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1. Introduction 

In Automatic Control, Mechatronics and Robotics technical tasks is desirable to have 

information about certain parameters to control, supervision or fault detection in a system. 

This information can be estimates by direct measurement of particular variables or using 

special devices capable of observing the state of system under control. If the first option is 

selected a physical sensor is required. 

One commonly selected option are the Frequency Domain Sensors (FDS), this devices 

converts the desired parameter into a square wave with a frequency or period proportional 

to physical quantity under measurement. In order to reduce time to obtain information for 

control a system with sufficient quality and good reliability, a high performance method for 

frequency measurement is desirable. 

Historically, many analog and digital frequency measurement techniques have been 

proposed. In a basic digital measurement technique, the zero crossings of a signal are 

detected and a square wave is formed, representing transitions between the binary logic 

levels low and high. Selected digital logic state is detected and counted, and a measure of 

frequency is determined by the number of complete cycles occurring in the square 

waveform during a fixed time interval, determined by the counter’s time base [1]. This 

method can be classified as the classical method and their main error source is the ±1 error 

count derived from the relative timing of gate and signal, which means that the resolution is 

1 Hz during a 1s gate time for all input signal frequencies [2]. For allow high resolution 

frequency measurements gate time larger than 1s should be selected.   

In reciprocal counting measurement techniques, the gate time is determined by electronic 
detection of two kinds of same phase difference situations between two pulsed signals with 
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different frequencies [3], or by electronic detection of two coincident pulses of two regular 
independent pulse trains [5 -6]. In these methods the quantization error (±1 count error) can 
be overcome satisfactorily [2-3,6]. But, in [3] a high distinguishability analog circuit for 
phase coincidence detection is required and in [5] the relative methodical error is pulse 
width dependent for random selection of stop measurement pulse coincidence and, is 
experimentally probed that relative methodical error can be reduced by two o three orders 
of magnitude than frequency meters based on classical method [6]. 

Continuous time stamping principle change the scenario in frequency measurement, 
because in each measurement has not a defined start (= start trigger event), and a stop  
(= stop trigger event) plus a dead-time between measurements to read out and clear 
registers, do interpolation measurements and prepare for next measurement [2]. In this 
technique Linear regression using the least-squares line fitting is used because for a one-
second frequency measurement in a fast processing counter could contain hundreds o 
thousands of paced time-stamped events, no just a start event plus a stop event [2]. But fast 
digital circuits are needed to implement this technique. 

However, a fast method for frequency measurement base pulse coincidence principle and 
rational approximations was proposed and, was shown that under a novel numerical 
condition for detect the stop trigger event measurement resolution is improved. 
Instrumental errors are caused only by the reproducibility of the reference frequency and 
relative measurement error is comparable to the reproducibility of reference oscillator. [7]. 
Simple digital circuits are needed to practical implementation of this technique. 

2. Frequency measurement based on the pulse coincidence principle 

In the past, pulse coincidence principle has been used for frequency measurement of 
electrical signals [4-6]. In this measurement method, a desired frequency is measured by 
comparing it with a standard frequency. The zero crossings of both frequencies are detected, 
and a narrow pulse is generated at each crossing. Then, two regular independent pulse 
trains are generated. The desired and standard trains of narrow pulses are compared for 
coincidence. This is made with an AND-gate, and then a coincidence pulse train is 
generated. Coincident pulses can be used as triggers to start and stop a pair of digital 
counters (start and stop events). See Figure 1.  

The standard and desired pulse trains are applied to other counters and a measure of the 
desired frequency is obtained by multiplying the known standard frequency by the ratio 
between the desired count and the standard count obtained in the two digital counters [5]. 
And basically, measurement error reduction depends on the ability to detect a pair of best 
coincidences consecutively between a large number of these, for a given measurement time. 
In other works, measurement error reduction depends on reduction of comparison error of 
time intervals n0T0 and nXTX by selection of adequate coincidence pulses [6].   

Consider fx as the desired or unknown frequency and fo as the standard frequency, and 
1x xT f  and 1o oT f  are they periods respectively. In Figure 1, SX(t) and S0(t) are the 

unknown and standard trains of narrows pulses,   is the pulse width on both trains and, 
SX(t) &S0(t) is the irregular pulse coincidence train. Then, n0 and nX are integer numbers and 
represent the amount of whole periods between selected measurement start and stop events 
(see figure 1).  
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0XT

 

a) 

 

Fig. 1. a) Pulse coincidence principle for frequency measurement, b) Practical view of 
coincidences process (oscilloscope screenshot). 
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In [6] by possible selection of partial coincidences, error of comparison of time intervals n0T0 

and nXTX has been reduced to the duration of the coinciding pulses and mathematically 

expressed by 

 0 0 2 .X Xn T n T    (1) 

Form (1), relative measurement error for a single measurement can be expressed as follows 

 

0
0

0 0

2 2
,

X
X

X
X m

n
f f

n

f n T t

 


    (2) 

where tm is the measurement time.  

It is experimentally known, that for a standard frequency 6
0 1 10f   Hz from a thermostatic 

quartz generator with relative short-term instability does not exceed 10-8  and using a pulses 

width 97 10   s,  root-mean-square (RMS) error 614.3 10Xs    Hz for 31 10Xf   Hz at 

50 observations during total measurement time 1mt   s. And 31.79 10xs    Hz for 
61 10Xf   Hz under same measurement conditions [6]. 

2.1 functioning and uncertainty limitations 

Let us consider two trains of narrow pulses with period XT  and 0T  with and pulse width   

respectively, generated by detection of zero crossings of two sinusoidal signal of frequencies 

0f  and Xf . Suppose that 0T  is a known parameter and XT is unknown and, both pulse 

trains start in phase, i.e. a time shift is 0.  

For an appropriate selection of the pulse width of two regular independent pulse trains, 

periodic perfect coincidences of these pulses are observed in time axis [13]. Repetition 

period of perfect coincidences is 0XT , in Fig. 1a). A Practical view of coincidences process is 

presented in Fig 1 b). 

For frequency measurement, the time intervals 0 0n T  and X Xn T  are compared, where 0n  is 

the amount of periods 0T  in the measurement time and Xn  is the amount of periods XT in 

the same time interval.  

Measurement time can be defined by the time interval between the first one pulse of 

coincidence (start event) after beginning the measurement process, and by any other 

following pulse of coincidence (stop event). As it were mentioned in the previous section, 

0n  and Xn  are the counts of pulses obtained in two digital counters.  

According to [12], pulse coincidence occurs when 

 0 0X Xn T n T    (3) 

where   is the acceptable tolerance (reasonable error value between time intervals 0 0n T  

and X Xn T  less to pulse with and dependent on the quality of electronic circuits used).  
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To find values of 0n  and Xn  which define the appropriated coincidence it is useful to 

expand 0XT T as simple continued fractions. This is evident rewriting (3) 

 
0

0 0

X

X X

nT

T n n T


  .  (4) 

Left side of equation (3) represents the approximation of 0XT T using rational numbers and 

right side is an approximation condition.  

For frequency measurement, in a view of 0 01f T , 1X Xf T , we can write  

 
00

0
0

X
X

X

f fn
f f

n n


  . (5) 

In (5), Xf  is the hypothetical true value of the unknown frequency and 0 0 Xf n n is the 

frequency value obtained by the measurement. Then, dividing both parts of (5) in Xf  and 

taking to account 0 01f T , relative error of measurement (frequency offset)   can been 

expressed by  

 0

0 0
X X

X

n
f f

n n T

    . (6) 

We can see in equation (6) that relative error of measurement is limited by the ratio between 

the acceptable tolerance of the error of comparison between the time intervals 0 0n T  and 

X Xn T  and, the time interval 0 0n T . Value of 0 0n T  is approximately the measurement time. 

2.2 Numerical stop condition of measurement 

In frequency measurement, 0n  and Xn are independent counter counts obtained in two 

digital counters, so they are properly integer numbers. An integer numbers ratio, like the 

involved in the frequency value obtained by the measurement, is possible to investigate 

under number theory laws. Let note and briefly explain some of them, especially Euclidean 

algorithm. 

2.2.1 Number theoretic preliminaries 

Let us to assume without loss generality that 0XT T , from the division algorithm we can 

write 

 0 0 0XT a T t      0 0 0T t    (7) 

 0 1 0 1T a t t       0 1 0t t     (8) 

 0 2 1 2t a t t        1 2 0t t     (9) 

     
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 2 1i i i it a t t         1 0i it t     (10) 

     

 2 1n n n nt a t t         1 0n nt t      (11) 

where the ia  is the ith partial quotients for each case and it  is the ith remainder, with 

1,2,3,...,i n . With 1ia  , it  is a decreasing sequence for 0.i    

Each remained obtained in the division step of Euclidean algorithm be could be interpreted 
as a distance [11], defined by 

 
0

.i X i iQ T PT t    (12) 

where iP  and iQ  are the numerator and denominator of the ith convergent of the continued 

fractions to 0XT T defined recursively as [12] 

 
1 2i i i iP a P P    (13) 

 
1 2i i i iQ a Q Q    (14) 

for arbitrary 2i  , and  

0 0 0

1 0 1 1 1

, 1,

1, .

P a Q

P a a Q a

 
  

 

Then, from (12) each remainder it is the absolute difference between the time intervals 

i XQ T  and 0 .iPT  

On the other hand, 0T  can be expressed in terms of two consecutive remainders [11] using 

the following expression: 

 0 1 1i i i iT Q t Q t     . (15) 

A similar expression can be derived for XT  

 1 1X i i i iT P t P t     . (16) 

Supposing that n is the number of steps in the Euclidean algorithm to obtain greatest 

common divisor of XT  and 0T . Then last remained 0nt  and time interval 1nt   is the 

greatest common divisor of both periods XT  and 0T , in the consecutive division expressed 

in equations (7) to (11). Because the greatest common divisor is: the last nonzero remainder 

in this sequence of divisions.  

Assuming that 1nt   is greatest common divisor of both periods XT  and 0T , we can write 

 0 1n nT Q t    (17) 

 1X n nT P t   . (18) 
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Expressing (10) in terms of (15) and (16) it is evident in (17) than step n is total equality point 
for both time intervals  

 
1 1 0.n n n n n nQ P t P Q t      (19) 

In frequency measurement, this term expressed in several forms have a mathematical mean 

of least common multiple, and practical mean of time interval 0XT  (see Fig. 1) expressed by: 

 0
1

1

X
XO n n n

n

T T
T P Q t

t



  


 (20) 

is the condition for periodic perfect coincidences of pulses (see Fig. 1). Assuming to 0XT  the 

measurement time in frequency measurement, from (1) and Fig. 1 

 
0 0 0X Xn T n T  . (21) 

and each time intervals 0 0n T  and X Xn T  are equal to 0XT . Then, 

 
0 0 1n n nn T P Q t   , (22) 

 
1X X n n nn T P Q t   . (23) 

Now, product of two numbers ab c  can be considered as the sum a a a a     in which 
the number of summands is equal to b  or as the sum b b b b     in which the number 

of summands is equal to a .  

Then, equations (22) and (23) can be rewrited using  (17) and (18): 

 
0 1 1n n n n nn Q t P Q t    ,  

 
1 1X n n n n nn P t P Q t    .  

Expressions (22) and (23) have a reason only when 

 
0 nn P  (24) 

and 

 .X nn Q  (25) 

2.2.2 Stop condition of measurement 

For small measurement time (less than or equal a 1 s) is evident from equation (4) that: order 

of magnitude of 1nt   must be of same order of magnitude that the expected relative error 

of measurement  . Then, according to before mentioned, we propose that an acceptable 

tolerance in (1) is 1nt   . 

Assuming decimal notation for both periods XT  and 0T , under the conditions 1XT   and 

0 1T  , and assuming  reference period can be expressed as 0 1 10 sT   , then the greatest 

common divisor 1nt  is 
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    1 0

1
, ,10

10

r s
n X r

t T T A 
    (26)  

where A , r , s  are integer numbers with r s , r  is the exponent associate to expected the 

order of magnitude of  , r s is the difference between the expected order of magnitude   

and the order of magnitude of the time period of the standard.  

On the other hand, according with equation (25) the number of time intervals XT  

necessaries to stop the measurement process is nQ , and form (15)  

 0

1
n

n

T
Q

t 



. (27) 

If A  and 10r s in equation (26) are mutually prime then 1 10r s
nt


   and 

 10r s
nQ   (28) 

and, if they are not, then 1 10r
nt a   whit a  integer number and  

 10 /r s
nQ a . (29) 

In both cases 1 10r is a common divisor of both periods XT  and 0T .  

Then, from equations (16), (24) and (25), the condition that satisfies (19) is 

 10 .r s
Xn   (30) 

This is the numeric condition that we propose to stop the measurement process and is easy 
to implement with basics digital circuits.  

A novel fast method to frequency measurement with application in mechatronics and 
telecommunication is based on this numerical stop condition is presented in [7-9]. 
Resolution improvement in frequency domain sensors is allowed in automotive applications 
[10] with this method and is applied in precise optical scanning and structural health 
monitoring [19-21]      

3. Simulation 

In the simulation two pulse trains of unitary amplitude are generated using a computational 

algorithm sampling independent [7]. The value of reference frequency was accepted as 
7

0 1 10f    Hz. The hypothetical value of unknown frequency is 5878815.277629991Xf  Hz, 

and is a result of the accepted value of the period 71.701023 10XT   s.  The value of pulse 

width in both pulse trains is accepted as 91.5 10   s.  

In this case, is evident that XT  and 0T are mutually prime numbers and have the common 

denominator 13
1 1 10nt


   . 

Simulation algorithm provided continuous formation of the segments 0 0n T  and X Xn T  and 

compares the magnitude of their difference with parameter 2 . When the value of the 
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specified difference was less than 2 on corresponding steps of simulation, it was identified 

like a coincidence of pulses and the integer numbers 0n  and Xn  are stored. 

The unknown frequency is calculated using 0 0Xm xf n f n  and frequency relative error is 

obtained using   X Xmf f fx , both results are stored also.  

Simulation results are partially presented in the Table 1 and, frequency relative error 
calculated (non absolute value) is presented in Fig. 2 for a simulation time of 0.2 s.  

The simulation process star in 0 0n   and 0Xn  , and the best approximation is selected (in 

this case) using the condition, 61 10Xn   . 

Table 1 represents an interesting fact. For thousands of data we have the same uncertainty 

range 1310 , as for first and third rows. And only when Xn  takes a form of 1 with six zeros 

(in this case, second row of Table 1) we are getting up to 1710 . 

In Fig. 2, we can see a global convergence to zero of frequency relative error. An alternated 

convergence and a non monotone decreasing characteristic are evident. However, we can 

identify in the graphic a point where   is minimum for an approximated time of 0.17 s. 
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Fig. 2. Frequency offset from the simulation process 

Frequency offset from computational selection of best coincidences, obtained under 

condition (1) with 121 10    is presented in Fig. 3. In this graphic, we can observe a 

convergence by the left and a divergence by the right around 0.17 s (first point in the Fig. 3). 
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This condition is repeated with time, and we can see five points where absolute value of   

is minimum, for a simulation time of 1 s. In each mentioned points the condition expressed 

in (30) is fulfilled.  

 

Xn  
0
n  0 0X Xn T n T ,s 

Xmf , Hz 

957087 1628027 13
1000.1

  5878815.277633602 

1000000 1701023 17
1078.2

  5878815.277629991 

1042913 1774019 13
1000.1

  5878815.277626677 

Table 1. Simulation results of frequency measurement process. 
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Fig. 3. Frequency offset from the simulation process for 1 s. 

3.1 Jitter effect in frequency measurement 

In order to evaluated the jitter effect on the non-electrically detectable stop event for 
frequency measurement method based on the direct comparison of two regular independent 
trains of narrow pulses and rational approximations. Deterministic and random 
components of jitter are modeled and, are added in both pulse trains one deterministic jitter 
component and random jitter in each case. Simulation results are presented when both pulse 
trains start in phase and when start with a phase shift.   
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Timing jitter (henceforth referred to as jitter) is defined as short-term non-cumulative 
variations of the significant instants of a signal from their ideal positions in time [18]. 

For modeling, Total Jitter (TJ) consists of two components: Deterministic Jitter (DJ) and 
Random Jitter (RJ) [14]. In time domain, TJ is the sum of the RJ and DJ components [15]. RJ is 
characterized by a Gaussian distribution. It has been shown that it is theoretically 
unbounded in amplitude.  

DJ consists of several components caused by different and mostly physically-based 
phenomena, such electronic interference, cross-talk and bandwidth limitation. All DJ 
subcomponents have a bounded peak-to-peak value that does not increase when more 
measurement samples are taken [15]. 

Deterministic jitter has four components: duty cycle distortion (DCD), intersymbol 

interference (ISI), periodic jitter (PJ) and bounded uncorrelated jitter (BUJ).  

DCD and ISI are referred as data correlated jitter, while PJ and BUJ are referred as data 

uncorrelated jitter. RJ is unbounded and uncorrelated [15].  

3.1.1 Random Jitter (RJ) 

Random Jitter RJ is caused the common influence of a large number of very small independent 
contributor or various device-originated noise sources (such as thermal and flicker noise). By 
the central limit theorem, the distribution of a large number of uncorrelated noise sources 
approaches a probability Gaussian distribution and is given by [14] 

  
2

221

2

x

RJJ x e 

 

 
  
   (31) 

where σ is the standard deviation of the jitter distribution or the RMS value, and JRJ is the 
probability that leading edge (or trailing edge) will occur at time x, where x is the deviation 
from the mean value of the time reference point (time point related to 50% amplitude point 
on pulse edge). In Fig. 4a), is shows the histogram for random jitter. 

3.1.2 Periodic Jitter (PJ) 

Periodic jitter denotes periodical timing deviation from the ideal position of a signal that 

repeat in time, is typically uncorrelated to the data rate or the clock frequency [14]. 

Electromagnetic interference and crosstalk from some clock line can cause periodic jitter. 

The mathematic model of PJ consists of a sum of cosine functions with phase deviation, 

modulation frequency, and peak amplitude. The model is given by 

  
0

cos
n

T i i i
i

PJ a t 


   (32) 

where PJT denotes the total periodic jitter, n is the number of cosine components, ai is the 
amplitude in units of time in each tone, ωi is the angular frequency of the corresponding 
modulation, t is the time, and θi is the corresponding phase [15].   
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Sinusoidal jitter in time domain produces a probability distribution function given by 
(defining time zero as the center of the distribution) 

   2 2

1

0
i

i

PJ i

x a
J x a x

otra



 
 



 (33) 

where 2a is the peak-to-peak width of periodic jitter [14]. In Fig. 4b) is shows the histogram 
for sinusoidal periodic jitter with added random jitter. 
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Fig. 4. Histogram for a) Random jitter (RJ), b) Sinusoidal periodic jitter with added random 
jitter (PJ+RJ), c) duty cycle distortion with added random jitter (DCD+RJ) y d) data 
dependent jitter with added random jitter (DDJ+RJ). 

3.1.3 Duty Cycle Distortion (DCD) 

Duty Cycle Distortion is often also called pulse width distortion [14], is deviation in the duty 
cycle value from the ideal value, this equates to a deviation in bit time between a 1 bit (logic 
1) and a 0 bit (logic 0). DCD can have several sources. The most ommon are threshold level 
offsets and differences in the rising and falling edge characteristics [14].  
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DCD yields a binomial distribution consisting of two sharp peaks of equal height, unless 
one separates rising and falling transitions in the measurement. Theoretically those peaks 
are Dirac delta functions, but in practice random jitter and limited measurement resolution 
always produce peaks of finite height and finite width. The analytic equation for DCD 
distribution is the sum of delta functions [14]: 

 
   

( )
2 2

DCD

x a x a
J x

  
   (34) 

where 2a is the peak-to-peak width of the DCD. In Fig. 4c) is shows the histogram for duty 
cycle distortion with added random jitter. 

3.1.4 Data Dependent Jitter (DDJ) 

Data dependent jitter describes timing errors that depend on the preceding sequence of data 
bits [14]. DDJ is a predominant form of DJ caused by bandwidth limitations of the system or 
electromagnetic reflections of the signal [16-17]. Since there is always only a limited number 
of different possible patterns in a data stream of limited length, data dependent timing 
errors always produce a discrete timing jitter, theoretically DDJ distribution is the sum of 
two o more delta functions [14]: 

     
1

N

DDJ i i
i

J x p x t


   (35) 

where 
1

1
N

ii
p


  N is number of distinct patterns, pi is the probability of the particular 

pattern occurring, and ti is the timing displacement of the edge following this pattern. In Fig. 
4d is shows the histogram for data dependent jitter with added random jitter. 

In the simulations, two pulse trains of unitary amplitude are generated. The value of 

reference frequency was accepted as 7
0 1 10f   Hz. The hypothetical value of unknown 

frequency 5878815.277629991Xf   Hz is a result of the accepted value of the period 
71.701023 10XT   s, and value of pulse width in both pulse trains is 91.0 10    s. The RJ 

model used is Gaussian distributed with RMS value 0.7 ps. The PJ model is a single-tone 

sinusoidal with frequency 5 MHz and peak-to-peak value of 10 ps, same peak-to-peak value 

is assumed in DDJ and DCD jitter models. A component of random jitter is added to the last 

tree models to generate the jitter models PJ+RJ, DDJ+RJ and DCD+RJ. Such jitter values are 

selected because of the most typical values for such pulse trains according to [15]. Then the 

jitter components modeled are applied to the time reference points of each narrow pulse on 

the two pulse trains. In  

3.2 Jitter simulation results 

In the first computational experiment is assumed the same magnitude of the jitter in the 
oscillator under measurement and references oscillator on all models. The experimental 
results when the two pulse trains started in phase are presented in Table 2, to a simulation 
time of 0.172 s. In the first row of each table are presented the results obtained without jitter 
models.  
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In third column is shown the total number of coincidences obtained with each model for the 
simulation time and, in the fourth column is shown the number of coincidence where 
appears the stop event associate to the best approximation in the frequency measurement 
process (the desired count is represented like 10r [7]).  Program code for computational 
experiment in Matlab is presented in [22]. 

 
 

Reference  
Oscillator 

Oscillator  
under test 

Total number of 
coincidences 

Coincidence number for 
best approximation 

Without jitter  
model 

Without jitter  
model 

20223 19999 

RJ 

RJ 20222 19998 

PJ+RJ 20240 20016 

DCD+RJ 20213 19989 

DDJ+RJ 20223 19999 

PJ+RJ 

RJ 20217 19993 

PJ+RJ 20224 20002 

DCD+RJ 20218 19995 

DDJ+RJ 20218 19994 

DCD+RJ 

RJ 20226 20002 

PJ+RJ 20218 19995 

DCD+RJ 20218 19994 

DDJ+RJ 20217 19993 

DDJ+RJ 

RJ 20227 20003 

PJ+RJ 20216 19991 

DCD+RJ 20218 19994 

DDJ+RJ 20223 20000 

Table 2. Simulation results with same magnitude of the jitter and pulse trains in phase. 

Comparing the results shown in both columns with the values obtained in the simulation 
that does not include any jitter model, we see that in the presence of jitter the number of 
coincidence and the number of coincidence pulse associated with the best approach varies 
depending on model type. The latter implies the position at the time of the coincidence 
pulse is not fixed since it depends on the jitter component is dominant, in all case 
n0=1701023 and nX=1000000. 

Fig. 5 is presented the relative error obtained by simulation around best coincidence, 
obtained under condition (30) with ε=1×10-12 s. In this plot we can see that due to jitter effect 
some theoretically expected marginal coincidences may disappear or non-theoretically 
expected may appear. However, this phenomenon can not be observed in non-marginal 
coincidences, for instance the expected coincidence under condition (30) and an 
appropriated pulse width τ.  
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Fig. 5. Jitter effect on frequency relative error for a series of best coincidences (simulation 
time 0.2.s)  

4. Experimental research 

For experimental research a prototype of frequency meter was implemented, based on the 

block diagram shown in Fig 6. This prototype was implement in the FPGA 

EP3SL150F1152C2N using the development board STRATIX III EP3SL150 and the design 

software QUARTUS II.  In Fig 7. is shown the circuit diagram to the FPGA based frequency 

measurement prototype used. 

For practical frequency measurement, reference frequency was provided by using an 

Agilent 33250A arbitrary waveform generator and, was set to 71 10of   Hz. The 

hypothetical unknown frequency was provided by Tektronix AFG3101 Arbitrary function 

generator. 

In Fig. 8a) is presented arbitrary selection from the experimental data set a period value 

associate to the hypothetical unknown frequency used in experimental research. As shown 

in Fig. 8a) the measured unknown frequency was adjusted on the rate of Tx=989.97ns 

according to in-built equipment frequency counter. Then this unique pulse train frequency 

was counted by our experimental prototype of frequency meter. The count of pulses from 

unknown frequency train obtained with the digital counter Q in block diagram of Fig 6 

under the condition (30) is show in Fig. 7 b). The measurement time by single 
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experimentation never exceeds 1 s. It is evident from screenshot Fig. 7 b) that our prototype 

circuit has a higher resolution than Tektronix AFG3101 in-built frequency counter, but it 

shows the same rate of frequency. The character of coincidences between indications of 

experimental prototype and Tektronix AFG3101 generator was the same on all experimental 

data set. It permits us to make the next important practical conclusion. 

 

 

Fig. 6. Frequency meter block diagram. 

 
 

 

Fig. 7. Circuit diagram for FPGA based frequency meter. 
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a) 

 

b) 

Fig. 8. Sample frequency (formed by arbitrary function generator, a) measurement by 
prototype circuit (b). 
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The prototype circuit unfortunately still has multiply sources of noise and uncertainty. But it 
is a second plan aspect of circuit optimal design in a future work. The main proof of this 
prototype circuit is the proof of the possibility for a fast frequency measurement without 
losses of high resolution and rigorous link to actual situation with frequency jitter in a 
present pulse train. 

5. Conclusions 

In the offered model for fast frequency measurement, the result is fixed on the equality of 

intervals 0 0n T  and X Xn T . Therefore the model is independent to the parameters of 

coincidence circuits, duration and the shape of coincidence pulses, and the parameters of 

“zero-crossing” pulses in both sequences.  

Due to jitter effect some theoretically expected marginal coincidences may disappear or non-
theoretically expected may appear. However, this phenomenon can not be observed in non-
marginal coincidences, for instance the expected coincidence under condition (30) and an 
appropriated pulse width τ.  

For measuring systems which can be constructed on the basis of the specified model, 
systematic and instrumental errors have the same infinitesimal order. Instrumental errors 
are caused only by the reproducibility of the reference frequency.  

For measurements of high values of frequency Xf  it is expedient to use higher values of 

reference frequency in order to have an equivalent reduction of measurement time. 

Also it is important to note, that this theoretical method permits to measure unknown 
frequency value in a case, when unknown frequency exceeds the own value of a standard. 
For classical methods it is impossible completely. 

In future work, there will be an improved version of the experimental prototype to reduce 
the influence of deterministic errors in measuring and evaluating new frequency estimators 
based on the Theory of Numbers.  
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