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1. Introduction 

In the last few years the applications of artificial intelligence techniques have been used to 
convert human experience into a form understandable by computers. Advanced control 
based on artificial intelligence techniques is called intelligent control. Intelligent systems are 
usually described by analogies with biological systems by, for example, looking at how 
human beings perform control tasks, recognize patterns, or make decisions. Fuzzy logic is a 
way to make machines more intelligent enabling them to reason in a fuzzy manner like 
humans. Fuzzy logic, proposed by Lotfy Zadeh in 1965, emerged as a tool to deal with 
uncertain, imprecise, or qualitative decision-making problems (Zadeh, 1965). 

Controllers that combine intelligent and conventional techniques are commonly used in the 
intelligent control of complex dynamic systems. Therefore, embedded fuzzy controllers 
automate what has traditionally been a human control activity. 

Traditional control approach requires modeling of the physical reality. Three methods may 
be used in the description of a system (Passino & Yurkovich, 1998) : 

1. By experimenting and determining how the process reacts to various inputs, one can 
characterize an input-output table. 

2. Control engineering requires an idealized mathematical model of the controlled 
process, usually in the form of differential or difference equations. But problems arise in 
developing a meaningful and realistic mathematical description of an industrial 
process:  i- Poorly understood phenomena,  ii- Inaccurate values of various parameters,  
iii-Model complexity. 

3. Heuristic Methods: The heuristic method consists of modeling and understanding in 
accordance with previous experience, rules-of-thumb and often-used strategies. A 
heuristic rule is a logical implication of the form: If <condition> Then <consequence>, 
or in a typical control situation: If <condition> Then <action>. Rules associate 
conclusions with conditions. Therefore, the heuristic method is actually similar to the 
experimental method of constructing a table of inputs and corresponding output values 
where instead of having crisp numeric values of input and output variables, one use 
fuzzy values: IF input_voltage = Large THEN output_voltage = Medium. 

www.intechopen.com



 
Fuzzy Inference System – Theory and Applications 86

Fuzzy control strategies come from experience and experiments rather than from 
mathematical models and, therefore, linguistic implementations are much faster 
accomplished. Fuzzy control strategies involve a large number of inputs, most of which are 
relevant only for some special conditions. Such inputs are activated only when the related 
condition prevails. In this way, little additional computational overhead is required for 
adding extra rules. As a result, the rule base structure remains understandable, leading to 
efficient coding and system documentation. 

2. Logical inference 

A connection between cause and effect, or a condition and a consequence is made by 
reasoning. Reasoning can be expressed by a logical inference or by the evaluation of inputs 
in order to draw a conclusion. We usually follow rules of inference which have the form: IF 
cause1 = A and cause2 = B THEN effect = C. Where A, B and C are linguistic variables. 

2.1 Fuzzy sets 

A fuzzy set is represented by a membership function defined on the universe of discourse. 

The universe of discourse is the space where the fuzzy variables are defined. The 

membership function gives the grade, or degree, of membership within the set of any 

element of the universe of discourse. The membership function maps the elements of the 

universe onto numerical values in the interval [0, 1]. A membership function value of zero 

implies that the corresponding element is definitely not an element of the fuzzy set, while a 

value of unity means that the element fully belongs to the set. A grade of membership in 

between corresponds to the fuzzy membership to the set.  In practical situations there is 

always a natural fuzzification when someone analysis statements and a smooth 

membership curve usually better describes the grade that an element belongs to a set 

(Erdirencelebi et al., 2011).  

Fuzzification: is the process of decomposing a system input and/or output into one or more 

fuzzy sets. Many types of curves can be used, but triangular or trapezoidal shaped 

membership functions are the most common because they are easier to represent in 

embedded controllers.  

Fig. 1 shows a system of fuzzy sets for an input with trapezoidal and triangular membership 

functions. 

The figure illustrates the process of fuzzification of the air temperature in order to control 

the operation of an air-conditioning system. There are five fuzzy sets for temperature: 

COLD, COOL, GOOD, WARM, and HOT. 

Defuzzification: After fuzzy reasoning, we have a linguistic output variable that needs to 

be translated into a crisp value. The objective is to derive a single crisp numeric value that 

best represents the inferred fuzzy values of the linguistic output variable. Defuzzification 

is such inverse transformation which maps the output from the fuzzy domain back into 

the crisp domain. 

Most commercial fuzzy products are rule-based systems that receive current information in 
the feedback loop from the device as it operates and control the operation of a mechanical or 
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other device (Simoes & Friedhofer, 1997; Simoes & Franceschetti, 1999). A fuzzy logic system 
has four blocks as shown in figure 2. Crisp input information from the device is converted 
into fuzzy values for each input fuzzy set with the fuzzification block. The universe of 
discourse of the input variables determines the required scaling for correct per-unit 
operation. The scaling is very important because the fuzzy system can be retrofitted with 
other devices or ranges of operation by just changing the scaling of the input and output. 
The decision-making-logic determines how the fuzzy logic operations are performed, and 
together with the knowledge base determine the outputs of each fuzzy IF-THEN rule. Those 
are combined and converted to crispy values with the defuzzification block. The output 
crisp value can be calculated by the center of gravity. 

 
Temperature 

Fig. 1. Fuzzy sets defining temperature. 

 

 

Fig. 2. Fuzzy Controller Block Diagram. 

In order to process the input output reasoning, there are six steps involved in the creation of 
a rule based fuzzy system: 

1. Identify the inputs and their ranges and name them. 
2. Identify the outputs and their ranges and name them. 
3. Create the degree of fuzzy membership function for each input and output. 
4. Construct the rule base that the system will operate under. 
5. Decide how the action will be executed by assigning strengths to the rules. 
6. Combine the rules and defuzzify the output. 
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3. Adaptive Neuro-Fuzzy Inference System (ANFIS) 

In spite of some non-linear control problems can be handled using neural control schemes, 

in situations where there is precise tracking of fast trajectories for non-linear systems with 

high nonlinearities and large uncertainties, neural control schemes are severely inadequate 

(Denai et al., 2004). Adaptive Neuro-Fuzzy Inference Systems are realized by an appropriate 

combination of neural and fuzzy systems and provide a valuable modeling approach of 

complex systems (Denai et al., 2004; Rezaeeian et al., 2008; Hanafy, 2010). 

The proper selection of the number, the type and the parameter of the fuzzy membership 

functions and rules is crucial for achieving the desired performance and in most situations, 

it is difficult. Yet, it has been done in many applications through trial and error. This fact 

highlights the significance of tuning fuzzy system. Adaptive Neuro-Fuzzy Inference 

Systems are Fuzzy Sugeno models put in the framework of adaptive systems to facilitate 

learning and adaptation. Such framework makes FLC more systematic and less relying on 

expert knowledge. To present the ANFIS architecture, let us consider two-fuzzy rules based 

on a first order Sugeno model: 

Rule 1: if (x is 1A ) and (y is 1B ) then  

  1 1 1 1( )f p x q y r  

Rule 2: if (x is 2A ) and (y is 2B ) then   

  2 2 2 2( )f p x q y r j 

ANFIS architecture to implement these two rules is shown in figure 3. Note that a circle 

indicates a fixed node whereas a square indicates an adaptive node (the parameters are 

changed  during training). In the following presentation OL  denotes the output of node i in 

layer L.a  

 

Fig. 3. Construct of ANFIS. 
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Layer 1: the fuzzy membership function (MF) represented by the node: All the nodes in this 
layer are adaptive nodes, i is the degree of the membership of the input to  

1, ( )i AiO x                        i=1,2 

Where ia , ib , and ic  are the parameters for the MF 

  1, 2( )i BiO y                         i=3,4   (1) 

iA  and iB  can be any appropriate fuzzy sets in parameter form. For example, if bell MF is 

used then 

  


 2

1
( )

1 [( ) ] i

Ai
bi

i

x
x c

a

       i=1,2               (2) 

Layer 2: The nodes in this layer are fixed (not adaptive). These are labeled M to indicate that 
they play the role of a simple multiplier. The outputs of these nodes are given by: 

   2, ( ) ( )i i Ai BiO w x y        i=1,2           (3) 

The output of each node in this layer represents the firing strength of the rule. 

Layer 3: Nodes in this layer are also fixed nodes. These are labeled N to indicate that these 
perform a normalization of the firing strength from previous layer. The output of each node 
in this layer is given by: 

  
3,

1 2

i
i i

w
O w

w w
              i=1,2            (4) 

Layer 4: All the nodes in this layer are adaptive nodes. The output of each node is simply 
the product of the normalized firing strength and a first order polynomial: 

    4, ( )i i i i i i iO w f w p x q y r       i=1,2  (5)  

Where: pi , qi , and ri  are design parameters (consequent parameter since they deal with the 

then-part of the fuzzy rule). 

Layer 5: This layer has only one node labeled S to indicate that it performs the function of a 

simple summer. The output of this single node is given by: 

  





  





2

2
1

5, 2
1

1

i i

i
i i i

i
i

i

w f

O f w f

w

          (6)  

In this ANFIS architecture, there are two adaptive layers (1, 4). Layer 1 has three modifiable 
parameters (ai, bi , and ci) pertaining to the input MFs. These parameters are called  premise 
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parameters. Layer 4 has also three modifiable parameters polynomial. These parameters are 
called consequent parameters (pi, qi, ri)  pertaining to the first order.  

In order to improve the training efficiency, a hybrid learning algorithm is applied to justify 
the parameters of input and output membership functions. The antecedent parameters (the 
parameters related to input membership functions) and the consequent parameters (the 
parameters related to output membership functions) are two parameter sets in the 
architecture which should be tuned. When we suppose that premise parameters are fixed, 
then the output of ANFIS will be a linear combination of the consequent parameters. So,  the 
output can be written as:  

  1 1 2 2f w f w f        (7) 

With substituting Equation (5) in Equation (7), the output can be rearranged as: 

 
     1 1 1 1 1 1 2 2 2 2 2 2( ) ( ) ( ) ( ) ( ) ( )f w x p w y q w r w x p w y q w r

          (8) 

So, the consequent parameters can be tuned by the least square method. On the other hand, 
if consequent parameters are fixed, the premise parameters can be adjusted by the gradient 
descent method. ANFIS utilizes hybrid learning algorithm in which the least square method 
is used to identify the consequent parameters in forward pass and the gradient descent 
method is applied to determine the premise parameters in backward pass. 

Not yet, many recent developments in evolutionary algorithms have provided several 
strategies for NFIS design. Three main strategies, including Pittsburg-type, Michigan-type, 
and iterative rule learning genetic fuzzy systems, focus on generating and learning fuzzy 
rules in genetic fuzzy systems (Lin et al.;2008)  

4. Fuzzy controllers using susbtractive clustering 

A common way of developing Fuzzy Controller is by determining the rule base and some 
appropriate fuzzy sets over the controller’s input and output ranges. An efficient approach, 
namely, Fuzzy Subtractive Clustering is used here, which minimizes the number of rules of 
Fuzzy Logic Controllers. This technique provides a mechanism to obtain the reduced rule 
set covering the whole input/ output space as well as membership functions for each input 
variable. In (Chopra et al., 2006), Fuzzy subtractive clustering approach is shown to reduce 
49 rules to 8 rules where simulation of a wide range of linear and nonlinear processes is 
carried out and results are compared with existing Fuzzy Logic Controller with 49 rules. 

4.1 Introduction to cluster analysis 

By definition, cluster analysis is grouping of objects into homogenous groups based on same 
object features. Clustering of numerical data forms the basis of many classification and 
system-modeling algorithms. The purpose of clustering is to identify natural grouping of 
data from a large data set to produce a concise representation of a system’s behavior. 
Clustering algorithms typically requires the user to pre-specify the number of cluster centers 
and their initial locations. The locations of the cluster centers are then adapted in a way such 
that these can better represent a set of data points covering the range of data behavior. The 
Fuzzy Clustering Means (FCM) algorithm (Bezdek, 1990) method is well-known example of 
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such clustering algorithm. For these algorithms, the quality of the solution depends strongly 
on the choice of initial values i.e., the number of cluster centers and their initial locations 
(Nikhil et al., 1997) . 

In (Yager & Filev, 1994), the authors proposed a simple and effective algorithm, called the 
mountain method, for estimating the number and initial location of cluster centers. Their 
method is based on girding the data  space and computing a potential value for each grid 
point based on its distances to the actual data points; a grid point with the highest potential 
value is chosen as the first cluster center and the potential of all grid points are reduced 
according to their distance from the cluster center. The next cluster center is then placed at 
the grid point with the highest remaining potential value. This procedure of acquiring new 
cluster center and reducing the potential of surrounding grid points is repeated until the 
potential of all grid points falls below a threshold. Although this method is simple and 
effective, the computation grows exponentially with the dimension of the problem. The 
author in (Chiu, 1994) proposed an extension of this mountain method, called subtractive 
clustering, in which each data point, rather than the grid point, is considered as a potential 
cluster center. Using this method, the number of effective “grid points” to be evaluated is 
simply equal to the number of data points, independent of the dimension of the problem. 
Another advantage of this method is that it eliminates the need to specify a grid resolution, 
in which tradeoffs between accuracy and computational complexity must be considered. 

4.2 The subtractive clustering method 

To extract rules from data, we first separate the training data into groups according to their 
respective class. Consider a group of n data points {X1, X2,…, Xn} for a specific class, where 
Xi is a vector in the input feature space. Assume that the feature space is normalized so that 
all data are bounded by a unit hypercube. We consider each data point as a potential cluster 
center for the group and define a measure of the potential of data point Xi to serve as a 
cluster center as 

 
 




2

1

i j

n
x x

i

j

P e     (9) 

Where 

  
2

4

ar
             (10) 

.  denotes the Euclidean distance, and ra  is a positive constant. Thus, the measure of the 

potential of a data point is a function of its distances to all other data points in its group. A 

data point with many neighboring data points will have a high potential value. The constant  

ra is effectively a normalized radius defining a neighborhood; data points outside this radius 

have a little influence on the potential. Note that because the data space is normalized, ra 

=1.0 is equal to the length of one side of the data space. After the potential of every data 

point in the group has been computed, we select the data point with the highest potential as 

the first cluster center. Let x1* be the location of the first cluster center and P1*  be its potential 

value. We then revise the potential of each data point xi  in the group by the formula  

www.intechopen.com



 
Fuzzy Inference System – Theory and Applications 92

 
 

 
2*

1*
1

ix x
i iP P P e               (11) 

Where 

  
2

4

br
   (12) 

and  rb  is a positive constant. Thus, we subtract an amount of potential from each data point 
as a function of its distance from the first cluster center. The data points near the first cluster 
center will have greatly reduced potential, and therefore will unlikely be selected as the next 
cluster center for the group. The constant rb is effectively the radius defining the 
neighborhood which will have measurable reductions in potential. To avoid obtaining closly 
spaced cluster centers, we typically choose rb =1.25 ra   (Chopra et al. , 2006).  

When the potential of all data points in the group has been reduced according to Equation 
11, we select the data point with the highest remaining potential as the second cluster center. 
We then further reduce the potential of each data point according to their distance potential 
as the second cluster center. In general, after the K' th cluster center has been obtained, we 
revise the potential of each data point by the formula 

  
 

 
2*

* i kx x
i i kP P P e         (13) 

Where xk* is the location of the K' th cluster center and pk*  is its potential value. The process 
of acquiring new cluster center and reducing potential repeats until the remaining potential 
of all data points in the group is below some fractions of the potential of the first cluster 
center P1*. Typically, one can use pk*  < 0.15P1*  as the stopping criterion (Chiu, 1997). 

Each cluster center found in the training data of a given class identifies a region in the 
feature space that is well populated by members of that class. Thus, we can translate each 
cluster center into a fuzzy rule for identifying the class. 

Suppose cluster center xi* was found in the group of data for class c1; this cluster center 
provides the rule: 

Rule :i If {x is near *
ix } then class is c1. 

The degree of fulfillment of {x is near *
ix } is defined as  

 



 


2*

ix x
i e   (14) 

Where   is a constant defined by Equation 10 . 

By applying subtractive clustering to each class of data individually, we thus obtain a set of 
rules for identifying each class. The individual sets of rules can then be combined to form 
the rule base of the classifier. For example, suppose we found 2 clusters centers in class c1 
data, and 5 cluster centers in class c2 data, then the rule base will contain 2 rules that 
identify class c1 members and 5 rules that identify class c2 members. When performing 
classification, the output class of the classifier is simply determined by the rule with the 
highest degree of fulfillment. 
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5. ANFIS control of an intelligent robotic gripper 

The effectiveness of the Fuzzy Inference control will be illustrated here by applying the 
method to control the operation of a robotic  gripper. The robotic gripper will be first 
described, its operation principle will be illustrated, then the application of the Adaptive 
Network Fuzzy Inference System control to the gripper system will be presented. 

Generally, the main goal of robotic gripper during object grasping and object lifting process 

is applying sufficient force to avoid the risk of a difficult task or sometimes a task that could 

not be achieved. The problem can be posed as an optimization problem (Ottaviano et 

al.,2000; Bicchi & Kumar,2000). Sensory systems are very important in this field. Two types 

of sensing are most actively being investigated to increase robot awareness: contact and 

non-contact sensing. The main type of non-contact sensing is vision sensing where video 

camera is processed to give the robot the object   information. However, it is costly and gives 

no data concerning forces (Lorenz et al.,1990). Tactile sensing, on the other hand, has the 

capability to do proximity sensing as well as force sensing, it is less expensive, faster and 

needs less complex equipment (Choi et al.,2005). The basic principle of the Slip-Sensitive 

Reaction used in this work is that, the gripper should be able to automatically react to object 

slipping during grasp with the application of greater force. A lot of researches have been  

focusing on fingertip sensors development to detect  slippage and applied force (Dario & De 

Rossi ,1985; Friedrich et al., 2000), which requires complicated drive circuit and suffers from 

difficult data processing and calibration. Polyvinylidene fluoride (PVDF) piezoelectric 

sensors are presented in (Barsky et al.,1989) to detect contact normal force as well as slip. 

Also, an array 8x8 matrix photo resistor is introduced in (Ren et al.,2000) to detect slippage. 

A slip sensor based on the operation of optical encoder used to monitor the slip rate 

resulting from  insufficient force is presented in (Salami et al, 2000). However, it is expensive 

and have some constrains on the object to be lifted. Several researchers handle finger 

adaptation using more than one link in one finger to verify stable grasping (Seguna & 

Saliba, 2001; Dubey & Crowder, 2004). This results in complicated mechanical system 

leading to difficulty in control and slow response. Fuzzy controllers have been very 

successful in solving the grasping problem, as they do not need mathematical model of the 

system (Dominguez-Lopez & Vila-Rosado, 2006). In this study, a new design and 

implementation  of robotic gripper with electric actuation using brushless dc servo motor is 

presented. Standard sensors adaptation in this work leads to maintaining the simplicity of 

the mechanical design and gripper operation keeping a reasonable cost. The gripper control 

was achieved through two control schemes. System modeling had been introduced using 

ANFIS approach. A new grasping scenario is used in which we collect information about the 

masses of the grasped objects before starting the grasping process without any additional 

sensors. This is achieved through knowledge of object pushing force that allows applying an 

appropriate force and minimizing object displacement slip through implementation of the 

proposed fuzzy control.  

5.1 Gripper design and configuration 

A proper gripper design can simplify the overall robot system assembly, increase the overall 

system reliability, and decrease the cost of implementing the system. Hence, the design of 

the gripping system is very important for the successful operation. 
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5.1.1 Gripper design guidelines  

It may not be possible to apply all the guidelines to any one design. Sometimes, one 
guideline may suggest one design direction while another may suggest the opposite. Each 
particular situation must be examined and a decision must be made to favor the more 
relevant guidelines (Monkman et al,2007). The design guidelines may be as follows: - 

1. Minimize the gripper weight: This allows the robot to accelerate more quickly. 
2. Grasp objects securely: This allows the robot to run at higher speeds thereby reducing 

the cycle time. 
3. Grip multiple objects with a single gripper: This helps to avoid tool changes. 
4. Fully encompass the object with the gripper: This is to help hold the part securely. 
5. Do not deform the object during grasping: Some objects are easily deformed and care 

should be taken when grasping these objects. 
6. Minimize finger length: Obviously, the longer the fingers of the gripper the more they 

are going to deflect when grasping an object. 
7. Design for proper gripper-object interaction: If, however, a flat surface is being used, 

then a high friction interface is desired since the part would not be aligned anyway and 
the higher friction increases the security of the grasp. 

5.1.2 Two fingers gripper selection   

The objects may vary in size and shape. Thus the gripper should be able to handle objects 
of different shapes and sizes in a particular range. Gripper should be compact so that it 
does not interfere with other equipment. The use of conical fingers “three fingers or 
more” will help holding  the parts securely. But if we have an object larger than these 
conical fingers, the object could not be gripped properly. Parallel moving fingers are a 
good solution in this case. This parallel movement also helps in gripping objects 
internally. Since the force is acting at a point or line in conical form of gripping it may 
lead to wear and tear of both the object and the finger. But in the parallel finger 
arrangement, the force will be distributed over an area. The two-fingers grasp may be 
considered the simplest efficient grasping configuration. 

5.1.3 Gripper configuration    

The developed gripper device was configured with a two parallel finger design for its wide 
applications in spite of its precise control need. One finger is fixed and the other is movable 
to ease the control and minimize the cost as shown in figure 4. The fingers are flat and 
rectangular in shape. The housing of the gripper and fingers were made of aluminum sheet 
for light weight consideration with proper thickness to ease the machining and holes 
puncture through edges. This gives simple assembly and ease in maintenance. The movable 
finger is driven on a lead screw and guided by a linear bearing system with the advantage 
of self-locking capability, low cost and ease of manufacture.  

To control the gripping of the object, we need to measure both the force applied to the object 
and the object slip. A standard commercial force sensor resistor FSR (Flexiforce A201 
working in the range of 0-1 lb (4.4N))  is used to measure the applied force. Also Phidget 
vibrator sensor is adapted as slip sensor to give information about object slip rate in m/sec. 
These two sensors are tactile sensors. The actuator used to drive the movable finger is a 
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permanent magnet brushless dc motor (BLDC). It has the advantage of high power density, 
ease of control, high efficiency, low maintenance and low rotor inertia. BLDC servo motor 
used is an internal rotor motor "BLD3564B" from Minimotor inc. with its drive circuit 
"BLD5604-SH2P" . 

The design of the gripper fingers must take some restrictions into consideration. Long 
fingers require high developed torque and short fingers impose restrictions on object 
dimensions. Hence fingers are selected to be 15 cm long. Also, a contact rubber material area 
between the fingers and the object of 25 mm by 25 mm is used to decrease the pressure on 
the object, increase the friction, and avoid deformation from centric concentrated force. With 
this gripper configuration, we succeeded to verify all previous design guidelines except 
guideline no.4 as our proposed gripper doesn’t fully encompass the object in order to be 
able to grasp a greater variety of objects, although this imposes more difficulty in the control 
during gripping.  

6. Robotic gripper modeling  

To build the proposed controller, we need to get information about the system 
characteristics for use in simulation and experimental work. Hence, input/output variables 
of the system are measured and processed. The input variable to the system is the speed 
control command to the servo motor drive expressed as reference voltage Vref . The applied 
force on the object is the output variable Fapp. The deformable compliant rubber material 
covering the contact area of the fingers, as shown in figure 4, is important to allow a wide 
range of force control for solid objects as well as decreasing the pressure on the object and 
increasing the friction. Hence, we need to model the variation of the applied force Fapp  by 
the gripper finger with time at different reference voltage control commands Vref .     

 

Fig. 4. Gripper configuration. 

Experimentally, and due to the mechanism constraint according to the gripper design, the 
applied force by the gripper fingers Fapp on the objects could not decrease if the reference 
voltage control command Vref  is decreased. To verify the proposed controller, a model  was 
built using MATLAB software package considering the mechanical constraints, which in 
turn lead to the accumulation of the applied force when Vref  is changed. For practical 
control, a maximum limit was set to the applied force Fmax.app , figures 5 & 6. From this 
simulation model, the set of training data, checking data and testing data to be used for 
ANFIS model training were prepared. 
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Fig. 5. Gripper prototype.  

 

 

Fig. 6. Gripper simulation using MATLAB considering the maximum applied force. 

 

 
                                                                  Time in seconds 

Fig. 7. Gripper simulation results considering the maximum applied force. 
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6.1 Force sensor calibration and modeling  

The experiment was set up as shown in figure 8. Different masses were used for calibration 

considering the maximum force that can be applied to the sensor according to its data sheet. 

The whole sensitive area should be subjected to the applied force. Using the nonlinear least 

squares fitter we can fit a function to our recorded measurements as shown in figure.9. From 

the force sensor data sheet, the sensitive area is 0.7136 cm2, whereas the contact area 

between the object and any finger is 6.25 cm2 “the rubber material has a contact surface  

 

Fig. 8. Experimental test for force sensor calibration 

 

 

Fig. 9. Allometric function curve fitting. 
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dimensions 2.5cm x 2.5cm”. Hence, there is a conversion factor, which converts the applied 

force by the finger on the object to the applied force on the sensor area as follows: - 

 appF  = 8.76 sensF         (15) 

Using the proposed drive circuit shown in figure 10, we can deduce a  formula that 

describes the relation between the analog output voltage from the force sensor and  the 

applied force by the gripper finger as follows: - 

 outV  = 5 * fR   / a * (( appF /8.76) ^ b)            (16) 

Where:  a = 2807.18, b = -0.69019 and fR  = 65 Kohm 

 

Fig. 10. Proposed drive circuit. 

6.2 ANFIS modeling for input/output gripper variables  

Adaptive Neuro-Fuzzy Inference Systems, ANFIS, are realized by an appropriate 
combination of neural and fuzzy systems and provide a valuable modeling approach of 
complex systems (Rezaeeian et al.,2008). The ANFIS structure is applied on our proposed 
robotic gripper, figure 11, based on the measured data which are simulated using MATLAB 
software package as shown in figure 6 and figure 7. We use 161 training data, 46 checking 
data, and 46 testing data. The training data are shown in figure 12. The surface rules viewer 
for the developed FIS model using ANFIS is shown in figure 13. Simulation results of the 
gripper using ANFIS modeling is shown in figure 14. 

 

Fig. 11. Robotic gripper using ANFI.S 
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Fig. 12. Training data. 

 

 

Fig. 13. Surface rules viewer for the developed FIS model using ANFIS. 

6.3 Object modeling 

It is known that the occurrence of slip for a solid object during grasping and lifting mainly 
depends on its mass, its coefficient of friction and also on the applied forces. If the applied 
force is  not  enough, acceleration is generated which leads to increased rate of slip and 
object dropping after certain time. This time depends on the applied force, the object mass 
and the coefficient of friction. Equation 3 determines the object acceleration as a function of 

Data Points
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the normal applied forces by the gripper fingers and the coefficient of friction as shown in 
figure.14. Object simulation result is shown in figure.15, which indicates that the slippage is 
stopped after a period of time depending on the rate of force increase. 

 

Fig. 14. Gripper simulation results using ANFIS modeling. 

      2 appm a m g F             (17) 

Where m is the object mass in kg,   is the coefficient of friction, g is the earth gravity equal 

to 9.8 m/s2, and finally α is the object acceleration in m/s2 

 

Fig. 15. Applied forces on the object. 
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                                                               Time  in seconds 

Fig. 16. Object simulation results when Mass=100 gm and µ=0.5. 

6.4 Slip sensor calibration and modeling 

To measure the slip amount for an object subjected to grasping, lifting and handling, a 
piezoelectric vibration sensor was used. A piezoelectric transducer is displaced from the  

 

Fig. 17. Experimental tests for slip sensor calibration. 
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mechanical neutral axis, bending creates strain within the piezoelectric element and  
generates voltage signal. Experimentally, if the edge of this sensor is subjected to different 
speeds, it can generate different values of analog voltage that depend on those speed values. 
The experiment was set up as shown in figure 17. The motor was run at different speeds and 
the output of the sensor was recorded. The speed to which the sensor is subjected equals to 
(Pi * 5 * rpm/60) mm/sec. Linear curve fitting had been applied to get the optimum 
modeling for the assigned slip sensor as shown in figure 18. 

 

Fig. 18. Linear fit for slip sensor based on measured values. 

The fitting parameters are recorded as follows:- 

 Y = A + B * X       (18) 

Where: A = 2, 45319, and B = -0, 60114 

X is an independent variable that represents the object slip rate “object speed” in mm/sec. Y 
is a dependent variable that represents the slip sensor analog output voltage in volts. 

7. Gripper system  controller 

Our proposed controller was developed by emulating the action of the human to handle 
any, object during lifting it. First, he touches the object to examine its temperature and 
stiffness. Then, he tries to lift it by applying small force to move it or lift it in order to 
acquire some information about its weight and stiffness. Then he estimates the force needed 
to lift this object and takes the decision if he can lift it or not. Based on these observations, 
two control schemes were developed with different feedback variables. 

7.1 First scheme controller 

During object grasping and lifting process, it is not guaranteed that the two fingers will be in 
contact with the object at the beginning. Hence, a pushing force will be applied by one 
finger (the movable finger) until complete contact. Normally, this pushing force is less than 
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the force needed to lift the object, but is a function of the object mass and its coefficient of 
friction. Figure 19 shows the block diagram of the first proposed controller scheme. Two 
integrated fuzzy controllers were built in this scheme as follows: 

1. The first fuzzy controller is a reference voltage controller with two input variables, the 
slip-rate and its derivative. 

2. The second fuzzy controller is a gain controller for the output of the first controller with 
one input variable, the pushing force. 

 

Fig. 19. Block diagram of the first scheme controller 

 

 

Fig. 20. Surface viewer of the reference voltage controller. 
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The function of the second controller is to decrease or increase the reference voltage 

command. The output of this controller is based on the pushing force applied on the 

object before grasping and lifting process. Figures 20 and 21 show the surface viewers for 

the two controllers in this scheme. Simulation results show the response of this scheme as 

shown in Figure 22. 

 

Fig. 21. Surface viewer of the gain controller. 

7.2 Second scheme controller 

Three integrated fuzzy controllers were built in this scheme as shown in figure 23:- 

1. Guess starter reference voltage controller 

2. Increased percent controller for starter reference voltage command. 

3. Enhancement controller for the starter reference voltage command. 

The first controller function is to guess the acceleration of the object resulting from small 

applied force and to give the suitable value of reference voltage command, the second 

controller function is to sense the pushing force to the object before the grasping process and 

its output is multiplied by the first  controller output, the function of the third controller is to 

enhance the response of the two previous controllers based on the object acceleration and 

the applied force feed-back. 

The controllers receive the object acceleration, object acceleration rate, pushing force and the 

applied force as feedback variables and adjust the finger motion. The response of this 

scheme is shown in figure 24 which indicates a faster response and lower slippage than the 

first scheme controller. Also figures 25 and  26 show the effect  of pushing force variation on 

the system response. In the case shown in figure 26, Fpush  is higher than in the case shown in 

figure 25. So the higher value  of  Fpush used as feed-back to the control system leads to lower 

slip amount. 
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Fig. 22. System response for the first scheme controller: Mass=300 gm and Fpush =150 g 

 

 

Fig. 23. Block diagram of the second scheme controller. 
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Fig. 24. System response for the second scheme controller Mass = 300 gm and pushF =150 g 

. 

 
(b) Mass=100 gm,  =0.5, and pushF =40 gm-

force 

 
(a) Mass=100 gm,  =0.5, and pushF =20 

gm-force 

Fig. 25. Slippage parameters and applied force.  
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8. Experimental results 

Experimental work was established to verify the gripper system performance. Every part of 
the system was verified from the design concept, the manufacturing and control aspects. The 
mechanical system performance was tested and suitable refinements were performed. Sensors 
were calibrated and their necessary drive circuits were built. The actuator characteristics were 
studied in order to be taken into consideration during grasping process. Figure 26 shows the 
flowchart that describes the experimental scenario and proposed algorithm. Figures 27 and 28 
show the system response during grasping and lifting for 1000gm object mass. Figures 27(a) 
and 28(a) show good performance although the start reference controller based on pushing  

 

Fig. 26. Flow chart of the proposed scenario. 

www.intechopen.com



 
Fuzzy Inference System – Theory and Applications 108 

Considering the start reference controller based on pushing force as shown in Figure.27 (b) 
and in Figure. 28 (b), we can minimize the time of the grasping and lifting process. 
Moreover, a slip displacement reduction was achieved. To confirm and verify the robustness 

 

Ch4: Slip-rate (mm/s) – Ch3: Fapp (gm-force) – Ch1: Vref (V) 

(a) Pushing force is not considered 

 

Ch4: Slip-rate (mm/s) – Ch3: Fapp (gm-force) – Ch1: Vref (V) 

(b)Pushing force is considered 

Fig. 27. System response when mass=550gm 
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Ch4: Slip-rate (mm/s) – Ch3: Fapp (gm-force) – Ch1: Vref (V) 

(a) Pushing force is not considered 

 
Ch4: Slip-rate (m/s) – Ch3: Fapp (gm-force) – Ch1: Vref (V) 

(b) Pushing force is considered 

Fig. 28. System response when mass=1000gm 

force is not considered. The duration of the grasping and lifting process was in the range of 
1 second and the slip displacement is in the range of 2 millimeters. 

of the developed gripper set-up and its control, we disturb the assigned system by a sudden 
increase in object mass. The gripper system response was found as shown in Fig.29, which 
keeps the time of slippage and slip displacement in the range of 1 second and 2 millimeters 
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respectively. In the mean time Table 1 shows a comparison between the two proposed 
schemes. The enhancement in the response when the pushing force is considered gives us 
the opportunity to grasp safely objects with higher mass than in the first scheme where Fpush 

 

Ch 4:slip rate(mm/s) – Ch 3: Fapp(gm-force) – Ch1: Vref(V) 

Fig. 29. System response when mass is suddenly increased from 550 to 900gm 

 

 

Table 1. 
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is not considered. It is clear from the table that the performance of the system in the case of 
the second controller scheme is better than in the case of the first controller. The duration of 
the process is lower in the second scheme and also the amount of the slip is reduced for all 
test cases where the mass of the object is varying between 100g and 1000g. This proves that 
the feedback variables choice is very important and has a great effect on the system 
performance. 
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