longus (EDL) muscle induced exon skipping and dystrophin restoration. 
After baseline correction for the controlateral, saline injected muscle, 44 to 79% of 
dystrophin positive fibers were observed (Kinali et al., 2009) at 22-32% of wild type levels 
(controlateral muscle showed dystrophin levels between 4 and 14%). This led to a Phase 
I/IIb clinical trial in which 19 patients received 12 weekly intravenous doses of PMO. 
Patients were divided in cohorts based on six different doses (0.5 – 1 – 2 – 4 - 10 - 20 mg/kg). 
PMOs were not toxic and well tolerated. The 2 high dosage cohorts showed an increase in 
the fluorescent intensity per fiber and dystrophin was restored in 7/19 patients. Three 
patients responded very well showing up to 55% of dystrophin positive fibers with an 
increase above 10% in mean fluorescence intensity per fiber (Cirak et al., 2011). Based on the 
varying response it was concluded that dosing was not yet optimal. In a subsequent study 
recently initiated, weekly intravenous doses of 30 mg/kg and 50 mg/kg for 24 weeks are 
tested (http://clinicaltrials.gov/ct2/show/NCT01396239?term=AVI-4658&rank=1).  

It is difficult to compare results for the experiments performed with the PMOs and 2OMePS, 

as they were performed by different groups and different analyses were used to quantify 

dystrophin. In a direct comparison using equal molar amounts of PMO and 2OMePS in the 

mdx mouse, PMOs targeting exon 23 showed higher exon skipping percentages and higher 

dystrophin rescue. However, experiments performed in the hDMD mouse model, carrying a 

copy of the complete human DMD gene, there was no clear difference between 2OMePS and 

PMO AONs targeting exon 44, 45, 46 and 51 upon intramuscular injection (Heemskerk et al., 

2009). Differences in the systemic trials for GSK2402968 and AVI-4658 are probably also due 

to the different pharmacokinetic and pharmacodynamic properties of the AONs. PMOs are 

extremely stable, but due to their uncharged nature they are filtered out by the kidney and 

their serum half-life is ~1 hour, so the time for tissue uptake is limited. The 2OMePS AONs 

by contrast bind serum proteins due to the PS backbone. This prevents renal clearance and 

increases their serum half-life to weeks. This may underlie the different staining patterns 

observed between PMO trials (patchy) and 2OMePS trials (more homogeneous). 

5.2.3 AON chemistry development  

While results in clinical trials are encouraging, ways to improve delivery to muscle tissues, 

allowing lower AON dosages would be preferred. Many approaches have been tested. Cell 

penetrating peptides (Jearawiriyapaisarn et al., 2008; Jearawiriyapaisarn et al., 2010; Wu et 
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al., 2008; Yin et al., 2008), muscle targeting peptides connected to cell penetrating peptides 

(Yin et al., 2009) and guanidine analogs (Hu et al., 2010; Wu et al., 2009) showed the most 

promising results in the mdx mouse and in the hDMD mouse model (Wu et al., 2011a). 

Notably, pPMOs (containing arginine-rich peptides covalently bound to the morpholino 

AONs) have shown great potential in the mdx mouse, inducing high levels of exon skipping 

in skeletal muscles and heart and high levels of dystrophin rescue. Promising results using 

pPMOs have also been achieved in the severe mdx-utrophin-/- mouse model, which is 

defective for dystrophin and its homologue utrophin gene. Normally these mice do not 

survive beyond 3 months, but survival was increased to over a year after pPMO treatment 

(Goyenvalle et al., 2010). Unfortunately, preliminary tests in non-human primates showed 

mild tubular degeneration in the kidney after 4 weekly injections of 9 mg/kg of pPMOs 

(Moulton & Moulton, 2010). Additional peptide conjugates will hopefully be less toxic (Yin 

et al., 2011). 

5.2.4 Antisense snRNP mediated exon skipping  

Due to AON turnover and clearance, life-long treatment would be required. An alternative 

approach uses viral vectors expressing antisense sequences incorporated in a small nuclear 

ribonucleoprotein (snRNP). Adeno-associated viral vectors (AAVs) have been used to 

deliver the modified snRNPs as they have the best capacity to infect the muscle tissue. 

Different serotypes have been investigated and two molecular strategies which make use of 

modified U7 and U1 snRNAs have been developed. These snRNAs ensure an efficiently 

nuclear localization of the antisense construct, specific exon skipping and sustained 

dystrophin rescue in the mdx mouse model (Denti et al., 2006a; Denti et al., 2006b; 

Goyenvalle et al., 2004). Optimization for human exons using splicing enhancers has been 

also performed (Goyenvalle et al., 2009). Preclinical studies show the long-term benefit of 

the approach for up to 1 year (Denti et al., 2008). However the clinical translation of this 

approach is complicated by immune response to the viral vector (see section 5.4). Thus 

immune-suppression will be required, especially for patients for which multiple injections 

to treat muscles or muscle groups will be required. 

5.3 Gene editing 

Gene editing is a process in which the endogenous mutated gene is modified to produce a 

functional dystrophin, either by correcting the DMD causing mutation or by introducing a 

second mutation which will rescue the effect of the first mutation. This approach has been 

developed using chimeric RNA-DNA oligonucleotides (RDOs or “chimeraplasts”) which 

anneal to genomic DNA, inducing homologous recombination between the endogenous 

gene and the RDO, or activating the mismatch repair system. Proof of principle was 

demonstrated in the mdx mouse muscle (Rando et al., 2000), in muscle precursor cells in 

vitro and in vivo (Bertoni & Rando, 2002). It has been demonstrated that correction is more 

efficient when the RDOs target the coding strand (the non transcribed strand) (Bertoni et al., 

2005). Unfortunately, the gene conversion efficiency is as yet too low for clinical application 

and systemic delivery of RDOs in larger animals needs to be optimized further. 

Recently another group has pioneered the use of meganucleases to correct the effect of the 

genetic mutation. The rationale is to correct the reading frame by introducing a micro-
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deletion or micro-insertion into the DMD gene. This is done by specific double strand breaks 

at the end of an exon which precedes a deletion or at the beginning of an exon following a 

deletion. Meganucleases can be engineered to specifically cut at a certain genomic position 

causing non-homologous end joining (NHEJ) or homologous recombination when a donor 

corrected sequence is present. During this process often small deletions or insertions occur, 

which can restore the reading frame. Proof of principle for this approach has been recently 

demonstrated in vitro and after local delivery in vivo, albeit at low levels (Chapdelaine et 

al., 2010). The challenge of this approach will be the delivery of the meganucleases and the 

limited recognition of target sequences of meganucleases. The recently developed TALE 

nuclease system (Miller et al., 2011) allows targeting of almost all human sequences, and 

may provide a better alternative. 

5.4 Gene therapy 

Gene therapy approaches focus on providing an exogenous functional copy of the mutated 

gene. Gene therapy approaches are divided into 2 groups based on the type of delivery 

method used (viral or non-viral vector mediated). Muscle is a difficult target tissue for viral 

delivery (see below). Furthermore, the huge size of the DMD gene and its 11 Kb long full 

length cDNA sequence (FLDYS) has been one of the bottlenecks in developing this strategy, 

until smaller dystrophin versions were developed to make them fit into viral vector capsids. 

These smaller dystrophin coding sequences, called mini-dystrophins (mDYS) and micro-

dystrophins (μDys), were designed based on the observations that BMD patients with minor 

dystrophic phenotype can carry very large deletions (England et al., 1990). 

5.4.1 Viral vector based gene therapy 

5.4.1.1 Lentiviral vectors 

Lentiviral vectors have been used to treat mdx mice locally restoring dystrophin expression 

at different efficiencies (Kobinger et al., 2003; Li et al., 2005). Kimura and colleagues showed 

that a lentivirus encoding μDys intramuscularly injected into 2 weeks old mdx4cv mice could 

restore dystrophin in up to 400-1200 fibers in the tibialis anterior muscle. Mice were 

sacrificed at 4 different time points (4 weeks – 4 months – 1 year – 2 years) and results were 

comparable over time. The virus was capable of infecting satellite cells ensuring long-term 

treatment efficacy (Kimura et al., 2010). However, this may also pose a safety risk, since the 

transgene expression is ensured by the integration of the viral genome into the host genome. 

This process can cause neoplastic mutations due to the integration of the viral genome 

which mainly occurs close to promoter sequences (Maruggi et al., 2009). Systemic delivery 

of lentiviral vectors to muscle tissue is very challenging, as muscle is post-mitotic and fibers 

bundles are surrounded by layers of connective tissue that filter out most viruses (>30 nm). 

5.4.1.2 Adeno-associated viral vectors 

Due to their small size (20 nm) adeno-associated viral vectors (AAVs) are able to efficiently 
infect muscles. They have been more broadly used for gene therapy for muscle diseases. 
They do not integrate into the host genome, making them safer than lentiviruses. At least 
five of the many serotypes known, show a high tropism for muscle tissues (serotypes 1, 2, 6, 
8 and 9). Due to the low vector capacity mDYS and μDys have been used and efficiently 
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delivered to skeletal muscle (Gregorevic et al., 2004) and heart. Very promising studies 
performed in the mdx mouse showed high dystrophin recovery with AAV1 (Wang et al., 
2008) and AAV2 (Wang et al., 2000), while studies in the dog model with AAV2, AAV6 
(Wang et al., 2007) and AAV8 (Ohshima et al., 2009) raised the issue of cytotoxic immune 
response against the viral capsid proteins. AAV8 has also been tested in non human 
primates to delivery human μDys and levels up to 80% were obtained. Unfortunately these 
levels dropped to 40%when antibodies against the viral vector were present before the 
injection (Rodino-Klapac et al., 2010).  

A clinical study has been also carried out in 6 DMD patients (aged 5-11 years) who received 

an intramuscular injection into the biceps muscle of a recombinant AAV (rAAV) vector 

carrying a μDYS gene (Mendell et al., 2010). This μDYS encoded the amino-terminal actin 

binding domain (ABD), 5 rod repeat domains (R1, R2, R22, R23, and R24), 3 hinge domains 

(H1, H3 and H4), and the cysteine-rich (CR) domain of the human DMD gene. The human 

cytomegalovirus (CMV) immediate early promoter regulated transgene expression. Vector 

genomes were packaged in AAV2.5, a serotype 2 capsid variant that contains five AAV1 

amino acids (one insertion and four substitutions) in the AAV2 VP1 background. AAV2.5 

offers improved muscle transduction properties of AAV1 with minimal recognition by 

serum neutralizing antibodies. Dystrophin recovery was only very limited (a few fibers for 2 

patients). Mendell and colleagues further showed the presence of T-cells recognizing 

dystrophin epitopes in the circulation of some of the patients. For one patient the recognized 

epitopes were present in the μDys and deleted in the patient DMD gene, so this perhaps was 

not unexpected. Interestingly, for 2 patients T-cells able to recognize dystrophin expressed 

in revertant fibers were identified before and after treatment. However, the continuous 

presence of revertant fibers suggests that the immunity against dystrophin in the blood, did 

not lead to an auto-immune response in the muscle tissue. 

5.5 Cell therapy 

Another approach to restore dystrophin expression is based on the use of stem cells with 
myogenic potential, which can help repair the muscle damage and also delivery a healthy 
(when donor cells are used) or corrected (when autologous cells are used) DMD gene. 

Initial efforts focused on the transplantation of adult myoblasts able to fuse with resident 
damaged muscle fibers creating hybrid muscle fibers (Brussee et al., 1999; Gussoni et al., 
1997). However, this approach turned out to be hindered by poor cell survival, inability of 
the cells to extravagate into the muscle from the circulation, and limited migration of the 
injected cells within the host muscle (Qu et al., 1998). Results of clinical studies were 
discouraging (Tremblay et al., 1993). To compensate for the poor migration within muscle, a 
multiple injection technique has been used (up to 250 injections per square cm) (Skuk et al., 
2006), but this is only feasible for small superficial muscles. 

Many adult stem cells have been tested for their ability to fuse with muscle fibers in the host 
dystrophic muscles in murine and canine models. Cells have been grown in vitro and then 
transplanted in vivo with different efficiencies. Characterization of these cells has been 
based on their adhesion properties in vitro or on their membrane markers. Muscle side-
populations cells, bone-marrow-derived stem cells, muscle-derived stem cells, 
mesangioblasts, blood and muscle derived CD133+ stem cells and pericytes have been 
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identified (Asakura & Rudnicki, 2002; Benchaouir et al., 2007; Dezawa et al., 2005; Doherty 
et al., 1998; Gavina et al., 2006; Palumbo et al., 2004; Qu-Petersen et al., 2002). Among all, 
satellite cells, mesangioblasts and pericytes have shown the most promising characteristics. 

Satellite cells are small progenitor cells that lie between the basement membrane and the 

sarcolemma of the muscle fibers. They are normally in a quiescent state but they can be 

activated to form new muscle fibers or to fuse with damaged ones upon muscle fiber injury. 

They are characterized by the expression of pax3 and pax7 and they have been shown to 

restore dystrophin expression after transplantation in dystrophic dog muscle (Montarras et 

al., 2005). Satellite cells have a great myogenic potential that is unfortunately lost when they 

are expanded in vitro. Encouraging results obtained in a mouse model led to a phase I 

clinical trial in DMD patients. Donor satellite cells were isolated from muscle biopsies from 

first-degree relatives of the affected children and were grown in culture (Daston et al., 1996; 

Seale et al., 2004). Dystrophin production in muscle fibers was very low (~1%) and no 

functional or clinical improvement in the children was observed (Peault et al., 2007). 

Mesangioblasts express early but not late epithelial markers, they can transmigrate from 

blood vessels in tissues and they can differentiate in to muscle (Meregalli et al., 2010). 

Autologous corrected and donor mesangioblasts have shown to recover dystrophin 

expression in dystrophic dogs, although some dogs died due to pneumonia which may be 

caused by accumulation of these cells in the lungs (Sampaolesi et al., 2006). At the moment 

mesangioblasts are tested in a clinical safety trial in DMD patients. 

Pericytes share various markers with mesangioblasts, they can be isolated from skeletal 

muscle (Dellavalle et al., 2007) and also from non-muscular tissues (Crisan et al., 2008). 

Dellavalle and coworkers demonstrated that pericytes have high myogenic capacity when 

injected into SCID/mdx mice. It still needs to be determined whether transplanted pericytes 

can fully reconstitute the satellite cell niche as real functional stem cells (Morgan & Muntoni, 

2007) and whether systemic delivery can be performed. 

The main hurdles facing stem cell treatment for DMD are the abundance of muscle (up to 

40% of the bodyweight in men), which, combined with the poor efficiency of delivery of 

cells to muscle tissue (generally (much) below 10%), creates the need for the transplantation 

of huge numbers of cells in order to generate clinical benefit.  

Finally the use of donor stem cells would need constant immune suppression to avoid a 

specific immune response against the newly formed myofibers. This issue can be solved 

using autologous stem cells modified ex vivo. However, this process reduces the myogenic 

properties of cells using current culturing methods, and may impact the behavior of the cells 

once they are re-injected in the patients. 

6. Conclusion 

In the last 20-25 years we have seen how basic science findings have been translated into 

clinical research. Many therapeutic approaches have been developed in vitro, in preclinical 

animal models and some of them have advanced to the clinical stage. Among all therapeutic 

approaches the exon skipping is at the moment the most promising for clinical application 

in the near future. 
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