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1. Introduction

Although the theory of relational databases is highly developed and proves its usefulness in
practice every day Garcia-Molina et al. (2008), there are situations where the relational model
fails to offer adequate formal support. For instance, when querying approximate data Hjaltason
& Brooks (2003); Minker (1998) or data within a given range of distance or similarity Hjaltason
& Brooks (2003); Patella & Ciaccia (2009). Examples of such similarity-search applications
are databases storing images, fingerprints, audio clips or time sequences, text databases with
typographical or spelling errors, and text databases where we look for documents that are
similar to a given document. A core component of such cooperative systems is a treatment of
imprecise data Hajdinjak & Mihelič (2006); Minker (1998).

At the heart of a cooperative database system is a database where the data domains come
equipped with a similarity relation, to denote degrees of similarity rather than simply ‘equal’
and ‘not equal’. This notion of similarity leads to an extension of the relational model where
data can be annotated with, for instance, boolean formulas (as in incomplete databases) Calì
et al. (2003); Van der Meyden (1998), membership degrees (as in fuzzy databases) Bordogna &
Psaila (2006); Yazici & George (1999), event tables (as in probabilistic databases) Suciu (2008),
timestamps (as in temporal databases) Jae & Elmasri (2001), sets of contributing tuples (as
in the context of data warehouses and the computation of lineages or why-provenance) Cui
et al. (2000); Green et al. (2007), or numbers representing the multiplicity of tuples (as
in the context of bag semantics) Montagna & Sebastiani (2001). Querying such annotated
or tagged relations involves the generalization of the classical relational algebra to perform
corresponding operations on the annotations (tags).

There have been many attempts to define extensions of the relational model to deal with
similarity querying. Most utilize fuzzy logic Zadeh (1965), and the annotations are typically
modelled by a membership function to the unit interval, [0, 1] Ma (2006); Penzo (2005);
Rosado et al. (2006); Schmitt & Schulz (2004), although there are generalizations where the
membership function instead maps to an algebraic structure of some kind (typically poset
or lattice based) Belohlávek & V. Vychodil (2006); Peeva & Kyosev (2004); Shenoi & Melton
(1989). Green et al. Green et al. (2007) proposed a general data model (referred to as the
K-relation model) for annotated relations. In this model tuples in a relation are annotated
with a value taken from a commutative semiring, K. The resulting positive relational algebra,
RA+

K , generalizes Codd’s classic relational algebra Codd (1970), the bag algebra Montagna &
Sebastiani (2001), the relational algebra on c-tables Imielinski & Lipski (1984), the probabilistic
algebra on event tables Suciu (2008), and the provenance algebra Buneman et al. (2001); Cui
et al. (2000). With relatively little work, the K-relation model is also suitable as a basis for
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2 Will-be-set-by-IN-TECH

modelling data with similarities and simple, positive similarity queries Hajdinjak & Bierman
(2011).

Geerts and Poggi Geerts & Poggi (2010) extended the positive relational algebra RA+
K

with a difference operator, which required restricting the class of commutative semirings
to commutative semirings with monus or m-semirings. Because the monus-based
difference operator yielded the wrong answer for two semirings important for similarity
querying, a different approach to modelling negative queries in the K-relation model was
proposed Hajdinjak & Bierman (2011). It required restricting the class of commutative
semirings to commutative semirings with negation or n-semirings. In order to satisfy all of the
classical relational identities (including the idempotence of union and self-join), Hajdinjak and
Bierman Hajdinjak & Bierman (2011) made another restriction; for the annotation structure
they chose De Morgan frames. In addition, since previous attempts to formalize similarity
querying and the K-relation model all suffered from an expressivity problem allowing only
one annotation structure per relation (every tuple is annotated with a value), the D-relation
model was proposed in which every tuple is annotated with a tuple of values, one per
attribute, rather than a single value.

Relying on the work on K, L-and D-relations, we make some further steps towards a
general model of annotated relations. We come to the conclusion that complete distributive
lattices with finite meets distributing over arbitrary joins may be chosen as a general
annotation structure. This choice covers the classical relations Codd (1970), relations on
bag semantics Green et al. (2007); Montagna & Sebastiani (2001) Fuhr-Rölleke-Zimányi
probabilistic relations Suciu (2008), provenance relations Cui et al. (2000); Green et
al. (2007), Imielinksi-Lipski relations on c-tables Imielinski & Lipski (1984), and fuzzy
relations Hajdinjak & Bierman (2011); Rosado et al. (2006). We also aim to define a general
framework of K, L-and D-relations in which all the previously considered kinds of annotated
relations are modeled correctly. Our studies result in an attribute-annotated model of so called
C-relations, in which some freedom of choice when defining the relational operations is given.

This chapter is organized as follows. In §2 we recall the definitions of K-relations and the
positive relational algebra RA+

K , along with RA+
K(\), its extension to support negative queries.

Section §3 recalls the definition of the tuple-annotated L-relation model, the aim of which was
to include similarity relations into the K-relation framework of annotated relations. In §4 we
present the attribute-annotated D-relation model, where every attribute is associated with its
own annotation domain, and we study the properties of the resulting calculus of relations.
In section §5 we explore whether there is a common domain of annotations suitable for all
forms of annotated relations, and we define a general C-relation model. The final section §6
discusses the issue of ranking the annotated answers, and it gives some guidelines of future
work.

2. The K-relation model

In this section we recall the definitions of K-relations and the positive relational algebra RA+
K ,

along with RA+
K(\), its extension to support negative queries. The aim of the K-relation work

was to provide a generalized framework capable of capturing various forms of annotated
relations.

We first assume some base domains, or types, commonly written as τ, which are simply sets
of ground values, such as integers and strings. Like the authors of previous work Geerts &
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Poggi (2010); Green et al. (2007); Hajdinjak & Bierman (2011), we adopt the named-attribute
approach, so a schema,

U = {a1 : τ1, . . . , an : τn}, (1)

is a finite map from attribute names ai to their types or domains

U(ai) = τi. (2)

We represent an U-tuple as a map

t = {a1 : v1, . . . , an : vn} (3)

from attribute names ai to values vi of the corresponding domain, i.e.,

t(ai) = vi, (4)

where vi ∈ τi for i = 1, . . . , n. We denote the set of all U-tuples by U-Tup.

2.1 Positive relational algebra RA+
K

Consider generalized relations in which the tuples are annotated (tagged) with information
of various kinds. A notationally convenient way of working with annotated relations is to
model tagging by a function on all possible tuples. Green et al. Green et al. (2007) argue that
the generalization of the positive relational algebra to annotated relations requires that the set
of tags is a commutative semiring.

Recall that a semiring
K = (K,⊕,⊙, 0, 1) (5)

is an algebraic structure with two binary operations (sum ⊕ and product ⊙) and two
distinguished elements (0 �= 1) such that (K,⊕, 0) is a commutative monoid1 with identity
element 0, (K,⊙, 1) is a monoid with identity element 1, products distribute over sums, and
0 ⊙ a = a ⊙ 0 = 0 for any a ∈ K (i.e., 0 is an annihilating element). A semiring K is called
commutative if monoid (K,⊙, 1) is commutative.

Definition 2.1 (K-relation Green et al. (2007)). Let K = (K,⊕,⊙, 0, 1) be a commutative semiring.
A K-relation over a schema U = {a1 : τ1, . . . , an : τn} is a function A : U-Tup → K such that its
support,

supp(A) = {t | A(t) �= 0}, (6)

is finite.

Taking this extension of relations, Green et al. proposed a natural lifting of the classical
relational operators over K-relations. The tuples considered to be ‘in’ the relation are tagged
with 1 and the tuples considered to be ‘out of’ the relation are tagged with 0. The binary
operation ⊕ is used to deal with union and projection and therefore to combine different tags
of the same tuple into one tag. The binary operation ⊙ is used to deal with natural join and
therefore to combine the tags of joinable tuples.

Definition 2.2 (Positive relational algebra on K-relations Green et al. (2007)). Suppose K =
(K,⊕,⊙, 0, 1) is a commutative semiring. The operations of the positive relational algebra on K,
denoted RA+

K , are defined as follows:

1 A monoid consists of a set equipped with a binary operation that is associative and has an identity
element.
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4 Will-be-set-by-IN-TECH

Empty relation: For any set of attributes U, there is ∅U : U-Tup → K such that

∅U(t)
def
= 0 (7)

for all U-tuples t.2

Union: If A, B : U-Tup → K, then A ∪ B : U-Tup → K is defined by

(A ∪ B)(t)
def
= A(t)⊕ B(t). (8)

Projection: If A : U-Tup → K and V ⊂ U , we write f ↓ V to be the restriction of the map f to the
domain V. The projection πV A : V-Tup → K is defined by

(πV A)(t)
def
= ∑

(t′↓V)=t and A(t′) �=0

A(t′). (9)

Selection: If A : U-Tup → K and the selection predicate P maps each U-tuple to either 0 or 1, then
σP A : U-Tup → K is defined by

(σP A)(t)
def
= A(t)⊙ P(t). (10)

Join: If A : U1-Tup → K and B : U2-Tup → K, then A ⊲⊳ B is the K-relation over U1 ∪ U2 defined
by

(A ⊲⊳ B)(t)
def
= A(t ↓ U1)⊙ B(t ↓ U2). (11)

Renaming: If A : U-Tup → K and β : U → U′ is a bijection, then ρβ A : U′-Tup → K is defined by

(ρβ A)(t)
def
= A(t ◦ β). (12)

Note that in the case for projection, the sum is finite since A has finite support.

The power of this definition is that it generalizes a number of proposals for annotated relations
and associated query algebras.

Lemma 2.1 (Example algebras on K-relations Green et al. (2007)).

1. The classical relational algebra with set semantics Codd (1970) is given by the K-relational algebra
on the boolean semiring KB = (B,∨,∧, false, true).

2. The relational algebra with bag semantics Green et al. (2007); Montagna & Sebastiani (2001) is
given by the K-relational algebra on the semiring of counting numbers KN = (N,+, ·, 0, 1).

3. The Fuhr-Rölleke-Zimányi probabilistic relational algebra on event tables Suciu (2008) is given by
the K-relational algebra on the semiring Kprob = (P(Ω),∪,∩, ∅, Ω) where Ω is a finite set of

events and P(Ω) is the powerset of Ω.

4. The Imielinksi-Lipski algebra on c-tables Imielinski & Lipski (1984) is given by the K-relational
algebra on the semiring Kc-table = (PosBool(X),∨,∧, false, true) where PosBool(X) is the set
of all positive boolean expressions over a finite set of variables X in which any two equivalent
expressions are identified.

2 As is standard, we drop the subscript on the empty relation where it can be inferred by context.
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5. The provenance algebra of polynomials with variables from X and coefficients from N Cui et al.
(2000); Green et al. (2007) is given by the K-relational algebra on the provenance semiring Kprov =
(N[X],+, ·, 0, 1).

The positive relational algebra RA+
K satisfies many of the familiar relational equalities Ullman

(1988; 1989).

Proposition 2.1 (Identities of K-relations Green et al. (2007); Hajdinjak & Bierman (2011)).
The following identities hold for the positive relational algebra on K-relations:

• union is associative, commutative, and has identity ∅;

• selection distributes over union and product;

• join is associative, commutative and distributive over union;

• projection distributes over union and join;

• selections and projections commute with each other;

• selection with boolean predicates gives all or nothing, σfalse(A) = ∅ and σtrue(A) = A;

• join with an empty relation gives an empty relation, A ⊲⊳ ∅U = ∅U where A is a K-relation over
a schema U;

• projection of an empty relation gives an empty relation, πV(∅) = ∅.

It is important to note that the properties of idempotence of union, A ∪ A = A, and self-join,
A ⊲⊳ A = A, are missing from this list. These properties fail for the bag semantics and
provenance, so they fail to hold for the more general model.

Green et al. only considered positive queries and left open the problem of supporting negative
query operators.

2.2 Relational algebra RA+
K(\)

Geerts and Poggi Geerts & Poggi (2010) recently proposed extending the K-relation model
by a difference operator following a standard approach for introducing a monus operator
into an additive commutative monoid Amer (1984). First, they restricted the class of
commutative semirings by requiring that every semiring additionally satisfy the following
pair of conditions.

Definition 2.3 (GP-conditions Geerts & Poggi (2010)). A commutative semiring K =
(K,⊕,⊙, 0, 1) is said to satisfy the GP conditions if the following two conditions hold.

1. The preorder x � y on K defined as

x � y iff there exists a z ∈ K such that x ⊕ z = y (13)

is a partial order.3

2. For each pair of elements x, y ∈ K, the set {z ∈ K; x � y ⊕ z} has a smallest element. (As �
defines a partial order, this smallest element must be unique, if it exists.)

Definition 2.4 (m-semiring Geerts & Poggi (2010)). Let K = (K,⊕,⊙, 0, 1) be a commutative
semiring that satisfies the GP conditions. For any x, y ∈ K, we define x ⊖ y to be the smallest element
z such that x � y ⊕ z. A (commutative) semiring K that can be equipped with a monus operator ⊖ is
called a semiring with monus or m-semiring.

3 While a preorder is a binary relation that is reflexive and transitive, a partial order is a binary relation that
is refleksive, transitive, and antisymmetric.

23K-Relations and Beyond

www.intechopen.com



6 Will-be-set-by-IN-TECH

Geerts and Poggi identified two equationally complete classes in the variety of m-semirings,
namely

(1) m-semirings that are a boolean algebra (i.e., complemented distributive lattice with
distinguished elements 0 and 1), for which the monus behaves like set difference, and

(2) m-semirings that are the positive cone of a lattice-ordered commutative ring, for which the
monus behaves like the truncated minus of the natural numbers.

Recall that a lattice-ordered ring (or l-ring) is an algebraic structure K = (K,∨,∧,⊕,−, 0,⊙)
such that (K,∨,∧) is a lattice, (K,⊕,−, 0,⊙) is a ring, operation ⊕ is order-preserving, and
for x, y ≥ 0 we have x ⊙ y ≥ 0. An l-ring is commutative if the multiplication operation ⊙ is
commutative. The set of elements x for which 0 ≤ x is called the positive cone of the l-ring.

Lemma 2.2 (Example m-semirings Geerts & Poggi (2010)).

1. The boolean semiring, KB = (B,∨,∧, false, true), is a boolean algebra. We have

false⊖ false = false, false⊖ true = false, true⊖ false = true, true⊖ true = false. (14)

2. The semiring of counting numbers, KN = (N,+, ·, 0, 1), is the positive cone of the ring of integers,
Z. The monus corresponds to the truncated minus,

x ⊖ y = max{0, x − y}. (15)

3. The probabilistic semiring, Kprob = (P(Ω),∪,∩, ∅, Ω), is a boolean algebra. The monus
corresponds to set difference,

X ⊖ Y = X \ Y. (16)

4. In the case of the semiring of c-tables, Kc-table = (PosBool(X),∨,∧, false, true), the monus cannot
be defined unless negated literals are added to the base set, in which case we get a boolean algebra.
For any two expressions φ1, φ2 ∈ Bool(X) we then have

φ1 ⊖ φ2 = φ1 ∧ ¬φ2, (17)

where negation ¬ over boolean expressions takes truth to falsity, and vice versa, and it interchanges
the meet and the join operation.

5. The provenance semiring, Kprov = (N[X],+, ·, 0, 1), is the positive cone of the ring of polynomials
from Z[X]. The monus of two polynomials f [X] = ∑α∈I fαxα and g[X] = ∑α∈I gαxα, where I is
a finite subset of N

n, corresponds to

f [X]⊖ g[X] = ∑
α∈I

( fα−̇gα)xα, (18)

where −̇ denotes the truncated minus on N.

Given an m-semiring, the positive relational algebra RA+
K can be extended with the missing

difference operator as follows.

Definition 2.5 (Relational algebra on K-relations Geerts & Poggi (2010)). Let K be an
m-semiring. The algebra RA+

K(\) is obtained by extending RA+
K with the operator:

Difference If A, B : U-Tup → K, then the difference A \ B : U-Tup → K is defined by

(A \ B)(t)
def
= A(t)⊖ B(t). (19)

24 Advances in Knowledge Representation
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Geerts and Poggi show that their resulting algebra coincides with the classical relational
algebra, the bag algebra with the monus operator, the probabilistic relational algebra on event
tables, the relational algebra on c-tables, and the provenance algebra.

3. The L-relation model

In this section we recall the definition of the L-relation model, the aim of which was to include
similarity relations into the general K-relation framework of annotated relations.

3.1 Domain similarities

In a similarity context it is typically assumed that all data domains come equipped with a
similarity relation or similarity measure.

Definition 3.1 (Similarity measures Hajdinjak & Bierman (2011)). Given a type τ and a
commutative semiring K = (K,⊕,⊙, 0, 1), a similarity measure is a function ρ : τ × τ → K such
that ρ is reflexive, i.e. ρ(x, x) = 1.

Following earlier work Shenoi & Melton (1989), only reflexivity of the similarity measure was
required. Other properties don’t hold in general Hajdinjak & Bauer (2009). For example,
symmetry does not hold when similarity denotes driving distance between two points in a
town because of one-way streets. Another property is transitivity, but there are a number of
non-transitive similarity measures, e.g. when similarity denotes likeness between two colours.

Allowing only K-valued similarity relations, Hajdinjak and Bierman Hajdinjak & Bierman
(2011) modeled an answer to a query as a K-relation in which each tuple is tagged by the
similarity value between the tuple and the ideal tuple. (By an ideal tuple a tuple that perfectly
fits the requirements of the similarity query is meant.) Prior to any querying, it is assumed
that each U-tuple t has either desirability A(t) = 1 or A(t) = 0 whether it is in or out of A.

Example 3.1 (Common similarity measures). Three common examples of similarity measures are
as follows.

1. An equality measure ρ : τ × τ → B where ρ(x, y)
def
= true if x and y are equal and false otherwise.

Here, B = {false, true} is the underlying set of the commutative semiring

KB = (B,∨,∧, false, true), (20)

called the boolean semiring.

2. A fuzzy equality measure ρ : τ × τ → [0, 1] where ρ(x, y) expresses the degree of equality of x and
y; the closer x and y are to each other, the closer ρ(x, y) is to 1. Here, the unit interval [0, 1] is the
underlying set of the commutative semiring

K[0,1] = ([0, 1], max, min, 0, 1), (21)

called the fuzzy semiring.

3. A distance measure ρ : τ × τ → [0, dmax] where ρ(x, y) is the distance from x to y. Here, the closed
interval [0, dmax] is the underlying set of the commutative semiring

K[0,dmax] = ([0, dmax], min, max, dmax, 0), (22)

called the distance semiring.

25K-Relations and Beyond
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Because of their use the commutative semirings from this example were called similarity semirings.

A predefined environment of similarity measures that can be used for building queries is
assumed—for every domain K = (K,⊕,⊙, 0, 1) and every K-relation over a schema U =
{a1 : τ1, ..., an : τn} there are similarity measures

ρai : τi × τi → K, 1 ≤ i ≤ n. (23)

3.2 The selection predicate

In the original Green et al. model (Definition 2.2) the selection predicate maps U-tuples to
either the zero or the unit element of the semiring. Since in a similarity context we expect the
selection predicate to reflect the relevance or the degree of membership of a particular tuple in
the answer relation, not just the two possibilities of full membership (1) or non-membership
(0), the following generalization to the original definition was proposed Hajdinjak & Bierman
(2011).

Selection: If A : U-Tup → K and the selection predicate

P : U-Tup → K (24)

maps each U-tuple to an element of K (instead of mapping to either 0 or 1), then
σP A : U-Tup → K is (still) defined by

(σP A)(t) = A(t)⊙ P(t). (25)

Selection queries can now be classified on whether they are based on the attribute values (as
is normal in non-similarity queries) or whether they use the similarity measures. Selection
queries can also use constant values.

Definition 3.2 (Primitive predicate Hajdinjak & Bierman (2011)). Suppose in a schema U =
{a1 : τ1, . . . , an : τn} the types of attributes ai and aj coincide. Then given a commutative semiring

K = (K,⊕,⊙, 0, 1), for a given binary predicate θ, the primitive predicate [ai θ aj] : U-Tup → K is
defined as follows.

[ai θ aj](t)
def
= χaiθaj

(t) =

{

1 if t(ai) θ t(aj),
0 otherwise.

(26)

In words, [ai θ aj] behaves as the characteristic map of θ, where θ may be any arithmetic comparison
operator among =, �=, <, >, ≤, ≥.

Definition 3.3 (Similarity predicate Hajdinjak & Bierman (2011)). Suppose in a schema U =
{a1 : τ1, . . . , an : τn} the types of attributes ai and aj coincide. Given a commutative semiring K =

(K,⊕,⊙, 0, 1), the similarity predicate [ai like aj] : U-Tup → K is defined as follows.

[ai like aj](t)
def
= ρai (t(ai), t(aj)). (27)

A symmetric version is as follows.

[ai ∼ aj]
def
= [ai like aj] ∪ [aj like ai], (28)

where union (∪) of selection predicates is defined below.

26 Advances in Knowledge Representation
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Definition 3.4. Given a commutative semiring K = (K,⊕,⊙, 0, 1), union and intersection of two
selection predicates P1, P2 : U-Tup → K is defined as follows.

(P1 ∪ P2)(t)
def
= P1(t)⊕ P2(t), (29)

(P1 ∩ P2)(t)
def
= P1(t)⊙ P2(t). (30)

3.3 Relational difference

Whilst the similarity semirings support a monus operation in the sense of Geerts and
Poggi Geerts & Poggi (2010), the induced difference operator in the relational algebra does
not behave as desired.

• The fuzzy semiring, K[0,1] = ([0, 1], max, min, 0, 1), satisfies the GP conditions, and the
monus operator is as follows.

x ⊖ y = min{z ∈ [0, 1]; x ≤ max{y, z}} =

{

0 if x ≤ y,
x if x > y. (31)

This induces the following difference operator in the relational algebra.

(A \ B)(t) =

{

0 if A(t) ≤ B(t),
A(t) if A(t) > B(t).

(32)

Hajdinjak and Bierman Hajdinjak & Bierman (2011) regret that this is not the expected
definition. First, fuzzy set difference is universally defined as min{A(t), 1 − B(t)} Rosado
et al. (2006). Secondly, in similarity settings only totally irrelevant tuples should be
annotated with 0 and excluded as a possible answer Hajdinjak & Mihelič (2006). In the
case of the fuzzy set difference A \ B, these are exclusively those tuples t where A(t) = 0
or B(t) = 1, and certainly not where A(t) ≤ B(t).

• The distance semiring, K[0,dmax] = ([0, dmax], min, max, dmax, 0), satisfies the GP-conditions,
and the monus operator is as follows.

x ⊖ y = max{z ∈ [0, dmax]; x ≥ min{y, z}} =

{

dmax if x ≥ y,
x if x < y.

(33)

This induces the following difference operator in the relational algebra.

(A \ B)(t) =

{

dmax if A(t) ≥ B(t),
A(t) if A(t) < B(t). (34)

Again, in the distance setting, we would expect the difference operator to be defined as
max{A(t), dmax − B(t)}. Moreover, this is a continuous function in contrast to the step
function behaviour of the operator above resulting from the monus definition.

Rather than using a monus-like operator, Hajdinjak and Bierman Hajdinjak & Bierman (2011)
proposed a different approach using negation.

Definition 3.5 (Negation). Given a set L equipped with a preorder, a negation is an operation ¬ :
L → L that reverts order, x ≤ y =⇒ ¬y ≤ ¬x, and is involutive, ¬¬x = x.

27K-Relations and Beyond
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Definition 3.6 (n-semiring Hajdinjak & Bierman (2011)). A (commutative) n-semiring K =
(K,⊕,⊙, 0, 1,¬) is a (commutative) semiring (K,⊕,⊙, 0, 1) equipped with negation, ¬ : K → K
(with respect to the preorder on K).

Provided that K = (K,⊕,⊙, 0, 1,¬) is a commutative n-semiring, the difference of K-relations
A, B : U-Tup → K may be defined by

(A \ B)(t)
def
= A(t)⊙¬B(t). (35)

Each of the similarity semirings has a negation operation that, in contrast to the monus, gives
the expected notion of relational difference.

Example 3.2 (Relational difference over common similarity measures).

• In the boolean semiring, KB = (B,∨,∧, false, true), negation can be defined as complementation.

¬x
def
=

{

true if x = false,
false if x = true.

(36)

From the above we get exactly the monus-based difference of KB-relations.

A(t)⊙¬B(t) = A(t)⊖ B(t) =

{

false if B(t) = true,
A(t) if B(t) = false.

(37)

• In the fuzzy semiring, K[0,1] = ([0, 1], max, min, 0, 1), ordered by relation ≤, we can define a

negation operator as

¬x
def
= 1 − x. (38)

In the generalized fuzzy semiring K[a,b] = ([a, b], max, min, a, b), we can define ¬x
def
= a + b − x.

In the fuzzy semiring we thus get

A(t)⊙¬B(t) = min{A(t), 1 − B(t)}, (39)

and in the generalized fuzzy semiring we get A(t)⊙ ¬B(t) = min{A(t), a + b − B(t)}. These
coincide with the fuzzy notions of difference on [0, 1] and [a, b], respectively Rosado et al. (2006).

• In the distance semiring, K[0,dmax] = ([0, dmax], min, max, dmax, 0), ordered by relation ≥, we can

define a negation operator as

¬x
def
= dmax − x. (40)

We again get the expected notion of difference.

A(t)⊙¬B(t) = max{A(t), dmax − B(t)}. (41)

This is a continuous function of A(t) and B(t), and it calculates the greatest distance dmax only if
A(t) = dmax or B(t) = 0.

Moreover, the negation operation gives the same result as the monus when K is the
boolean semiring, KB , the probabilistic semiring, Kprob, or the semiring on c-tables, Kc-table.
Unfortunately, while the provenance semiring, Kprov, and the semiring of counting numbers,
KN , both contain a monus, neither contains a negation operation. In general, not all
m-semirings are n-semirings. The opposite also holds Hajdinjak & Bierman (2011).
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3.4 Relational algebra on L-relations

We have seen that the K-relational algebra does not satisfy the properties of idempotence of
union and self-join because, in general, the sum and product operators of a semiring are not
idempotent. In order to satisfy all the classical relational identities (including idempotence
of union and self-join) and to allow a comparison and ordering of tags, Hajdinjak and
Bierman Hajdinjak & Bierman (2011) have restricted commutative n-semirings to De Morgan
frames (with the lattice join defined as sum and the lattice meet as product). Recall that the
lattice supremum ∨ and infimum ∧ operators are always idempotent.

Definition 3.7 (De Morgan frame Salii (1983)). A De Morgan frame, L = (L,
∨

,∧, 0, 1,¬), is a
complete lattice (L,

∨

,∧, 0, 1) where finite meets distribute over arbitrary joins, i.e.,

x ∧
∨

iyi =
∨

i(x ∧ yi), (42)

and ¬ : L → L is a negation operation.

Proposition 3.1 (De Morgan laws Salii (1983)). Given a De Morgan frame L = (L,
∨

,∧, 0, 1,¬),
the following laws hold.

¬0 = 1 (43)

¬1 = 0 (44)

¬(x ∨ y) = ¬x ∧ ¬y (45)

¬(x ∧ y) = ¬x ∨ ¬y (46)

The similarity semirings from Example 3.1 are De Morgan frames, the same holds for the
probabilistic semiring and the semiring on c-tables.

Definition 3.8 (L-relation Hajdinjak & Bierman (2011)). Let L = (L,
∨

,∧, 0, 1,¬) be a De
Morgan frame. An L-relation over a schema U = {a1 : τ1, . . . , an : τn} is a function A : U-Tup → L.

Definition 3.9 (Relational algebra on L-relations Hajdinjak & Bierman (2011)). Suppose L =
(L,

∨

,∧, 0, 1,¬) is a De Morgan frame. The operations of the relational algebra on L, denoted RAL,
are defined as follows:

Empty relation: For any set of attributes U there is ∅U : U-Tup → L such that

∅(t)
def
= 0 (47)

for all U-tuples t.

Union: If A, B : U-Tup → L then A ∪ B : U-Tup → L is defined by

(A ∪ B)(t)
def
= A(t) ∨ B(t). (48)

Projection: If A : U-Tup → L and V ⊂ U, the projection of A on attributes V is defined by

(πV A)(t)
def
=

∨

(t′↓V)=t and A(t′) �=0 A(t′). (49)

Selection: If A : U-Tup → L and the selection predicate P : U-Tup → L maps each U-tuple to an
element of L, then σP A : U-Tup → L is defined by

(σP A)(t)
def
= A(t) ∧ P(t). (50)
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Join: If A : U1-Tup → L and B : U2-Tup → L, then A ⊲⊳ B is the L-relation over U1 ∪ U2 defined
by

(A ⊲⊳ B)(t)
def
= A(t) ∧ B(t). (51)

Difference: If A, B : U-Tup → L, then A \ B : U-Tup → L is defined by

(A \ B)(t)
def
= A(t) ∧ ¬B(t). (52)

Renaming: If A : U-Tup → L and β : U → U′ is a bijection, then ρβ A : U′-Tup → L is defined by

(ρβ A)(t)
def
= A(t ◦ β). (53)

Unlike for K-relations, we need not require that L-relations have finite support, since De
Morgan frames are complete lattices, which quarantees the existence of the join in the
definition of projection.

It is important to note that since RAL satisfies all the main positive relational algebra identities,
in terms of query optimization, all algebraic rewrites familiar from the classical (positive)
relational algebra apply to RAL without restriction. Matters are a little different for the
negative identities Hajdinjak & Bierman (2011). In fuzzy relations Rosado et al. (2006) many
of the familiar laws concerning difference do not hold. For example, it is not the case that
A \ A = ∅, and so it is not the case in general for the L-relational algebra. Consequently,
some (negative) identities from the classical relational algebra do not hold any more.

4. The D-relation model

Notice that all tuples across all the K-relations or the L-relations in the database and
intermediate relations in queries must be annotated with a value from the same commutative
semiring K or De Morgan frame L. To support simultaneously several different similarity
measures (e.g., similarity of strings, driving distance between cities, likelihood of objects to
be equal), and use these different measures in our queries (even within the same query),
Hajdinjak and Bierman Hajdinjak & Bierman (2011) proposed to move from a tuple-annotated
model to an attribute-annotated model. They associated every attribute with its own De
Morgan frame. They generalized an L-relation, which is a map from a tuple to an annotation
value from a De Morgan frame, to a D-relation, which is a map from a tuple to a corresponding
tuple containing an annotation value for every element in the source tuple, referred to as a De
Morgan frame tuple.

Definition 4.1 (De Morgan frame schema, De Morgan frame tuple, D-relation Hajdinjak &
Bierman (2011)).

• A De Morgan frame schema, D = {a1 : L1, ..., an : Ln}, maps an attribute name, ai, to a De
Morgan frame, Li = (Lai ,

∨

ai
,∧ai , 0ai , 1ai ,¬ai ).

• A De Morgan frame tuple, s = {a1 : l1, ..., an : ln}, maps an attribute name, ai, to a De Morgan
frame element, li.

• Given a De Morgan frame schema, D, a schema U, then a tuple s is said to be a De Morgan frame
tuple matching D over U if dom(s) = dom(U) = dom(D). The set of all De Morgan frame
tuples matching D over U is denoted D(U)-Tup.

• An D-relation over U is a finite map from U-Tup to D(U)-Tup. Its support needs not be finite.
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Definition 4.2 (Relational algebra with similarities Hajdinjak & Bierman (2011)). The operations
of the relational algebra with similarities, RAD , are defined as follows:

Empty relation: For any set of attributes U and corresponding De Morgan frame schema, D, the
empty D-relation over U, ∅U , is defined such that

∅U(t)(a)
def
= 0a (54)

where t is a U-tuple and D(a) = (La,
∨

a,∧a, 0a, 1a,¬a).

Union: If A, B : U-Tup → D(U)-Tup, then A ∪ B : U-Tup → D(U)-Tup is defined by

(A ∪ B)(t)(a)
def
= A(t)(a) ∨a B(t)(a) (55)

where D(a) = (La,
∨

a,∧a, 0a, 1a,¬a).

Projection: If A : U-Tup → D(U)-Tup and V ⊂ U, the projection of A on attributes V is defined by

(πV A)(t)(a)
def
=

∨

(t′↓V)=t and A(t′)(a) �=0a
A(t′)(a) (56)

where D(a) = (La,
∨

a,∧a, 0a, 1a,¬a).

Selection: If A : U-Tup → D(U)-Tup and the selection predicate P : U-Tup → D(U)-Tup maps
each U-tuple to an element of D(U)-Tup, then σP A : U-Tup → D(U)-Tup is defined by

(σP A)(t)(a)
def
= A(t)(a) ∧a P(t)(a) (57)

where D(a) = (La,
∨

a,∧a, 0a, 1a,¬a).

Join: Let D1 = {a1 : L1, ..., an : Ln} and D2 = {b1 : L′
1, ..., bm : L′

m} be De Morgan frame
schemata. Let their union, D1 ∪ D2, contain an attribute, ci : Li, as soon as ci : Li is in D1 or D2
or both. (If there is an attribute with different corresponding De Morgan frames in D1 and D2, a
renaming of attributes is needed.) If A : U1-Tup → D1(U1)-Tup and B : U2-Tup → D2(U2)-Tup,
then A ⊲⊳ B is the (D1 ∪D2)-relation over U1 ∪ U2 defined as follows.

(A ⊲⊳ B)(t)(a)
def
=

⎧

⎪

⎨

⎪



A(t ↓ U1)(a) if a ∈ U1 − U2

B(t ↓ U2)(a) if a ∈ U2 − U1

A(t ↓ U1)(a) ∧a B(t ↓ U2)(a)

. (58)

Difference: If A, B : U-Tup → D(U)-Tup, then A \ B : U-Tup → D(U)-Tup is defined by

(A \ B)(t)(a)
def
= A(t)(a) ∧a (¬aB(t)(a)) (59)

where D(a) = (La,
∨

a,∧a, 0a, 1a,¬a).

Renaming: If A : U-Tup → D(U)-Tup and β : U → U′ is a bijection, then ρβ A : U′-Tup →

D(U′)-Tup is defined by

(ρβ A)(t)(a)
def
= A(t)(β(a)). (60)

As in the case of L-relations it is required that every tuple outside of a similarity database is
ranked with the minimal De Morgan frame tuple, {a1 : 01, . . . , an : 0n}, and every other tuple
is ranked either with the maximal De Morgan frame tuple, {a1 : 11, . . . , an : 1n}, or a smaller
De Morgan frame tuple expressing a lower degree of containment of the tuple in the database.

31K-Relations and Beyond

www.intechopen.com



14 Will-be-set-by-IN-TECH

Proposition 4.1 (Identities of D-relations Hajdinjak & Bierman (2011)). The following identities
hold for the relational algebra on D-relations:

• union is associative, commutative, idempotent, and has identity ∅;

• selection distributes over union and difference;

• join is associative and commutative, and distributes over union;

• projection distributes over union and join;

• selections and projections commute with each other;

• difference has identity ∅ and distributes over union and intersection;

• selection with boolean predicates gives all or nothing, σfalse(A) = ∅ and σtrue(A) = A, where
false(t)(a) = 0a and true(t)(a) = 1a for D(a) = (La,

∨

a,∧a, 0a, 1a,¬a);

• join with an empty relation gives an empty relation, A ⊲⊳ ∅U = ∅U where A is a D-relation over
a schema U;

• projection of an empty relation gives an empty relation, πV(∅) = ∅.

Each of the similarity measures associated with the attributes maps to its own De Morgan
frame. Again, a predefined environment of similarity measures that can be used for building
queries is assumed—for every D-relation over U, where D = {a1 : L1, ..., an : Ln} and Li =
(Li,

∨

i,∧i, 0i, 1i,¬i) and U = {a1 : τ1, ..., an : τn} there is a similarity measure

ρai : τi × τi → Li, 1 ≤ i ≤ n. (61)

In the D-relation model, primitive and similarity predicates need to be redefined.

Definition 4.3 (Primitive predicates Hajdinjak & Bierman (2011)). Suppose in a schema U =
{a1 : τ1, . . . , an : τn} the types of attributes ai and aj coincide. Then for a given binary predicate θ, the
primitive predicate

[ai θ aj] : U-Tup → D(U)-Tup (62)

is defined as follows.

[ai θ aj](t)(ak)
def
=

{

χaiθaj
(t) if k = i or k = j,

1k otherwise.
(63)

In words, [ai θ aj] has value 1 in every attribute except ai and aj, where it behaves as the
characteristic map of θ defined as follows.

χaiθaj
(t)

def
=

{

1k if t(ai) θ t(aj),
0k otherwise.

(64)

Similarity predicates annotate tuples based on the similarity measures.

Definition 4.4 (Similarity predicates Hajdinjak & Bierman (2011)). Suppose in a schema U =
{a1 : τ1, . . . , an : τn} the types of attributes ai and aj coincide. The similarity predicate [ai like aj] :
U-Tup → D(U)-Tup is defined as follows.

[ai like aj](t)(ak)
def
=

⎧

⎪

⎨

⎪



ρai (t(ai), t(aj)) if ak = ai,

ρaj (t(ai), t(aj)) if ak = aj,

1k otherwise.

(65)
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In words, [ai like aj] measures similarity of attributes ai and aj, each with its own similarity measure.
The symmetric version is defined as follows.

[ai ∼ aj]
def
= [ai like aj] ∪ [aj like ai]. (66)

Now union and intersection of selection predicates are computed component-wise.

Given the similarity measures associated with attributes, it is possible to define
similarity-based variants of other familiar relational operators, such as similarity-based
joins Hajdinjak & Bierman (2011). Such an operator joins two rows not only when their
join-attributes have equal associated values, but when the values are similar.

5. A common framework

In this section we explore whether there is a common domain of annotations suitable for all
kinds of annotated relations, and we define a general model of K, L-and D-relations.

5.1 A common annotation domain

We have recalled two notions of difference on annotated relations: the monus-based difference
proposed by Geerts and Poggi Geerts & Poggi (2010) and the negation-based difference
proposed by Hajdinjak and Bierman Hajdinjak & Bierman (2011). We have seen in §3.3
that the monus-based difference does not have the qualities expected in a fuzzy context. The
negation-based difference, on the other hand, does agree with the standard fuzzy difference,
but it is not defined for bag semantics (and provenance). More precisely, the semiring of
counting numbers, KN = (N,+, ·, 0, 1), cannot be extended with a negation operation. (The
same holds for the provenance semiring.)

We could try to modify the semiring of counting numbers in such a way that negation can
be defined. For instance, if we replace N by Z, we get the ring of integers, (Z,+, ·, 0, 1),

where negation can be defined as ¬x
def
= −x. This implies (A \ B)(t) = −A(t) · B(t),

which is not equal to the standard difference of relations annotated with the tuples’
multiplicities Montagna & Sebastiani (2001). Some other modifications would give the so
called tropical semirings Aceto et al. (2001) whose underlying carrier set is some subset of the
set of real numbers R equipped with binary operations of minimum or maximum as sum, and
addition as product.

Let us now study the properties of the annotation structures of both approaches.

Proposition 5.1 (Identities in an m-semiring Bosbach (1965)). The notion of an m-semiring is
characterized by the properties of commutative semirings and the following identities involving ⊖.

x ⊖ x = 0, (67)

0 ⊖ x = 0, (68)

x ⊕ (y ⊖ x) = y ⊕ (x ⊖ y), (69)

x ⊖ (y ⊕ z) = (x ⊖ y)⊖ z, (70)

x ⊙ (y ⊖ z) = (x ⊙ y)⊖ (x ⊙ z). (71)
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Notice that even in a De Morgan frame a difference-like operation may be defined,

x ÷ y
def
= x ∧ ¬y. (72)

Clearly, negation is then expressed as ¬x = 1 ÷ x.

Proposition 5.2 (Identities in a De Morgan frame). In a De Morgan frame the following identities
involving ÷ hold.

1 ÷ 0 = 1, (73)

1 ÷ 1 = 0, (74)

1 ÷ (x ∨ y) = (1 ÷ x) ∧ (1 ÷ y), (75)

1 ÷ (x ∧ y) = (1 ÷ x) ∨ (1 ÷ y), (76)

0 ÷ x = 0, (77)

1 ÷ (1 ÷ x) = x, (78)

x ÷ (1 ÷ y) = x ∧ y, (79)

1 ÷ (1 ÷ (x ∨ y)) = x ∨ y, (80)

1 ÷ (x ÷ y) = (1 ÷ x) ∨ y, (81)

(x ÷ y) ∧ y = x ∧ (y ÷ y), (82)

(x ÷ y) ∨ y = (x ∨ y) ∧ (1 ÷ (y ÷ y)). (83)

Proof. The first four identities are exactly the De Morgan laws from Proposition 3.1. The rest
holds by simple expansion of definitions and/or is implied by the De Morgan laws.

Notice the differences between the properties of the monus-based difference ⊖ in an
m-semiring and the properties of the negation-based difference ÷ in a De Morgan frame. For
instance, in a De Morgan frame we do not have x ÷ x = 0 in general.

However, since neither of the proposed notions of difference give the expected result for
all kinds of annotated relations, an annotation structure different from m-semirings and
De Morgan frames is needed. Observe that by its definition, a complete (even bounded)
distributive lattice, L = (L,∨,∧, 0, 1), is a commutative semiring with the natural order
� being the lattice order, a ⊕ b = a ∨ b and a ⊙ b = a ∧ b for every a, b in L. Because
lattice completeness assures the existence of a smallest element in every set and hence the
existence of the monus (see Definition 2.3 on GP-conditions), a complete distributive lattice
is an m-semiring. On the other hand, if a commutative semiring, K = (K,⊕,⊙, 0, 1), is
partially ordered by � and any two elements from K have an infimum and a supremum,
it is a lattice, not necessarily bounded Davey & Priestley (1990). The lattice meet and join are
then determined by the partial order �, and they are, in general, different from ⊕ and ⊙. Since
0 ⊕ a = a, we have 0 � a for any a ∈ K, and 0 is the least element of the lattice. In general, a
similar observation does not hold for 1, which is hence not the greatest element of the lattice.

The underlying carrier sets of all the semirings considered are partially ordered sets, even
distributive lattices. The unbounded lattices among them (i.e., KN and Kprov) can be
converted into bounded (even complete) lattices by adding a greatest element. To achieve
this we just need to replace N ∪ {∞} for N and define appropriate calculation rules for ∞.

Lemma 5.1 (Making unbounded partially ordered semirings bounded).
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1. The semiring of counting numbers, KN = (N,+, ·, 0, 1), partially ordered by

n � m ⇐⇒ n ≤ m, (84)

may be extended to the partially ordered commutative semiring (N ∪ {∞},+, ·, 0, 1) by defining
∞ + n = ∞ and ∞ · n = ∞ except ∞ · 0 = 0. The partial order � now determines a complete
lattice structure, (N ∪ {∞}, max, min, 0, ∞).

2. The provenance semiring, Kprov = (N[X],+, ·, 0, 1), partially ordered by

f [X] � g[X] ⇐⇒ fα ≤ gα for all α ∈ I, (85)

where f [X] = ∑α∈I fαxα and g[X] = ∑α∈I gαxα, may be extended to the commutative semiring
((N ∪ {∞})[X],+, ·, 0, 1) by defining x∞ · xn = x∞ as well as ∞ + n = ∞ and ∞ · n = ∞

except ∞ · 0 = 0 as before. The partial order � now determines a complete lattice structure on
(N ∪ {∞})[X] with

f [X] ∧ g[X] = ∑
α∈I

min{ fα, gα}xα, (86)

f [X] ∨ g[X] = ∑
α∈I

max{ fα, gα}xα. (87)

The least element of the lattice is the zero polynomial, 0, and the greatest element is the polynomial
with all coefficients equal to ∞.

To summarize, a complete distributive lattice is an m-semiring. If the lattice even contains
negation, we have two difference-like operations; monus ⊖ and ÷, which is induced by
negation. There is a class of annotated relations when only one of them (⊖ for bag semantics
and provenance, ÷ for fuzzy semantics) gives the standard notion of relational difference, and
there is a class of annotated relations when they both coincide (e.g., classical set semantics,
probabilistic relations, and relations on c-tables).

Proposition 5.3 (General annotation structure). Complete distributive lattices with finite meets
distributing over arbitrary joins are suitable codomains for all considered annotated relations.

Proof. The boolean semiring, the probabilistic semiring, the semiring on c-tables, the similarity
semirings as well as the semiring of counting numbers and the provenance semiring (see
Lemma 5.1) can all be extended to a complete distributive lattice in which finite meets
distribute over arbitrary joins. The later property allows to model infinite relations satisfying
all the desired relational identities from Proposition 4.1, including commuting selections and
projections. Relational difference may be modeled with the existing monus, ⊖, or ÷ if the
lattice is a De Morgan frame where a negation exists. The other (positive) relational operations
are modeled using lattice meet, ∧, and join, ∨, or semiring sum, ⊕, and product, ⊙.

5.2 A common model

Recall that Green et al. Green et al. (2007) defined a K-relation over U = {a1 : τ1, . . . , an : τn}
as a function A : U-Tup → K with finite support. The finite-support requirement was
made to ensure the existence of the sum in the definition of relational projection. When
the commutative semiring K = (K,⊕,⊙, 0, 1) was replaced by a De Morgan frame, L =
(L,

∨

,∧, 0, 1,¬), the finite-support requirement became unnecessary; the existence of the
join in the definition of projection was quaranteed by the completeness of the codomain.
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To model similarity relations more efficiently, Hajdinjak and Bierman Hajdinjak & Bierman
(2011) introduced a D-relation over U as a function from U-Tup to D(U)-Tup assigning
every element of U-Tup (row of a table) a tuple of different annotation values. We adopt
Definition 4.1 to the proposed general annotation structure, and show that a tuple-annotated
model may be injectively mapped to an attribute-annotated model.

Definition 5.1 (Annotation schema,annotation tuple,C-relation).

• An annotation schema, C = {a1 : L1, ..., an : Ln}, over U = {a1 : τ1, ..., an : τn} maps an
attribute name, ai, to a complete distributive lattice in which finite meets distribute over arbitrary
joins, Li = (Lai ,

∨

ai
,∧ai , 0ai , 1ai ).

• An annotation tuple, s = {a1 : l1, ..., an : ln}, maps an attribute name, ai, to an element of a
complete distributive lattice in which finite meets distribute over arbitrary joins, li. The set of all
annotation tuples matching C over U is denoted C(U)-Tup.

• An C-relation over U is a finite map from U-Tup to C(U)-Tup.

Proposition 5.4 (Injection of a tuple-annotated model to an attribute-annotated model). Let A
be the class of all functions A : U-Tup → L where U is any relational schema and L = (L,

∨

,∧, 0, 1)
is any complete distributive lattice with finite meets distributing over arbitrary joins. Let B be the
class of all C-relations over U, B : U-Tup → C(U)-Tup, where C is an annotation schema. There is an
injective function F : A → B defined by

F(A)(t)(ai)
def
= A(t) (88)

for all attributes ai in U and tuples t ∈ U-Tup.

Proof. For A1, A2 ∈ A with A1(t) �= A2(t) we clearly have F(A1)(t)(ai) �= F(A2)(t)(ai).

Proposition 5.4 says that moving from tuple-annotated relations to attribute-annotated
relations does not prevent us from correctly modeling the examples covered by the K-relation
model in which each tuple is annotated with a single value from K. The annotation value just
appears several times. We thus propose a model of C-relations, a common model of K, L-and
D-relations, that is attribute annotated. The definitions of union, projection, selection, and
join of C-relations may be based on the lattice join and meet operations (like in Definitions 3.9
and 4.2) or, if there exist semiring sum and product operations different from lattice join
and meet, the positive relational operations may be defined using these additional semiring
operations (like in Definition 2.2). The definition of relational difference may be based on
the monus or, when dealing with De morgan frames where a negation exists, the derived ÷
operation.

Definition 5.2 (Relational algebra on C-relations). Consider C-relations where all the lattices Li =
(Lai ,

∨

ai
,∧ai , 0ai , 1ai ) from annotation schema C = {a1 : L1, ..., an : Ln} are complete distributive

lattices in which finite meets distribute over arbitrary joins. Let ▽ai and △ai stand for either the lattice
∨ai and ∧ai or some other semiring ⊕ai and ⊙ai operations defined on the carrier set Lai of a Li,
respectively. Let −ai stand for either the monus ⊖ai or a ÷ai operation defined on Lai . The operations
of the relational algebra on C, denoted RAC , are defined as follows.

Empty relation: For any set of attributes U and corresponding annotation schema, C, the empty
C-relation over U, ∅U , is defined by

∅U(t)(a)
def
= 0a. (89)
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Union: If A, B : U-Tup → C(U)-Tup, then A ∪ B : U-Tup → C(U)-Tup is defined by

(A ∪ B)(t)(a)
def
= A(t)(a)▽aB(t)(a). (90)

Projection: If A : U-Tup → C(U)-Tup and V ⊂ U, the projection of A on attributes V is defined by

(πV A)(t)(a)
def
= ▽(t′↓V)=t and A(t′)(a) �=0a

A(t′)(a). (91)

Selection: If A : U-Tup → C(U)-Tup and the selection predicate P : U-Tup → C(U)-Tup maps each
U-tuple to an element of C(U)-Tup, then σP A : U-Tup → C(U)-Tup is defined by

(σP A)(t)(a)
def
= A(t)(a) △a P(t)(a). (92)

Join: Let C1 = {a1 : L1, ..., an : Ln} and C2 = {b1 : L′
1, ..., bm : L′

m} be annotation schemata. If
A : U1-Tup → C1(U1)-Tup and B : U2-Tup → C2(U2)-Tup, then A ⊲⊳ B is the (C1 ∪ C2)-relation
over U1 ∪ U2 defined as follows.

(A ⊲⊳ B)(t)(a)
def
=

⎧

⎪

⎨

⎪



A(t ↓ U1)(a) if a ∈ U1 − U2

B(t ↓ U2)(a) if a ∈ U2 − U1

A(t ↓ U1)(a) △a B(t ↓ U2)(a)

. (93)

Difference: If A, B : U-Tup → C(U)-Tup, then A \ B : U-Tup → C(U)-Tup is defined by

(A \ B)(t)(a)
def
= A(t)(a)−a B(t)(a). (94)

Renaming: If A : U-Tup → C(U)-Tup and β : U → U′ is a bijection, then ρβ A : U′-Tup →

C(U′)-Tup is defined by

(ρβ A)(t)(a)
def
= A(t)(β(a)). (95)

Relational algebra RAC still satisfies all the main positive relational algebra identities.

Proposition 5.5 (Identities of C-relations). The following identities hold for the relational algebra
on C-relations:

• union is associative, commutative, idempotent, and has identity ∅;

• selection distributes over union and difference;

• join is associative and commutative, and distributes over union;

• projection distributes over union and join;

• selections and projections commute with each other;

• difference has identity ∅ and distributes over union and intersection;

• selection with boolean predicates gives all or nothing, σfalse(A) = ∅ and σtrue(A) = A, where
false(t)(a) = 0a and true(t)(a) = 1a for C(a) = (La,

∨

a,∧a, 0a, 1a);

• join with an empty relation gives an empty relation, A ⊲⊳ ∅U = ∅U where A is a C-relation over
a schema U;

• projection of an empty relation gives an empty relation, πV(∅) = ∅.
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Proof. If the lattice join and meet are chosen to model the positive relational operations, the
above identities are implied by Proposition 4.1. On the other hand, if some other semiring
sum and product operations are chosen, the identities are implied by Proposition 2.1.

The properties of relational difference are implied by the identities involving ⊖ (see
Proposition 5.1) and/or the identities involving ÷ (see Proposition 5.2), depending on the
selection we make.

6. Conclusion

Although the attribute-annotated approach has many advantages, it also has some
disadvantages. First, it is clear that asking all attributes to be annotated requires more
storage than simple tuple-level annotation. Another problem is that since the proposed
general annotation structure, complete distributive lattices with finite meets distributing over
arbitrary joins, may not be linearly ordered, an ordering of tuples with falling annotation
values is not always possible. Even if each lattice used in an annotation schema is linearly
ordered, it is not necessarily the case that there is a linear order on the annotation tuples.
Hence, it may not be possible to list query answers (tuples) in a (decreasing) order of
relevance. In fact, a suitable ordering of tuples may be established as soon as the lattice
of annotation values, L = (L,

∨

,∧, 0, 1), is graded Stanley (1997). Recall that a graded or
ranked poset is a partially ordered set equipped with a rank function ρ : L → Z compatible
with the ordering, ρ(x) < ρ(y) whenever x < y, and such that whenever y covers x, then
ρ(y) = ρ(x) + 1. Graded posets can be visualized by means of a Hasse diagram. Examples
of graded posets are the natural numbers with the usual order, the Cartesian product of two
or more sets of natural numbers with the product order being the sum of the coefficients, and
the boolean lattice of finite subsets of a set with the number of elements in the subset. Notice,
however, that the ranking problem simply reflects a fact about ordered structures and not a
flaw in the model.

The work on attribute-annotated models is very new and has, as far as we know, not been
implemented yet Hajdinjak & Bierman (2011). A prototype implementation by means of
existing relational database management systems is thus expected to be performed in short
term. Another guideline for future research is the study of standard issues from relational
databases in the general setting, including data dependencies, redundancy, normalization,
and design of databases, optimization issues.
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