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1. Introduction 

Idiopathic scoliosis is a deformity of the torso, characterized by lateral deviation and axial 
rotation of the spine. Although good anatomic descriptions of the structural changes seen in 
scoliosis were first made by the ancient Greeks, we have not as yet elucidated its 
pathogenesis. The deformity always develops from a straight spine into a curved spine, 
usually accompanied by a rib cage deformity, during the growth period in general and in 
particular in the rapid growth period. In the growing scoliotic spine, the loss of mechanical 
stability results in deformation of the vertebral bodies and ribs. The eventual magnitude of 
an idiopathic scoliotic curve varies and is unpredictable. The extent of the alterations in the 
shape of the vertebrae and ribs is strongly related to the severity of the scoliotic curve. Pain 
is a rare symptom, and the patient seems unaware of his or her condition. The idiopathic 
scoliotic curves follow a geometric pattern: (1) primary thoracic; (2) thoraco-lumbar; (3) 
primary lumbar (4) double primary. The primary curve invariably has associated secondary 
curves which follow similar geometric pattern. The axial rotation of the vertebrae is towards 
the convexity of the curve (Boos & Aebi, 2008). The most important problem related to 
scoliosis is progression of the deformity, i.e. worsening of the scoliotic curve. The amount of 
progression is different in each individual patient, some progress very fast, others don’t 
progress at all (Charles et al, 2006; Cheung et al, 2005 & 2006; Dimeglio, 2001; Escalada et al, 
2005; Sanders et al, 2007; Wever et al, 2000; Yronen & Ylikoski, 2006). Earlier when the 
growth velocity of the spine is 20 mm/year or more, the idiopathic scoliosis is nearly always 
progressive (Cheung et al, 2004). When growth is completed progression generally stops, 
although research has shown that the risk of curve progression is primarily related to 
periods of rapid skeletal growth of the patient, most often during the pubertal growth spurt. 
It was shown that curves of more than 40 degrees Cobb angle are able to progress even after 
skeletal maturity, because of degeneration of the disk and the fibro-cartilage at load transfer 
points on the concave side of the curve, although this progression will be at a very low rate 
of 1° or 2° a year (Duval-Beaupere et al, 1970; Duval-Beaupere & Lamireau, 1985). The 
prevalence of scoliosis is approximately 4% of the children between 10 and 16 years of age. 
However, adolescent idiopathic scoliosis does not necessarily progress, and the prevalence 
of children having a Cobb angle larger than 45 degrees, and therefore needing operative 
treatment, is approximately 0.1%. Spontaneous improvement is however rare and almost 
never seen in moderate to large curves. Although many types or causes of scoliosis are 
known, the idiopathic variety comprises the largest group (80%) and its aetiology remains 

www.intechopen.com



 
Recent Advances in Scoliosis 

 

4 

unknown. A strong familiar history is usual and a hereditary transmission suggesting an 
autosomal dominant or multifactorial defect is described (Duthie, 1959; Duval-Beaupere et 
al, 1970). The effect of industrial environmental factors been investigated, but those factors 
probably do not significantly influence the prevalence of AIS (Grivas et al, 2008). Some 
workers favour a neuromuscular basis for the condition, others believe that asymmetrical 
growth is the primary etiological factor (Deacon et al, 1984 & 1987; Dickson et al, 1984; 
Duthie, 1959; Millner & Dickson, 1996). Some workers have attributed the initial spinal 

deformity of AIS to changes in ribs ( Pal, 1991; Burwell et al, 1992; Grivas et al, 1991, 1992, 
2002, 2007 & 2008; Sevastik, 2000; Sevastik et al, 2003; Erkula et al, 2003). Many workers hold 
the view that the rib deformities of progressive AIS are adaptations to forces imposed by the 
scoliotic spine (Wever et al, 1999; Burwell et al, 2003) with the sternum, held nearly 
stationary by abdominal ties and providing the opposing forces needed to deform the ribs 
(Closkey & Schultz, 1993).Whatever factors underlie the aetiology, they ultimately express 
themselves in the biomechanical changes that define scoliotic curve progression. This paper 
proposes a possible model for the pathomechanics of idiopathic scoliosis. 

2. Neuromuscular factors 

Awareness of the position of the body in space is a highly developed sense in humans. It is 
the result of input from the vestibular, visual and proprioceptive neural pathways. In recent 
years, strong evidence has been found for the idea that, for visuomotor co-ordination and 
exploration of space, the brain uses abstract, neural representations of space interposed 
between sensory input and motor output. These neural representations seem to be 
organised in nonretinal, body-centred and/or world-centred coordinates (Andersen et al, 
1993; Snijder et al, 1993). Spatial information in non-retinal coordinates allows the subject to 
determine the body position with respect to visual space, which is a necessary prerequisite 
for accurate behaviour in space. To obtain such a frame of reference, the information coded 
in coordinates related to the peripheral sensory organs must be transformed and integrated. 
Defective postural equilibrium has been proposed as a contributing factor in the 
development of scoliosis (Guyton, 1976). In this regard, defects in visual and vestibular 
input have been studied extensively as a possible genesis of idiopathic scoliosis (Herman & 
McEwen, 1979; Herman et al, 1982 & 1985; Sahlstrand et al, 1979; Sahlstrand & Petruson, 
1979; Sahlstrand & Lindstrom, 1980; Sahlstrand, 1980; Kapetanos et al, 2002). The occurrence 
of vestibular-related deficits in AIS patients is well established but it is unclear whether a 
vestibular pathology is the common cause for the scoliotic syndrome and the gaze/posture 
deficits or if the latter behavioral deficits are a consequence of the scoliotic deformations. A 
possible vestibular origin was tested in the frog Xenopus laevis by unilateral removal of the 
labyrinthine end organs at larval stages. After metamorphosis into young adult frogs, X-ray 
images and three-dimensional reconstructed micro-computer tomographic scans of the 
skeleton showed deformations similar to those of scoliotic patients. The skeletal distortions 
consisted of a curvature of the spine in the frontal and sagittal plane, a transverse rotation 
along the body axis and substantial deformations of all vertebrae (Lambert et al, 2009). A 
clinical study from Wiener-Vacher (Wiener-Vacher & Mazda, 1998) supports the hypothesis 
that central otolith vestibular system disorders lead to a vestibule-spinal system imbalance, 
and may be a factor in the cause of AIS. In a pilot study on scoliotic patients we used 
Vestibular Evoked Myogenic Potentials (VEMP) (Hain et al, 2006). The purpose of the 
VEMP test is to determine if the saccule, one portion of the otoliths, as well the inferior 
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vestibular nerve and central connections, are intact and working normally. The saccule, 
which is the lower of the two otolithic organs, has a slight sound sensitivity and this can be 
measured. This sensitivity is thought to be a remnant from the saccule's use as an organ of 
hearing in lower animals. We found an asymmetry in Idiopathic scoliosis patients and not in 
other types of scoliosis (unpublished data). Vestibulo-ocular reflex changes may be viewed 
as a function of asymmetrical control of reflex gain, which is disturbed further during any 
postural task requiring control of body motion in the presence of visual fixation. Hence, 
postural instability is ascribed to the conflict between visual and vestibular information 
within the higher central nervous system (CNS) centres, which can integrate and calibrate 
converging sensory data for perception and control of postural movement (Herman & 
McEwen, 1979; Herman et al, 1979 & 1985). Proprioceptive input from joints, ligaments and 
tendons has been recognised as an integral contribution to the body’s postural equilibrium 
Guyton, 1976). Defects in the muscle spindle system and tone in the spinal muscles have 
been implicated in scoliosis (Barrack et al, 1984; Hoogmartens & Basmajian, 1976; Low et al, 
1978; Matthews, 1969; Matthews, 1969, Whitecloud et al, 1984; Yekutiel et al, 1981). Neural 
pathways involving visual, vestibular and proprioceptive afferents all have discrete 
interconnections in the brainstem. A lesion in this anatomical location could affect all three 
pathways. Congenital lesions in this area are associated with scoliosis (Tezuka, 1971), and 
scoliosis has been successfully induced by damaging this area (Dubousset et al, 1982).  

Experimentally created defects in the vestibular system of a rat resulted in delayed posture 
and motor development (Geisler, 1997). Previous studies of CNS function in AIS have 
suggested that altered cerebral cortical/subcortical function (Herman & McEwen, 1979; 
Mixon & Steel, 1982; Petersen et al, 1979; Sahlstrand et al, 1979) or hemispherical dominance 
(Enslein & Chan, 1987) may be related to the aetiology of AIS. Patients with scoliosis and 
primary alteration of the motor system, so-called neuromuscular scoliosis, are known to 
have a curve morphology and natural history very different from that of the “typical” 
idiopathic curve. Magnetic resonance imaging studies of the brain stem in adolescent 
idiopathic scoliosis by Geissele et al. showed an asymmetry in the ventral pons or medulla 
in a number of patients (Geissele et al, 1991). Abnormalities in the paraspinal muscles have 
been implicated by several investigators as a possible causative factor in the production and 
progression of adolescent idiopathic scoliosis (Fidler et al, 1974; Fidler & Jowett, 1976; Ford 
et al, 1984; Spenser & Eccles, 1976; Yarom & Robin, 1979). An increased myoelectric response 
on the convex side of the curve, near its apex, was the main finding reported by various 
authors ( Alexander & Season, 1978; Alexander et al, 1978; Butterworth & James, 1969; Guth 
& Abbink, 1980; Henssge, 1962; Redford et al, 1969; Spenser & Eccles, 1976; Wong et al, 1980; 
Yarom & Robin, 1979; Zetterberg et al, 1984), but not all agreed on the meaning of these 
findings. In early reports a fatigue mechanism was suggested (Riddle & Roaf, 1955), while 
others explained the difference as an effect of the stretching of the erector spinae muscles on 
the convex side (Butterworth & James, 1969).  

This view was supported by the finding of a stretch reflex (H-reflex) that was more sensitive 
to vibration and hammer tapping on the spinous processes in larger curves (Hoogmartens & 
Basmajian, 1976). Others believed that the increased myoelectric activities on the convex side 
were only a secondary effect of the muscles adapting to a higher load demand in larger 
curves (Zetterberg et al, 1984). This would be consistent with the reported findings of 
differences in the morphology of the paravertebral muscles between the left and right sides ( 
Saltin et al, 1977; Spenser & Eccles, 1976; Wong et al, 1980; Yarom & Robin, 1979). However, 
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the increase of type 1 muscle fibres on the convex side can be explained on the basis of 
muscle denervation ( Ford et al, 1984; Webb, 1973 & 1981; Zetterberg et al, 1984), produced 
by an alteration of the motor drive arising at the spinal cord level, either from altered 
sensory input at the same level ( Pincott, 1980; Pincott & Taffs, 1982; Taffs et al, 1979) or from 
a central mechanism ( Barrack et al, 1984; Dubousset et al, 1982; Michelsson, 1965; 
Sahlstrand et al, 1979; Whitecloud et al, 1984). The ocular and postural control systems reach 
maturation in early adult life (Forssberg & Nasher, 1982; Nasher, 1982; Sharp et al, 1979).  

Children with idiopathic scoliosis in the age range of 9–16 years exhibit delay in the 
complete development of smooth pursuit and optokinetic nystagmus; moreover, they 
demonstrate a delay in tasks that couple the vestibular and visual systems, particularly 
those requiring voluntary suppression of the vestibulo-ocular reflex (Herman & McEwen, 
1979). This behaviour is required to ensure optimal visual acuity in phase with head motion. 
Incomplete maturation of visual and visuo-vestibular functioning is ascribed to inefficient 
extraretinal processing of perceptual information by cortical structures within the CNS, e.g. 
to delayed development of perception of the position of visual images in space (Herman & 
McEwen, 1979; Sharp & Rabinovitch, 1979; Yasui & Young, 1976; Young, 1977). The 
maturation of the ocular and postural control systems coincides with the secondary rapid 
growth period. Some workers believe that not only the somatic nervous system is involved 
but the autonomic nervous system as well (Burwell, 2003; Grivas et al, 2009; Burwell et al, 
2009). AIS in girls may then be the result from developmental disharmony expressed in 
spine and trunk between autonomic and somatic nervous systems. The autonomic 
component involves selectively increased sensitivity of the hypothalamus to circulating leptin 
(genetically-determined up-regulation possibly involving inhibitory or sensitizing 
intracellular molecules, such as SOC3, PTP-1B and SH2B1 respectively), with asymmetry as 
an adverse response (hormesis); this asymmetry is routed bilaterally via the sympathetic 
nervous system to the growing axial skeleton where it may initiate the scoliosis deformity.  

We propose, therefore, that the most likely cause of idiopathic scoliosis includes a 
neuromuscular condition and an asymmetry of the transversospinalis muscles, produced by 
alteration of the motor drive at the spinal cord level, either from altered sensory input at the 
same level or from a central mechanism, which may produce enough lateral deviation and 
axial rotation to disturb the delicate balance of forces in the region, thereby producing an 
idiopathic scoliosis. Growth disturbance may not be a primary cause of idiopathic scoliosis, 
but it certainly plays a prominent part in the progression of this deformity, although it is not 
very clear how. 

2.1 Spinal growth factor 

Researchers of spinal deformity have always been interested in spinal growth and its 
relationship to spinal curvature. Normal longitudinal growth does not proceed in a uniform, 
linear pattern (Tanner, 1962 & 1978; Tanner & Davies, 1985; Tanner et al, 1965). There are 
two periods of rapid growth, the first from birth to three years of age, and the second during 
the adolescent growth spurt. The intervening period is a period of quiet but steady growth. 
For over 100 years the association between idiopathic scoliosis and vertebral growth has 
been debated (Anderson et al, 1965; Burwell & Dangerfield, 1974; Calvo, 1957; Duthie, 1959; 
Duval-Beaupere et al, 1970; Duval-Beaupere & Lamireau, 1985). A large number of studies 
on growth differences between normal and scoliotic girls have been conducted. 
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Unfortunately, the results of these studies were not consistent. Willner observed a taller 
mean standing height in girls with scoliosis compared to healthy controls (Willner, 1974 & 
1975 & 1975). These findings were supported by other cross-sectional studies (Buric & 
Momcilovic, 1982; Hagglund et al, 1992; Leong et al, 1982; Low et al, 1978; Nordwall & 
Willner, 1975; Normelli et al, 1985; Shohat et al, 1988). Loncar-Dusek et al. demonstrated a 
higher peak velocity for scoliotic children (Loncar-Dusek, 1991). Moreover, Goldberg et al. 
and Ylikowski et al. reported that girls with adolescent idiopathic scoliosis (AIS) have an 
earlier growth spurt and earlier attainment of adult height compared to healthy nonscoliotic 
controls (Goldberg et al, 1993; Ylikowski, 1993). This is in marked contrast to many other 
reports, which found no difference in growth pattern or height between AIS patients and 
nonscoliotic controls (Drummond & Rogala, 1980; Taylor, 1983; Veldhuizen, 1985; 
Veldhuizen et al, 1986). However, one should keep in mind that most of the studies on 
growth differences between scoliotic and nonscoliotic girls mentioned above were based 
either on length measurements of the sitting height, without correction for the error 
introduced by the scoliotic deformity itself, or were corrected using the method described 
by Bjure (Bjure et al, 1968) This method overestimates the real length of the spine, and may 
not be valid for curves of 30° or less Cobb angle, since they had no patients with such mild 
curves in their material (Skogland & Miller, 1981). The advocates of a deviating growth 
pattern explain the initiation of idiopathic scoliosis as the result of a greater tendency of 
taller and more slender spines to buckle out of the sagittal plane under loading (Dickson et 
al, 1984 & 1987; Millner & Dickson, 1996; Smith & Dickson, 1987). 

Roaf (Roaf, 1960 & 1966) and Dickson (Dickson et al, 1984 & 1987) explain the pathogenesis 
of idiopathic scoliosis as a result of biplane asymmetry. Increased anterior vertebral height 
at the apex of the curve with posterior end-plate irregularity characterises the median plane 
asymmetry. This lordosis at bony level was an important basis for their theory that thoracic 
lordosis, which is caused by a relative overgrowth of the anterior part of the vertebral body, 
triggers the initiation of scoliosis by buckling. In a three-dimensionally rendered CT scan 
study we have previously described the vertebral and rib deformities in idiopathic scoliosis 
(Wever et al, 1999). The observed vertebral deformities suggest that these are caused by 
bone remodelling due to an imbalance between forces in the anterior and posterior spinal 
column (Meyer, 1866; Wever et al, 1999). In our study, we also noted a minimal wedge 
deformation in the local sagittal plane in certain apical vertebrae, as mentioned by Deacon 
and Dickson, but it is questionable whether this deformation in the sagittal plane is a 
primary aetiological phenomenon, as they suggest, or whether it is rather a secondary 
phenomenon, comparable to the other vertebral deformations. They do not offer an 
explanation for this growth disturbance. Deane and Duthie (Deane & Duthie, 1973; Duthie, 
1959) found in a cadaveric study that the anterior body lengths either singly, or as total 
length were almost normal in the scoliotic patients, but the posterior lengths were 
considerably reduced due to a strong inhibitory force to growth of the posterior vertebral 
structures. Furthermore, no proof of the “Euler theory”, that idiopathic scoliosis is the result 
of buckling under load, has ever been given. The mechanical behaviour of such a complex 
and highly non-linear structure as the human vertebral column is very difficult to analyse. 
Using a new finite element model of the spine, we have previously examined this buckling 
theory (van de Plaats, 1997; van de Plaats et al, 2007). Judging from the results of this finite 
element study, buckling can not initiate idiopathic scoliosis, because the characteristic 
coupling of lateral deviation and axial rotation is absent. Furthermore, no difference in 
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spinal flexibility can be established between patients with idiopathic scoliosis and controls 
(Mattson et al, 1983; Veldhuizen, 1985; Veldhuizen & Scholten, 1990). Mechanical and 
computer models of the spine are frequently used to analyse the mechanisms by which 
scoliosis is initiated and aggravated. In a relatively simple stable physical model of the 
trunk, progression of the scoliosis due to growth can be shown (Murray & Bulstrode, 1996; 
Nijenbanning, 1998), but there is little evidence that growth initiate idiopathic scoliosis. 

The question is what growth is. 

2.2 Human growth 

Growth is inextricable associated with life. It is defined as a quantitative increase in size or 

mass, and it is a consequence of hyperplasia and hypertrophy; i.e. the size of the cells 

increases, as well as the number of cells. The term ‘growth’ is generally used for an increase 

in height or weight. Several body length dimensions can be measured, like total body 

height, sitting height, arm span, foot length, head circumference etc. Leg length is calculated 

by protraction of sitting height from total height. The increase in length is calculated per 

year, this is called the growth velocity. Unfortunately, in literature several terms are used 

alternatively, like growth, growth velocity, height velocity, or growth rate. Often timing or 

the magnitude of the growth spurt is simply indicated as peak growth velocity (PGV). 

Furthermore, many authors just refer to peak growth velocity of total body height as peak 

height velocity. It is often confusing whether the magnitude of the growth velocity is meant, 

or the age at which the maximum growth velocity takes place. In this article the term 

‘growth’ is used for the increase in a certain length dimension in centimetres. The term 

‘growth velocity’ is used for the increase of a certain length dimension per year, expressed 

in cm/year. The term ‘peak growth velocity (PGV)’ of a certain length dimension is used for 

the maximum growth velocity during adolescence. For example, PGV of total body height, 

or PGV of foot length. Growth is a volumetric revolution. From birth onwards, total body 

height increases 350% and weight increases 20-fold. Growth involves changes in proportion. 

At birth, the lower limbs make up 30% of the total body height in contrast to 48% at skeletal 

maturity. The infant head makes up 25% of the total body height and only 13% at skeletal 

maturity. All the changes in body length dimensions are gradual and each dimension has its 

own period of rapid growth (Busscher et al, 2010 & 2011; Dimeglio, 2001). Tanner (Tanner, 

1962 & 1978) was the first to describe the distal-to-proximal growth gradient theory. This 

theory states that humans grow “from the outside to the inside”, in other words, distal body 

parts will have their growth spurt earlier in adolescence in comparison to more proximal 

body parts. Four main characteristics dominate puberty: an increase in total body height, 

change of upper and lower body segment proportions, change in overall morphology, and 

the development of secondary sexual characteristics. Wide individual variations exist in 

onset and duration of puberty, and many factors play a role in the timing of the pubertal 

growth spurt. Beyond the age of 10 years, the growth patterns of boys and girls diverge. 

This is mainly due to the fact that boys have their pubertal growth spurt later in 

adolescence. The average age for the pubertal growth spurt, or the peak growth velocity of 

total body height, to occur is between ages 10 and 14 in 95% of the girls and between ages 12 

and 16 in 95% of the boys (Gerver & de Bruin, 2001 & 2003; Tanner & Davies, 1985), see 

Figure 1A.  
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Fig. 1A. Average growth curves and growth velocity curves of boys and girls. 

Furthermore, it is known that the magnitude of the peak growth velocity is significantly 
larger for those individuals with an early pubertal growth spurt as compared to those with a 
late growth spurt (Figure 1B). However, the growth period before the peak is longer and 
therefore the ultimate total body height will be similar or higher compared to children with 
an early growth spurt (Gerver & de Bruin, 2003; Tanner & Davies, 1985) 

 

Fig. 1B. Examples of growth velocity curves of children having their peak growth velocity at 
a different age. 
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Generally, the increase in height of the vertebral bodies is the result of enchondral growth at 
the upper and lower growth plate (Bick, 1961; Gooding & Neuhauser, 1965; Knuttson, 1961), 
whereas the increase in width is a result of periosteal growth (Bick, 1961). It has been 
suggested (Neugebauer, 1976) that the regulating(hormonal) mechanism is different for the 
two types of bone growth, but there is in fact little definite evidence for the endocrine 
pathways by which any particular hormone influences skeletal growth (Sisson, 1971). The 
growth of the posterior elements (lamina, pedicles) comes in part from enchondral 
ossification initiated in the articular cartilages of the articular processes (Enneking & 
Harrington, 1969). Growth can also be described as a mechanical process. 

2.3 Growth as a mechanical processi 

In his classic “On Growth and Form “D’ Arcy Thompson (D’ Arcy Wentworth Thompson, 
1961) analyses biological processes in their mathematical and physical aspects. In his 
opinion the form and change of any object in its movement and its growth may be described 
as due to the action of forces. In the Newtonian language of elementary physics, force is 
recognised by its action in producing or changing motion or in preventing change of motion 
or in maintaining rest. In accordance with D'Arcy Thompson’s view we describe growth as a 
mechanical process; a process that elapses in time and can be described by mechanical input 
and output variables. All parts of the skeleton show visco-elastic behaviour, meaning that a 
change in form is the sum of the changes in elastic and viscous transformations. The main 
difference between elastic and viscous transformation is time response. Elastic 
transformation can be understood as the action of a spring: by putting a weight on a spring, 
the length of that spring will increase immediately and after removing this weight, it regains 
its original length (Figure 2A). Viscous transformation can be understood as the action of a 
damper: by putting a weight on a damper, at first nothing will happen, but after a while the 
damper will move. After removing this weight, the damper will remain in its new position. 
(Figure 2B) 

 
 
 

 
 
 

Fig. 2A. Elastic Element. 
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Fig. 2B. Viscous Element. 

The growth in bone takes place in the growth-plate. As shown in figure 3 the genesis of 
growth can be thought of as a hydraulic system: the barrel left in the drawing contains 
liquid under pressure, representing the nursery-room of new cells. The liquid flows through 
tubes in which switch-back valves are incorporated to form a piston-cylinder combination. 
The liquid pressure will move the piston. Every piston-cylinder combination represents a 
growing cell and will produce an internal force on the growth-plate. The pistons are 
mechanically coupled resulting in a total force on the growth-plate, called the force of 
growth. The displacement of the coupling beam models the increase in length. Unequal 
distribution of force on the coupling beam results in an inclination of the coupling beam, 
simulating asymmetric growth. The switch-back valve supports the permanent character of 
the transformation by growth. 

 

Fig. 3. Genesis of growth, represented as a hydraulic system. The switch-back valve (K) 
supports the permanent character of the transformation by growth. 

If bone grows the soft tissues like muscles and ligaments have to follow and increase their 
length as well against their own tractive powers. This force is referred to as Soft tissue 
Complex Force and opposes growth. As shown in figure 4 this Soft Tissue Complex Force 
will induce a suction tension through traction on the piston. If the suction force is larger 
than the spring-force on the switch-back valve, liquid will flow into the cylinder. The 
lengthening will be permanent through the action of the switch-back valve. Only one piston-
cylinder combination has been drawn, representing the total of growing cells. 

www.intechopen.com



 
Recent Advances in Scoliosis 

 

12

 

Fig. 4. Hydraulic representation of traction Force: FSoft Tissue Complex. 

In figure 5 a scheme of the growth-process of bone-soft tissue combination is presented. The 
in the growth-plate generated Force of Growth will induce growth in bone but will be 
inhibited by the Force of Soft Tissue Complex, required for lengthening of soft tissue. 

 

Fig. 5. A scheme of growth process of bone and soft tissue is presented.  

The difference between these two forces creates a growth-velocity in bone resulting in 
growth only if there is a positive force difference. This mechanical concept of growth 
explains easily the greater length of bony elements in Marfan Disease: the force of soft tissue 
complex will be smaller and will have a less opposing effect on the force of growth. 

 

Fig. 6. Growth-process. 
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In table 1 a summary of forces acting on the spine are given. For the growth process only the 
Force of Growth and the Force of Soft Tissue Complex are important. The other forces, 
mentioned in table 1, act relatively too shortly to influence the slow reacting viscous 
elements. 

 

Forces 
 

Duration of Action Effect 

Gravity Long  
Ligaments/muscles passive Short Viscous 
Muscles active Short  
External load Short  
Growth Long Viscous 

Table 1. Summary of forces, acting on the spine. 

Our basic model of growth shows a one- dimensional situation: bone-growth equals soft 
tissue lengthening. In practice the soft tissue will show a non-linear and dynamic behaviour. 
The introduction of a joint makes the system multi-dimensional and enables small rotation 
of skeletal parts as a result of growth. Sometimes these small rotations are part of nature’s 
plan, e.g. when considering the formation of the s-shape in the sagittal plane during the first 
years of life. 

3. Curve progression 

The initiation of idiopathic scoliosis can be explained on the basis of a neuromuscular 
condition. However, the proposed neurological defects are not correlated with the degree of 
subsequent progression for the curve. According to Perdriolle (Perdriolle et al, 1993) the 
progression of idiopathic scoliosis is the result of a mechanical phenomenon. It has been 
demonstrated that the expected spinal growth at the moment that the initial curve is 
diagnosed is of crucial importance for the further development of scoliosis (Lonstein & 
Carlson, 1984). In a recent study, we demonstrated that progression of an idiopathic scoliotic 
curve correlates with periods of moderate and rapid growth, measured on successive 
radiographs (Wever et al, 2000).The variations in growth speed across individuals, as seen in 
our study, may explain the variations in expression of AIS, together with other factors such 
as the type of curve. Different biomechanical mechanisms are given to explain scoliosis 
progression during spinal growth (Kamman, 2003; Pincott & Taffs, 1982; van de Plaats, 1997; 
van de Plaats et al, 2007; Raso, 1998). It has been suggested that asymmetrical growth of the 
apical vertebral bodies due to chronic axial asymmetrical loading on the physes, according 
to the Hueter- Volkmann law, may result in scoliosis progression (Agadir et al, 1988; 
Perdriolle et al, 1993). Stokes et al. quantified the relationship between the degree of a 
symmetrical loading and the degree of asymmetrical growth in a rat-tail model and 
confirmed that vertebral wedging results from asymmetric growth in the physes (Stokes et 
al, 1996). In our study, there was a strong correlation between the degrees of apical vertebral 
deformation (wedging) and the degree of lateral deviation (Cobb angle), meaning that more 
vertebral deformation was found in more severe curves (Wever et al, 1999 & 2000). 
However, we have not found a direct relation between curve progression and an increase in 
wedging in progressive scoliosis. Others have stressed the importance of the posterior 
musculo-ligamentous structures of the spinal column, which have a strong tendency to 
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shorten. It was postulated that the tethering tendency of the musculo-ligamentous 
structures of the posterior compared to the rapid growth of the anterior spinal column will 
result in curve progression and the complex geometry of scoliosis (Murray & Bulstrode, 
1996; Roaf, 1960 & 1966; Somerville, 1952). Several major sensory systems, the general 
proprioceptors and the special receptors of the vestibular, visual, auditory and olfactory 
systems, are believed to be the principal sensors. Lack of feedback, inappropriate feedback, 
or faulty programming within the CNS, due to pathology, results in varying degrees of 
abnormal muscle tone, movement, and / or problems associated with gravity and 
orientation in space. The postural tone depends largely on the stretch reflex in the extensor 
muscles (Matthews, 1969; Michelsson, 1965). This reflex acts so that any external factor that 
brings the body out of equilibrium will stretch the appropriate extensor muscles and their 
muscle spindles, thereby activating the primary afferents, which monosynaptically excite 
homonymous alpha afferents. The latter will induce a contraction in the stretched muscles 
and restore the body to its position of equilibrium. The sensitivity of muscle spindle 
afferents is known to be under control of supraspinal centres, which act through the 
supraspinal gamma route and through the gamma motor neurons at the spinal level. The 
gamma motor neurons innervate the muscle spindles, which are sensitive to stretch in a 
minor or major degree, according to whether they are more or less biased by the gamma 
motor neurons. The central parts of the muscle spindle are surrounded by primary and 
secondary afferent fibres, transmitting stretch information to the alpha motor neurons in the 
anterior horns and to higher centres. The sensory input from the muscle spindle depends on 
the amount of stretch and the amount of gamma bias. Recently, it has been shown that in 
human intervertebral discs and longitudinal ligaments mechanoreceptors are present and it 
is more than likely that this will be also the case in the other ligaments of the spine. As 
mentioned in previous paragraph growth (Force of Growth) will stretch the soft tissues 
(Force of Soft Tissue Complex) and this will lead through a dysfunction of the muscle 
spindle system to asymmetric muscle contraction resulting in an increase of the scoliosis, 
meaning the higher Force of Growth (i.e. more growth) and the more dysfunction of the 
mechanoreceptors the greater the scoliosis. Only a dysfunction of the mechanoreceptors and 
no growth will not lead to a serious scoliosis. The various degrees of scoliosis seen clinically 
depend on the growth velocity and the degree of malfunctioning of the mechanoreceptors. 
A failure of the supportive musculo-ligamentous structures and/or their neuromuscular 
control system for stabilizing the spine may explain the occurrence of progression in AIS. 
Lack of feedback, inappropriate feedback, or faulty programming within the CNS, due to 
pathology, may be an important contributing factor in curve progression (Dobosiewicz, 
1997). 

4. Summary 

The natural history of AIS involves an initial stage in which a small curve develops due to a 
small defect in the neuromuscular control system and a second stage, during adolescent 
growth, in which the scoliotic curve is exacerbated by biomechanical factors, whereas 
neurological dysfunction may play a role in the extent of progression during normal growth 
(Dobosiewicz, 1997). We propose that the most likely cause of idiopathic scoliosis is 
neuromuscular. Asymmetry of the transversospinalis muscles may produce enough lateral 
deviation and axial rotation to disturb the delicate balance of forces in the region, thus 
producing a scoliotic deformity. This asymmetry of the transversospinalis muscles may be 
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produced by alteration of the motor drive arising at the spinal cord level, either from altered 
sensory input at the same level or from a central mechanism, and “the altered muscle pull” 
is the final common pathway for the production of a scoliotic curve. Growth (Force of 
Growth) will stretch the soft tissues (Force of Soft Tissue Complex ) and this will lead 
through a dysfunction of the muscle spindle system to asymmetric muscle contraction 
resulting in an increase of the scoliosis, meaning the higher Force of Growth(i.e. more 
growth) and the more dysfunction of the mechanoreceptors the greater the scoliosis. Only a 
dysfunction of the mechanoreceptors and no growth will not lead to a serious scoliosis. The 
various degrees of scoliosis seen clinically depend on the growth velocity and the degree of 
malfunctioning of the mechanoreceptors.Secondary to the scoliosis, a force system arises 
which may be held responsible for the geometrical and morphological characteristics of 
adolescent idiopathic scoliosis (Pincott & Taffs, 1980; Wever et al, 1999). 

5. References 

Agadir, M; Sevastik, J; Persson, A & Isberg, B (1988) Induction of scoliosis in growing rabbits 
by unilateral growth stimulation. Spine 13: 1065– 1969 

Alexander, MA & Season, EH (1978) Idiopathic scoliosis. Arch Phys Med Rehabil 59:314–315 
Alexander, MA; Bunch, WH & Ebbersson, SOE (1978) Can experimental dorsal rhizotomy 

produce scoliosis? J Bone Joint Surg Am 54:1509–1513 
Andersen, RA; Snijder, LH; Li, CS & Stricane B (1993) Coordinate transformations in the 

representation of spatial information. Curr Opin Neurobiol 3: 171–176 
Anderson, M; Shih-Chen Hwang, AM & Green WT (1965) Growth of the normal trunk in 

boys and girls during the second decade of life, related to age, maturity, and 
ossification of the iliac epiphysis. J. Bone Joint Surg. Am 47: 1554–1564 

Arkin, AM (1949)The mechanism of the structural changes in scoliosis. J Bone Joint Surg Am 
31: 519–528 

Barrack, RL; Whitecloud, TS; Burke, SW; Cook, SD& Harding, AF (1984) Proprioception in 
idiopathic scoliosis. Spine 9:681–685 

Bick, E (1961) Vertebral growth. Its relation to spinal abnormalities in children. Clin.orthop 
21: 43-48 

Bjure, J; Grimby, G & Nachemson, A (1968) Correction of the body height in predicting 
spirometric values in scoliotic patients. Scand J Clin Lab Invest 21:189–192 

Boos, N & Aebi, M (2008) Spinal disorders: fundamentals of diagnosis and treatment. 
Buric, M & Momcilovic, B (1982) Growth pattern and skeletal age in school girls with 

idiopathic scoliosis. Clin Orthop 170:238–242 
Burwell, RG & Dangerfield PH (1974) In: Zorab PA (ed) Scoliosis. Proceedings of the Fifth 

Symposium. Academic Press, pp 123–163 
Burwell, RG & Dangerfield, P H (1992). Pathogenesis and assessment of scoliosis. In: G. 

Findlay and R. Owen (editors) Surgery of the Spine. A Combined Orthopaedic and 
Neurosurgical Approach, Volume 1 (Oxford: Blackwell Scientific Publications), 
Chapter 19, pp. 365–408 

Burwell, RG; Cole, AA & Grivas, TB (1992) Screening, aetiology and the Nottingham theory 
for idiopathic scoliosis. In: A. Alberti, B. Drerup and E. Hierholzer (editors) Sixth 
International Symposium on Surface Topography and Spinal Deformity (Stuttgart: 
Gustav Fischer), pp. 136–161 

www.intechopen.com



 
Recent Advances in Scoliosis 

 

16

Burwell, RG; Cole, AA; Cook, TA; Grivas, TB;Kiel, AW; Moulton, A; Thirlwall, AS; 
Upadhyay, SS, Webb, JK; & Wemyss-Holden, SA (1992). Pathogenesis of idiopathic 
scoliosis. The Nottingham Concept. Acta Orthop Belg.58 Suppl 1:33-58 

Burwell, RG; Aujla, R K & Cole, AA (2003) Relation of ribs to the spine in the transverse 
plane at the curve apex in preoperative adolescent idiopathic scoliosis (AIS): 
evaluation using an ultrasound method and radiographs. In: Proceedings of the 
British Scoliosis Society, Leeds, 9–11 April. J of Bone & Joint Surg., vol. 86-B. pp 112 

Burwell, RG (2003) Aetiology of idiopathic scoliosis: current concepts. Pediatr Rehabil.Jul- 
Dec; 6 (3-4):137-70 

Burwell, RG; Aujla, RK; Grevitt, MP; Dangerfield, PH; Moulton, A; Randell, TL & Anderson, 
SI (2009) Pathogenesis of adolescent idiopathic scoliosis in girls - a double neuro-
osseous theory involving disharmony between two nervous systems, somatic and 
autonomic expressed in the spine and trunk: possible dependency on sympathetic 
nervous system and hormones with implications for medical therapy. Scoliosis. Oct 
31; 4:24 

Busscher, I; Wapstra, FH & Veldhuizen, AG(2010) Predicting growth and curve progression 
in the individual patient with adolescent idiopathic scoliosis: design of a 
prospective longitudinal cohort study. BMC Musculoskeletal Disease 11:93 11-93, 1-
21 

Busscher, I; Gerver, WJM; Kingma, I; Wapstra, FH; Verkerke, GJ & Veldhuizen, AG (2011) 
The growth of different body length dimensions is not predictive for the peak 
growth velocity of sitting height in the individual child Eur Spine J 20:791–797 

Busscher, I; Kingma, I; Wapstra, FH; Bulstra, SK; Verkerke, GJ & Veldhuizen, AG (2011) The 
value of shoe size for prediction of the timing of the pubertal growth spurt. 
Scoliosis 2011, 6:1, 1-7 

Busscher, I; Kingma, I; Wapstra, FH; de Bruin, R; Verkerke, GJ & Veldhuizen, AG (2011) 
Predicting the peak growth velocity in the individual child: validation of a new 
growth model Eur Spine J DOI 10.1007/s00586-011-1845-z 

Butterworth, TR & James, C (1969) Electromyographic studies in idiopathic scoliosis. South 
Med J 62: 1008–1010 

Calvo, IJ (1957) Observations on the growth of the female adolescent spine and its relation to 
scoliosis. Clin Orthop. 10:40–46 

Charles, YP; Daures, JP & de Rosa, V (2006) Progression risk of idiopathic juvenile scoliosis 
during pubertal growth. Spine; 31:1933-42. 

Cheung, J; Veldhuizen, AG; Halbertsma, JP; Maurits, NM; Cool, JC & van Horn, JR (2004) 
The relation between electromyography and growth velocity of the spine in the 
evaluation of curve progression in idiopathic scoliosis. Spine; 29:1011-6. 

Cheung J; Veldhuizen, AG; Halbertsma, JP; Maurits, NM; Cool, JC & van Horn, JR (2005) A 
preliminary study on electromyographic analysis of the paraspinal muscalure in 
idiopathic scoliosis. Euro Spine J: 14, 130-137 

Cheung, J; Veldhuizen, AG; Halbertsma, JPK; Sluiter, WJ & van Horn, JR (2006) Geometric 
and Electromyographic Assessment in the Evaluation of Curve Progression In 
Idiopathic Scolioisis. Spine: vol.31, 322-329 

Closkey, R F & Schultz, AB (1993). Ribcage deformities in scoliosis: spine morphology, rib 
cage stiffness, and tomography imaging. J of Orthopedic Research, 11: 730–737 

D’Arcy Wentworth Thompson (1961) On Growth and Form. Cambridge University Press 
ISBN 0521 437768 

www.intechopen.com



 
Hypothesis on the Pathogenesis of Idiopathic Scoliosis 

 

17 

Deacon, P; Flood, BM & Dickson, RA (1984) Idiopathic scoliosis in three dimensions. A 
radiographic and morphometric analysis. J Bone Joint Surg Br 66:509–512 

Deacon, P; Archer, IA & Dickson, RA (1987) The anatomy of spinal deformity: a 
biomechanical analysis. Clin Orthop 10:897–903 

Deane, G & Duthie, RB (1973) A new projectional look at articulated scoliotic spines. Acta 
Orthop Scand 44: 351–365 

Dickson, RA; Lawton, JO; Archer, IA & Butt, WP (1984). The pathogenesis of idiopathic 
scoliosis. Biplanar spinal asymmetry. J Bone Joint Surg Br 66: 8–15 

Dickson, RA & Deacon, P (1987) Spinal growth. J Bone Joint Surg Br 69: 690– 692 
Dimeglio, A (2001) Growth in pediatric orthopaedics. J.Pediatr.Orthop: 21: 549-55 
Dobosiewicz, K (1997) Neurophysiological mechanism of the unloading reflex as a 

prognostic factor in the early stages of idiopathic scoliosis. Eur Spine J 6:93–97 
Drummond, DS & Rogala, EJ (1980) Growth and maturation of adolescents with idiopathic 

scoliosis. Spine 5: 507–511 
Dubousset, J; Queneau, P & Thillard, MM (1982) Experimental scolisis induced by pineal 

and diencephalic lesions in young chickens: its relation with clinical findings in 
idiopathic scoliosis. Proceedings of the 17th Annual Scoliosis Research Society 
Meeting, Denver,Colorado 

Duthie, RB (1959) The significance of growth in orthopaedic surgery. Clin Orthop 14:7–19 
Duval-Beaupere, G; Dubousset, J; Queneau, P & Grossiord, S (1970) Pour une théorie unique 

de l’évolution des scolioses. Press Med 78:1141–1146 
Duval-Beaupere, G & Lamireau, T (1985) Properties at less than 30 degrees. Properties of the 

Evolutivity (risk of progression). Spine 5:421– 424 
Enneking, WF & Harrington, P (1969) Pathological changes in scoliosis. J Bone & Joint Surg. 

Br 51: 165-184 
Enslein, K & Chan, DP (1987) Multiparameter pilot study of adolescent idiopathic scoliosis. 

Spine 12:978–982 
Erkula, G; Sponseller, PD & Kiter, AE (2003) Rib deformity in scoliosis. European Spine 

Journal, 12: 281–287 
Escalada, F; Marco, E & Duarte, E (2005) Growth and curve stabilization in girls with 

adolescent idiopathic scoliosis. Spine 30: 411-417. 
Fidler, MW; Jowett, RL & Troup, JDG. (1974) Histochemical study of the function of 

multividus in scoliosis. In:Zorab PA (ed) Scoliosis and muscle. William 
Heinemann, London, 184–192 

Fidler, MW & Jowett, RL (1976) Muscle imbalance in the etiology of scoliosis. J Bone Joint 
Surg Br 58:200–201 

Ford, DM; Bagnall, KM; McFadden, KD; Greenhill, BJ & Rasco, VJ (1984) Paraspinal muscle 
imbalance in adolescent idiopathic scoliosis. Spine 9: 373–376 

Forssberg, H & Nasher, LM (1982) Ontogenetic development of postural control in man. 
Adaptation to altered support in visual conditions during stance. J Neurosci 2:545–
552 

Geisler, HC (1997) The influence of the vestibular system on the development of posture in 
the rat. Thesis, University of Groningen 

Geissele, AE; Mark, LTC; Kransdorf, J; Geyer, CA; Jelinek, JS; Bruce, LTC & Van Dam E 
(1991) Magnetic resonance imaging of the brain stem in adolescent idiopathic 
scoliosis. Spine 16:761–763 

www.intechopen.com



 
Recent Advances in Scoliosis 

 

18

Gerver, WJ & de Bruin, R (2001) Paediatric morphometrics: a reference manual. Second 
extended edition ed. UPM Maastricht 

Gerver, WJ & de Bruin, R (2003) Growth velocity: a presentation of reference values in 
Dutch children. Horm.Res; 60:181-184 

Gooding, CA & Neuhauser, EBD (1965) Growth and development of the vertebral body in 
the presence and absence of normal stress. Am J Roentgenol: 93, 338-394 

Goldberg, CJ; Dowling, FE & Fogarty, EE (1993) Adolescent idiopathic scoliosis: early 
menarche, normal growth. Spine 18:529–535 

Grivas, TB ; Burwell, RG & Purdue, M ( 1991) A segmental analysis of thoracic shape in 
chest radiographs of children. Changes related to spinal level, age, sex, side and 
significance for lung growth and scoliosis. Journal of Anatomy, 178: 21–38, 

Grivas, TB ; Burwell, RG & Purdue, M (1992) Segmental patterns of rib-vertebra angles in 
chest radiographs of children: changes related to rib level, age, sex, side and 
significance for scoliosis. Clinical Anatomy, 5: 272–288 

Grivas, TB; Burwell, RG & Purdue, M (1992). The rib cage deformity in infantile idiopathic 
scoliosis—the funnel-shaped upper chest in relation to specific rotation as a 
prognostic factor.An evaluation of thoracic shape in progressive scoliosis and 
control children during growth. In: A. Alberti, B. Drerup and E. Hierholzer 
(editors) Sixth International Symposium on Surface Topography and Spinal 
Deformity (Stuttgart: Gustav Fischer), pp. 93–109 

Grivas, TB; Samelis P; Polyzois, BD; Giourelis, B & Polyzois, D (2002). School screening in 
the heavily industrialized area--Is there any role of industrial environmental factors 
in idiopathic scoliosis prevalence?. Stud Health Technol Inform; 91: 76-80. 

Grivas, TB,; Dangas, S; Polyzois, BD & Samelis, P (2002) The Double Rib Contour Sign 
(DRCS) in lateral spinal radiographs: aetiologic implications for scoliosis. Stud 
Health Technol Inform; 88: pp 38-43 

Grivas, TB; Vasiliadis, ES; Mihas, C, & Savvidou, O (2007). The effect of growth on the 
correlation between the spinal and rib cage deformity: implications on idiopathic 
scoliosis pathogenesis.. Scoliosis: 14; 2: 11. 

Grivas, TB; Vasiliadis, ES; Mihas,C ; , Triantafyllopoulos,G & Kaspiris, A (2008).Trunk 
asymmetry in juveniles. Scoliosis: 23; 3: 13. 

Grivas, TB; Vasiliadis, E; Savvidou, OD & Triantafyllopoulos, G(2008). What a school 
screening program could contribute in clinical research of idiopathic scoliosis 
aetiology. Disabil Rehabil; 30(10): 752-62 

Grivas, TB; Burwell, RG; Mihas, C; Vasiliadis, ES; Triantafyllopoulos, G & Kaspiris, A(2009) 
Relatively lower body mass index is associated with an excess of severe truncal 
asymmetry in healthy adolescents: Do white adipose tissue, leptin, hypothalamus 
and sympathetic nervous system influence truncal growth asymmetry?. Scoliosis: 
30; 4:13 

Guth, V & Abbink, F (1980) Vergleichende electromyographische und kinesiologische 
Skoliosen. Z Orthop 118:165–172 

Guyton, AC (1976) Textbook of medical physiology, 5th edn. WB Saunders, Philadelphia, pp 
640–708 

Hain, TC; Yoo, H; Rudisill, H & Tanaka-Cameron, A (2006) Vemp testing in bilateral 
vestibular loss. Poster at ANA annual meeting, Chicago Oct 9 

Hagglund, G; Karlberg, J & Willner, S (1992) Growth in girls with adolescent idiopathic 
scoliosis. Spine 17: 108–111 

www.intechopen.com



 
Hypothesis on the Pathogenesis of Idiopathic Scoliosis 

 

19 

Henssge, J (1962) Electromyographischen Befunde der Rückenmusculatur nach 
Poliomyelitis und bei idiopatischen Scoliosen. Z Orthop 96:324–334 

Herman, R & McEwen, D (1979) Idiopathic scoliosis: a visio-vestibular disorder of the 
central nervous system. In: Zorab PA (ed) Scoliosis. Proceedings of the Sixth 
Symposium. Academic Press, pp 61–69 

Herman, R; Stuyck, J & Maulucci, R (1982) Development and plasticity of visual and 
vestibular generated eye movements. Exp Brain Res 47:69–78 

Herman, R; Mixton, J; Fisher, A; Maulucci, R & Stuyck, J (1985) Idiopathic scoliosis and the 
central nervous system: a motor control problem. Spine 10:1–14 

Hoogmartens, MJ & Basmajian, JV (1976) Postural tone in the deep spinal muscles of 
idiopathic scoliosis patients and their siblings. Electromyogr Clin Neurophysiol 
16:93–114 

Kamman, LLJ (2003) Siability of the Spinw. An Application to Scoliosis Progression. Thesis, 
University of Twente. ISBN 90-365-1857-1 

Kapetanos, G; Potoupnis, M; Dangilas, A; Markou, K & Pournaras,J(2002). Is the 
labyrinthine dysfunction a causative factor in idiopathic scoliosis? Stud Health 
Technol Inform.; 91:7-9. 

Knuttson F (1961) Growth and differentiation of the postnatal vertebra. Acta Radiol 55, 401- 
408 

Lambert, FM; Malinvaud, D; Glaune`s, J; Bergot, C; Straka, H & Vidal, PP (2009) Vestibular 
asymmetry as the cause of idiopathic scoliosis, A possible answer from Xenopus J 
Neuroscience, October 7, 29(40): 12477-12483 

Leong, JC; Low, WD; Mok, CK; Kung, LS & Yau, AC (1982) Linear growth in southern 
Chinese female patients with adolescent idiopathic scoliosis. Spine 7: 471–475 

Loncar-Dusek, M; Pecina, M & Preberg, Z (1991) A longitudinal study of growth velocity 
and development of secondary gender characteristics versus onset of idiopathic 
scoliosis. Clin Orthop 270:278–282 

Lonstein, JE & Carlson, JM (1984) The prediction of curve progression in untreated 
idiopathic scoliosis during growth. J Bone Joint Surg Am 66: 1061–1071 

Low, WD; Mok, CK; Leong, JC; Yau, AC & Lisowski, FP (1978) The development of 
southern Chinese girls with adolescent idiopathic scoliosis. Spine 3:152–156 

Low, WD; Chew, EC; Kung, HTC; Hisli, LCS & Leong, JCY (1983) Ultrastructures of nerve 
fibres and muscle spindles in adolescent idiopathic scoliosis. Clin Orthop 174: 217– 
221 

Matthews, PBC (1969) Muscle spindles and their motor control. Physiol Rev 44:219–288 
Matthews, PBC (1969) Evidence that the secondary as well as primary endings of the muscle 

spindles may be responsible for the tonic stretch reflex of the decerebrate cat. J 
Physiol 204: 365–393 

Mattson, G; Haderspeck-Grib, K; Schultz, AB & Nachemson, A (1983) Joint flexibility in 
structural normal girls and girls with idiopathic scoliosis. J Orthop Res 1:57–62 

Meyer, GH (1866) Die Mechanik der Skoliose. Archiv für pathologische Anatomie und 
Physiologie und für klinische Medicin 35:15–253 

Michelsson, JE (1965) The development of spinal deformity in experimental scoliosis. Acta 
Orthop Scand Suppl 81:1–91 

Millner, PA & Dickson, RA (1996) Idiopathic scoliosis. Biomechanics and biology. Eur Spine 
J 5:362–373 

www.intechopen.com



 
Recent Advances in Scoliosis 

 

20

Mixon, R & Steel, H (1982) Oculomotor control in children with idiopathic scoliosis. 
Presented at the Seventeenth Annual Scoliosis Research Society Meeting, Denver, 
Colorado 

Murray, DW & Bulstrode, CJ (1996) the development of adolescent idiopathic scoliosis. Eur 
Spine J 5:251–257 

Nasher, LM (1982) Adaptation of human movement to altered environments. Trends 
Neurosci 5:358–361 

Neugebauer, H (1976) Skoliose, Stoffwechsel und Wirbelsäulenwachstum. Arch Orthop 
Unfallchir 85; 87-99 

Nijenbanning, G (1998) Scoliosis redress.Design of a force controlled orthosis. Thesis, 
University of Twente, ISBN 90–36511925 

Nordwall, A & Willner, SA (1975) A study of skeletal age and height in girls with idiopathic 
scoliosis. Clin Orthop 110:6–10 

Normelli, A; Sevastik, J; Ljung, G; Aaro, S & Jonsson-Soderstrom, AM (1985) 
Anthropometric data relating to normal and scoliotic Scandinavian girls. Spine 
10:123–126 

Pal, GP (1991) Mechanism of production of scoliosis: a hypothesis. Spine, 16: 288–292, 1991. 
Perdriolle, R; Becchetti, S; Vidal, J & Lopez, P (1993) Mechanical process and growth. 

Essential factors in the progression of scoliosis. Spine 18: 343–349 
Petersen, I; Sahlstrand, T & Sellden, U (1979) Electroencephalographic investigation of 

patients with adolescent idiopathic scoliosis. Acta Orthop Scand 50:283–293 
Pincott, JR (1980) Observations on the afferent nervous system in idiopathic scoliosis. In: 

Zorab PA, Siegler D (eds) Scoliosis. Academic Press, London New York, 45–49 
Pincott, JR & Taffs, LF (1982) Experimental scoliosis in primates: a neurological cause. J.Bone 

Joint Surg Br 64:503–507 
Plaats, A van de (1997) Numerical analysis of idiopathic scoliosis using the finite element 

method. Internal report: BW-91. Technical University of Twente 
Plaats, A van de; Veldhuizen, AG, & Verkerke, GJ (2007) Numerical simulation of 

asymmetrically altered growth as initiation mechanism of scoliosis. Ann Biomed 
Eng: 35(7):1206-1215.. 

Raso, VJ (1998) Review of biomechanics in the aetiology of idiopathic scoliosis Presented at 
the Tenth International Philip Zorab Symposium, Oxford 

Redford, JB; Butterworth, TR & Clements, EL (1969) Use of electromyography as a 
prognostic aid in the management of idiopathic scoliosis. Arch Phys Med 
Rehabil58:433–438 

Riddle, HFV & Roaf, R (1955) muscle imbalance in the causation of scoliosis. Lancet: 1245–
1247 

Roaf, R (1960) Vertebral growth and its mechanical control. J Bone Joint Surg Br 42:40–
59Roaf, R (1966) The basic anatomy of scoliosis. J Bone Joint Surg Br 48:786–792 

Sahlstrand, T; Petruson, B & Ortengren, R (1979) Vestibulospinal reflex activity in patients 
with adolescent idiopathic scoliosis. Acta Orthop Scand 50:275–281 

Sahlstrand, T & Petruson, B (1979) A study of labyrinthine function in patients with 
adolescent idiopathic scoliosis. Acta Orthop Scand 50:759–769 

Sahlstrand, T & Petruson, B (1979) Postural effects on nystagmus response during caloric 
labyrinthine stimulation in patients with adolescent idiopathic scoliosis. Acta 
Orthop Scand 50:771–775 

www.intechopen.com



 
Hypothesis on the Pathogenesis of Idiopathic Scoliosis 

 

21 

Sahlstrand, T & Lindstrom, J (1980) Equilibrium factors as predictor of the prognosis in 
adolescent idiopathic scoliosis. Clin Orthop 152:232–236 

Sahlstrand, T (1980) An analysis of lateral predominance in adolescent idiopathic scoliosis 
with special reference to convexity of the curve. Spine 5:512–517 

Saltin, B; Henriksson, J; Nijgaard, E & Andersen, P(1977) Fibre-types and metabolic 
potentials of skeletal muscles in sedentary man and endurance runners. 1. 
Metabolism in prolongedm exercise. Ann N Y Acad Sci 301:3–29 

Sanders, JO; Browne, RH & McConnell, SJ(2007) Maturity assessment and curve progression 
in girls with idiopathic scoliosis. J.Bone Joint Surg.Am; 89:64-73. 

Sevastik, JA (2000).The thoracospinal concept of the etiopathogenesis of idiopathic scoliosis. 
Spine: State of the Art Reviews, 14: 391–400 

Sevastik, JA; Burwell, RG & Dangerfield, PH (2003) A new concept for the etiopathogenesis 
of the thoracospinal deformity of idiopathic scoliosis: summary of an electronic 
focus group debate of the IBSE. European Spine Journal, 12: 440–450 

Sharp, JA; Lo, AW & Rabinovitch, HE (1979) Control of saccadic and smooth pursuit 
systems after cerebral hemidecortication. Brain 102:387– 403 

Shohat, M; Shohat,T & Nitzan, M(1988) Growth and ethnicity in scoliosis. Acta Orthop 
Scand 59:310–313 

Skogland, LB & Miller, JAA (1981) The length and proportions of the thoracolumbar spine in 
children with idiopathic scoliosis. Acta Orthop Scand 52:177–185 

Smith, RM & Dickson, RA (1987) Experimental structural scoliosis. J Bone Joint Surg Br 
69:576–581 

Snijder, LH; Brotchie, P & Andersen, RA (1993) World-centred encoding of location in 
posterior parietal cortex of monkey. Soc Neurosci Abstr 19:770 

Somerville, EW (1952) Rotational lordosis. The development of the single curve. J Bone Joint 
Surg Br 34:421– 427 

Spencer, GSG & Eccles, MJ (1976) Spinal muscle in scoliosis. 2. The proportion and size of 
Type 1 and Type 2 skeletal muscles fibres measured using computer- controlled 
microscope. J Neurol Sci 30:143–156 

Sisson, HA (1971) The biochemistry and physiology of bone. Deveopment and Growth 
(Ed.GH Bourne) vol 111, page 116. Academic Press, New York 

Stokes, IAF; Spense, H; Aronsson, DD & Kilmer, N (1996) Mechanical modulation of 
vertebral body growth. Implication for scoliosis progression. Spine 21:1162–1167 

Taffs, LF; Magrath, DI & Lytton, NA (1979) Monkey scoliosis. Lancet 1:1078–1079 
Tanner, JM (1962) Growth at Adolescence. 2nd Edition ed.Oxford: Blackwell Scientific Publ 

Tanner, JM (1978) Foetus into Man. Physical Growth from Conception to 
Maturity.OBP London 

Tanner, JM & Davies, PS (1985) Clinical longitudinal standards for height and height 
velocity for North American children. J.Pediatr; 107: 317-29. 

Tanner, JM; Whitehouse, RH & Takaishi, M (1965) Standards from birth to maturity for 
height, weight, height velocity, and weight velocity: British children, 
Arch.Dis.Child 41: 454-71. 

Taffs, LF; Magrath, DI & Lytton, NA (1979) Monkey scoliosis. Lancet 1:1078–1079 
Taylor, JR (1983) Scoliosis and growth: patterns of asymmetry in normal vertebral growth. 

Acta Orthop Scand 54:596–602 
Tezuka, A (1971) Development of scoliosis in cases with congenital organ abnormalities of 

the brainstem. Tokushima J Exp Med 18:49–62 

www.intechopen.com



 
Recent Advances in Scoliosis 

 

22

Veldhuizen, AG (1985) Idiopathic scoliosis. A biomechanical and functional- anatomical 
study. Thesis, University of Groningen, van Denderen 

Veldhuizen, AG; Baas, P & Webb, PJ (1986) Observations on the growth of the adolescent 
spine. J Bone Joint Surg Br 68:724–728 

Veldhuizen, AG & Scholten, PJM (1990) Flexibility in structural normal young females and 
in young females with idiopathic scoliosis. Clin Biomech 5:117–119 

Webb, PJ (1973) The effect of innervation, denervation and muscle type on the reunion of 
skeletal muscle. Br J Surg 60: 180–182 

Webb, PJ (1981) Electromyographic changes in scoliosis. Presented at the British- 
Scandinavian Joint Scoliosis Meeting of the British Scoliosis Society, Jersey 

Wever, DJ; Veldhuizen,AG; Klein, JP; Webb, PJ; Nijenbanning, G; Cool JC& v Horn, JR 
(1999) A biomechanical analysis of the vertebral and rib deformities in structural 
scoliosis. Eur Spine J 8:252–260 

Wever, DJ; Tonseth, KA; Veldhuizen, AG; Nijenbanning, G; Cool, JC & v Horn, J (2000) 
Curve progression and spinal growth in brace treated idiopathic scoliosis. Clin 
Orthop Res 377, 169-179 

Whitecloud, TS; Cook, SD; Burke, SW; Leinhardt, T & Barrack, RL (1984) Upper extremity 
proprioceptive deficit in idiopathic scoliosis. Presented at the Nineteenth Annual 
Scoliosis Research Society Meeting, Orlando, Florida 

Wiener-Vacher, SR & Mazda, K (1998) Asymmetric otolith vestibulo-ocular responses in 
children with idiopathic scoliosis. J Pediatr 132: 1028-32 

Willner, SA (1974) Study of growth in girls with adolescent structural scoliosis. Clin Orthop 
101: 29–135 

Willner, SA (1975) Study of height, weight and menarche in girls with idiopathic structural 
scoliosis. Acta Orthop Scand 46:71–83 

Willner, SA (1975) The proportion of legs to trunk in girls with idiopathic scoliosis. Acta 
Orthop Scand 46:84– 89 

Wong, VC; Yak, ACMC; Low, WD; Chin, NK & Lisowsky, FK (1980) Ultrastructural changes 
of the back muscles in idiopathic scoliosis. Spine 2: 251–260 

Yarom, R & Robin, GC (1979) Studies on spinal and peripheral muscles from patients with 
scoliosis. Spine 4:12–21 

Yasui, S & Young, LR (1976) Eye movements during and after image tracking under 
sinusoidal and random vestibular stimulation. In: Monty RA, Senders JW (eds) Eye 
movements and psychological process. Erlbaum, New Jersey, 33–37 

Yekutiel,M; Robin, GC & Grimby, G (1981) Proprioceptive function in children with 
adolescent idiopathic scoliosis. Spine 6:560–566 

Ylikowski, M (1993) Spinal growth and progression of adolescent idiopathic scoliosis. Eur 
Spine J 1:236– 239 

Young, LR (1977) Pursuit eye movement – what is being pursued? In: Baker R, Berthoz A 
(eds) Control of gaze by brainstem neurons. Elsevier/ North Holland, Amsterdam, 
29–36 

Yrjonen, T & Ylikoski, M (2006) Effect of growth velocity on the progression of adolescent 
idiopathic scoliosis in boys. J.Pediatr.Orthop.B; 15:311-5. 

Zetterberg, C; Bjork, R; Ortengren, R & Andersson, GBJ (1984) Electromyography of the 
paravertebral muscles in idiopathic scoliosis. Acta Orthop Scand 55:304–309 

www.intechopen.com



Recent Advances in Scoliosis

Edited by Dr Theodoros Grivas

ISBN 978-953-51-0595-4

Hard cover, 344 pages

Publisher InTech

Published online 09, May, 2012

Published in print edition May, 2012

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

This book contains information on recent advances in aetiology and pathogenesis of idiopathic scoliosis, for

the assessment of this condition before treatment and during the follow-up, making a note of emerging

technology and analytical techniques like virtual anatomy by 3-D MRI/CT, quantitative MRI and Moire

Topography. Some new trends in conservative treatment and the long term outcome and complications of

surgical treatment are described. Issues like health related quality of life, psychological aspects of scoliosis

treatment and the very important "patient's perspective" are also discussed. Finally two chapters tapping the

untreated early onset scoliosis and the congenital kyphoscoliosis due to hemivertebra are included. It must be

emphasized that knowledgeable authors with their contributions share their experience and enthusiasm with

peers interested in scoliosis.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

F.H. Wapstra and A.G. Veldhuizen (2012). Hypothesis on the Pathogenesis of Idiopathic Scoliosis, Recent

Advances in Scoliosis, Dr Theodoros Grivas (Ed.), ISBN: 978-953-51-0595-4, InTech, Available from:

http://www.intechopen.com/books/recent-advances-in-scoliosis/hypothesis-on-the-pathogenesis-of-idiopathic-

scoliosis



© 2012 The Author(s). Licensee IntechOpen. This is an open access article

distributed under the terms of the Creative Commons Attribution 3.0

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.


