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1. Introduction  

Leishmaniasis causes human suffering on a global scale and there are more than 12 

million current cases with 2 million additional cases annually. There is a serious threat to 

get infected cases of 350 million in endemic areas specifically in South East Asia. The 

epidemiological studies revealed that there are  20 protozoan parasite species of the genus 

Leishmania known to cause leishmaniasis in humans (Table 1)(WHO 2004). Leishmaniasis 

is prevalent in tropical and subtropical regions and endemic in more than 88 countries 

where annually 2 million new cases are reported. The geographic distribution of each 

Leishmania species affects the type of disease that occurs in each region of the world. 

Visceral leishmaniasis (VL; commonly known as kala-azar) is caused by Leishmania 

donovani in South Asia and Africa, while Leishmania infantum causes VL in the 

Mediterranean, the Middle East, Latin America and parts of Asia too (Table 2)(WHO 

2010). Other mammals can also be infected with Leishmania spp., dogs develop canine 

visceral leishmaniasis (CaVL) and they serve as an important parasitic reservoir in these 

regions. Cutaneous leishmaniasis (CL) is caused by L. major in Africa, the Middle East and 

parts of Asia, by Leishmania tropica in the Middle East, the Mediterranean and parts of 

Asia, and by Leishmania aethiopica in parts of Africa. Many different species may be 

involved in the Americas, where CL can be found throughout South America and as far as 

Mexico in the north (Table 1 and 2). Infection have also been reported in Canada and the 

US. Australia is free of Leishmania spp. but infection among local animals like captive 

kangaroos, wallabies and other marsupials have been reported recently and there are 

chances of transmission of this disease to human through infected meat and also due to 

close proximity with these native animals (Gelanew, Kuhls et al. 2010).  
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Old world, subgenus Leishmania 
 

Visceral leishmaniasis   Leishmania donovani, L. infantum 

Cutaneous leishmaniasis   L. major, L. tropica, L. aethiopica 

New world, subgenus Leishmania 
 

Visceral leishmaniasis   L. infantum 

Cutaneous leishmaniasis   L. infantum, L. mexicana, L. pifanol, L. amazonensis 

Diffuse cutaneous leishmaniasis  L. mexicana, L. amazonensis 

New world, subgenus Viannia 
 

Cutaneous leishmaniasis   L. braziliensis, L. guyanensis, L. panamensis,   
    L. peruviana 

Mucocutaneous leishmaniasis L. braziliensis, L. panamensis 

 
 

Table 1. Main species of Leishmania  that affect humans. 

2. Immunology of leishmaniasis 

Leihmaniasis is caused by one of several species of Leishmania. The clinical spectrum 
depends upon both the parasite species and the host’s immune response.  Some Leishmania 
spp. cause cutaneous, mucocutaneous or diffuse cutaneous leishmaniasis whereas others 
may disseminate to internal organs such as the liver, spleen and bone marrow to cause 
visceral leishmaniasis. The main species of Leishmania  that affect humans are given Table 
1&2. 

Leishmania parasite exists in two different morphological forms i.e. promastigotes 

(flagellate form) and amastigote (aflagellated form). Promastigotes develops inside the 

midgut of sandfly and become infective, non-dividing metacyclic promastigotes which are 

located near stomodeal valve (an invagination of the foregut into midgut). During blood 

feeding metacylic promastigotes are regurgitated along with immunomodulatory 

parasite-derived proteophosphoglycans and various salivary components. The metacyclic 

promastigotes are rapidly phagocytosed by one of several possible cell types that are 

found in the local environment. The various cell types may include neutrophils, tissue-

resident macrophages or dendritic cell (DC) or monocyte derived DCs (moDCs). After 

establishing an intracellular niche, metacyclic promastigotes are transformed to non 

motile amastigote form. These amastigotes replicate within the host cells, which rupture 

to release too many amastigotes, allowing reinfection of phagocytes. The transmission is 

complete when infected phagocytes are taken up by another sandfly with the blood meal 

and amastigotes then convert into promastigotes in the sandfly midgut. (Fig 1: Life cycle 

of Leishmania parasite)  
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Disease Leishmania 
sp.(CFSPH 2009) 

Geographical burden 

Cutaneous Leishmaniasis 
(CL) 

L. mexicana 
complex (ZCL) 

Argentina, Belize, Bolivia, Brazil. Colombia, Costa Rica, 
Ecuador, French Guiana, Guatemala, Mexico, Peru, 
Suriname, USA, and Venezuela 

L. tropica complex 
(ACL) 

Afghanistan, Azerbaijan, India, Iran, Iraq, Israel, 
Morocco, Pakistan, Syria, Turkey, and Uzbekistan 

L. major complex 
(ZCL) 

Afghanistan, Algeria, Azerbaijan, Burkina Faso, 
Cameroon, Chad, Egypt, Ethiopia, Gambia, Georgia, 
Ghana, Guinea Bissau, India, Iran, Iraq, Israel, Jordan, 
Kazakhstan, Kenya, Kuwait, Libya, Mali, Mauritania, 
Mongolia, Morocco, Niger, Nigeria, Oman, Pakistan, 
Saudi Arabia, Senegal, the Sudan, Syria, Tunisia, 
Turkey, Turkmenistan, Uzbekistan, and Yemen 

L. aethiopica 
complex (ZCL) 

Ethiopia, Kenya, and Uganda 

L. brazilensis 
complex (ZCL) 

Argentina, Belize, Bolivia, Brazil. Colombia, Costa Rica, 
Ecuador, French Guiana, Guatemala, Honduras, 
Mexico, Nicaragua, Panama, Paraguay, Peru, and 
Venezuela 

L. guyanensis 
complex (ZCL) 

Argentina, Belize, Bolivia, Brazil. Colombia, Costa Rica, 
Ecuador, French Guiana, Guatemala, Guyana, 
Honduras, Nicaragua, Panama, Peru, Suriname, and 
Venezuela 

 

Mucosal/mucocutaneous 
Leishmaniasis (ML) 

L. braziliensis 
complex 

Argentina, Belize, Bolivia, Brazil. Colombia, Costa Rica, 
Ecuador, French Guiana, Guatemala, Honduras, 
Mexico, Nicaragua, Panama, Paraguay, Peru, and 
Venezuela 

L. guyanensis 
complex 

Colombia, Costa Rica, Ecuador, Guatemala, Honduras, 
Nicaragua, and Panama 

 

Visceral Leishmaniasis 
(VL; Kala-azar) 

L. donovani 
complex (AVL, 
ZVL) 

Afghanistan, Albania, Algeria, Argentina, Armenia, 
Azerbaijan, Bangladesh, Bhutan, Bolivia, Bosnia & 
Herzegovina, Brazil, Bulgaria, Chad, Central African 
Republic, China, Colombia, Croatia, Cyprus, Djibouti, 
Egypt, El Salvador, Eritrea, Ethiopia, France, Gambia, 
Georgia, Greece, Guatemala, Honduras, India, Iran, 
Iraq, Israel. Italy, Jordan, Kazakhstan, Kenya, 
Kyrgyzstan, Lebanon, Libya, Macedonia, Malta, 
Mauritania, Mexico, Monaco, Montenegro, Morocco, 
Nepal, Nicaragua, Oman, Pakistan, Paraguay, Portugal, 
Romania, Saudi Arabia, Senegal. Slovenia, Somalia, 
Spain, Sri Lanka, the Sudan, Syria, and Yemen 

 

Post-Kala-azar Dermal 
Leishmaniasis (PKDL) 

L. donovani 
complex 

Bangladesh, China, Nepal, India, Iran, Iraq, Kenya, 
Pakistan, the Sudan 

Table 2. Disease phenotype and geographical burden attributed to various Leishmania 
species (WHO 2010). 
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Fig. 1. Life cycle of Leishmania parasite. 

3. Host cells for Leishmania parasites 

Leishmania spp. is an obligate intracellular pathogen which mainly infects macrophages. 
Recent studies have shown that it can infect multiple cell types. Neutrophils have been 
regarded as Trojan Horses which help promastigotes to establish intracellular niche in 
macrophages without triggering their antimicrobial defences. The promastigotes are 
phagocytosed by neutrophils and they reside in their phagosomes. They become phagocytic 
meal for the macrophages when undergo apoptosis. Since these apoptotic bodies are 
phagocytosed through receptor mediated pathways that fail to trigger antimicrobial 
defences.(Ravichandran and Lorenz 2007) The neutrophils are attracted at local site of 
sandfly bite due to alarmins(IL-33,IL1┚,high mobility group protein B1-HMGB1), which are 
endogenous molecules that provide signal of tissue damage.(Haraldsen, Balogh et al. 2009) 
Mononuclear phagocytes which are infected with Leishmania parasites also produce 
various chemokines which  help in recruitment of neutrophils.(Lopez Kostka, Dinges et al. 
2009; Xin, Vargas-Inchaustegui et al. 2010) 

Leishmania promastigotes have a dense covering of glycocalyx which is attached to the 
plasma membrane with the help of GPI (glycophosphoinositol). Lipophosphoglycan (LPG) 
is an important molecule which promotes the infectivity of the parasite in mammalian host. 
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It is a long phosphoglycan molecule having repeated sugar residues, glycan side chains and 
a capping oligosaccharide. It shows a great variability in its structure which helps in 
immune evasion. Another important surface glycoprotein is zinc metalloproteinase(GP-63) 
which acts as a virulence factor (Gomez, Contreras et al. 2009). Leishmania donovani 
promastigotes stimulate neutrophil extracellular traps (NETs) by a LPG independent 
pathway (Gabriel, McMaster et al. 2010). These NETs are filamentous DNA which are 
decorated with antimicrobial peptides. 

Though the neutrophils play an important role but mononuclear phagocytes are equally 
essential for the replication and long term survival of parasites. Dermal DCs uptake the 
parasite within first few hours of infection by pseudopodium formation (Ng, Hsu et al. 2008). 
As the number of resident macrophages and dendritic cells is limited in the skin, the parasitic 
multiplication is accompanied by the recruitment of monocytes (precursor of DCs) (Charmoy, 
Brunner-Agten et al. 2010). Infected inflammatory moDCs may facilitate parasite to reach the 
draining lymph node. Leishmania parasite can hide itself in skin and lymph node fibroblasts. 

In human neutrophils, phagosomes containing promastigotes fuse with 
myeloperoxidase(mpo) containing primary granules. It is an additional fusion of phagosome 
with tertiary and specific granules which lead to parasite degradation. These tertiary and 
specific granules are responsible for acidification and superoxide generation (Fig 2). 

 

Fig. 2. Different cell types involved in Leishmaniasis and fate of phagosome. Metacyclic 
promastigotes are deposited in the dermis and taken up by various cells like neutrophils, 
monocyte derived dendritic cells, macrophages. Small GTPase RAB 7 helps in lysosomal 
fusion and its degradation. This fusion is inhibited in immature dendritic cells. This could be 
a mechanism to ensure the transport of live parasites to lymphnodes. Adapted from (Kaye 
and Scott 2011). 
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Inside macrophages parasite containing phagosomes mature to form phagolysosome but 
promastigotes inhibit this process. Lysosomal-associated membrane protein 1 (LAMP 1) and 
LAMP 2 are found in phagosomes containing Leishmania promastigotes in both immature 
DCs and mature DCs. Maturation of parasite containing phagosomes is arrested at late 
endosomal stage. Fusion of lysosome occurs with the help of GTPase RAB7 which is 
observed in mature DCs only. Thus, inhibition of RAB7 recruitment could be a mechanism 
used by Leishmania to transport the live parasites safely to lymph nodes (Lippuner, Paape et 
al. 2009). 

LPG also provides an opportunity for the parasite to survive inside phagosomes by altering 
acidification (Vinet, Fukuda et al. 2009). Integration of LPG into phagosome membrane 
leads to extrusion of synaptotagmin V, which helps in acidification of pagosome by 
recruiting vesicular portion of ATPase. Thus, LPG-deficient parasites die rapidly before they 
fully adapted to an intracellular lifestyle. 

Size of the parasite containing phagosomes also helps in parasite survival. Larger the size 
more is the dilutional effect on lesihmanicidal factors like nitric oxide. Lysosomal size is 
regulated by a Beige protein; also known as lysosomal trafficking regulator (LYST). 
Mutations in LYST gene (Chediak-Higashi syndrome) leads to increase in size of lysosomes 
whereas induction of this gene (Leishmaniasis) leads to decrease in size of lysosomes. Thus, 
LYST behaves as an inducible innate response gene during Leishmaniasis, leading to 
increased susceptible to killing by nitric oxide (Wilson, Huynh et al. 2008). 

Iron has an important role in survival of Leishmania parasite as it is used by amastigotes 
(Huynh and Andrews 2008). There is an efflux pump present in phagosomal membrane 
which translocates Fe2+ and Mn2+ ions into the cytosol and thus limits iron availability to the 
parasite (Blackwell, Goswami et al. 2001). To overcome this decrease in iron availability,  
there occurs an upregulation of iron transporters, after its entry into macrophages. Thus 
intra-phagosomal competition for iron leads to activation of cytosolic iron sensors which 
helps in increased production of iron-binding protein transferrin and transferrin-mediated 
iron uptake (Das, Biswas et al. 2009). 

Lipid microdomains present on macrophage surface helps the promastigotes of Leishmania 
to enter into macrophages (Fig 3). It also directs the entry of various virulence factors such 
as major surface protein also known as GP63 (Joshi, Rodriguez et al. 2009). These virulence 
factors can also be transferred to the macrophages by parasite-produced exosomes 
(Silverman and Reiner 2010). When promastigote enters into the phagosome, LPG inserts 
itself into lipid rafts and inhibits phagosome-lysosome fusion (Winberg, Holm et al. 2009). 
The inhibition of fusion is accompanied by accumulation of periphagosomal filamentous 
actin (F-actin) near lipid microdomains. Various virulence factors also use lipid 
microdomains to channel themselves into cytoplasm of macrophages. Altered lipid rafts 
may also be responsible for defective antigen presentation and CD40 signalling, MHC class 
II, major histocompatibility complex class II.  

Leishmania is known to activate various inhibitor molecules that inhibit intracellular 
signaling spathways such as a  negative regulatory molecule is the PTP SHP-1 (Src 
homology 2 domain containing tyrosine phosphatase)(Yi, Cleveland et al. 1992). SHP-1 is 
responsible for the negative regulation of many signaling pathways (Gregory and Olivier 
2005). The majority of documented SHP-1effects are the result of the inhibition by  
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Fig. 3. Lipid microdomains, Leishmania parasite and macrophages. Role of lipid 
microdomains in transporting parasite and its virulence factors inside macrophages. Altered 
lipid domains by lipophosphoglycan (LPG) inhibits phagosome-lysosome fusion and also 
responsible for defective antigen presentation and CD40 signalling, MHC class II. Adapted 
from (Kaye and Scott 2011). 

dephosphorylation of various kinases and their signaling pathways (Frearson and 

Alexander 1997). SHP-1 plays a vital role in limiting the activation of the JAK/STAT 

pathways following cytokine receptor stimulation. SHP-1 is known to be activated by MSP 

(major surface protein, GP63). Leishmania spp. contains multiple MSPs and can be found on 

the promastigote surface as well as in the parasite cytoplasm. Surface MSP is involved in 

parasite development within sandfly and the cytoplasmic MSP which is in preformed form 

is ready to use by the mammalian host (Yao, Donelson et al. 2007). This action is analogous 

to various effectors that are used by type III secretion system in bacteria which behaves like 

syringe and needle to inject various factors into cells (Winnen, Schlumberger et al. 2008). 

SHP-2 also known as PTPN 11 also shares many downstream targets with SHP-1 and 

provides anti-leishmanial immunity. The first line anti-leishmanial drug (sodium 

stibogluconate) also targets SHP-1 at concentrations that are used for chemotherapy in 

humans (Pathak and Yi 2001). 

Another mechanism used by Leishmania parasite when inside the macrophages is by 
interference with host cell signalling at the level of macrophage protein C (PKC)(Olivier, 
Baimbridge et al. 1992). After initial contact with the target cells Leishmania parasite leads to 
leads to transient activation of MAPK and NF-kB. These signalling pathways lead to 
stimulation of cytokines and chemokines required for the efficient control of invading 
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pathogen. Thus, amplitude and duration of this immune response must be maintained 
under strict control to avoid harmful effects on host itself. Important mechanism by which 
cells protect themselves is by developing refractoriness state to repeated stimulation. It is 
well known that prolonged stimulation of toll like receptors and macropahges by microbial 
components such as LPS (lipopolysaccharide), lead these cells to hyporesponsiveness to the 
same stimulus (Ben-Othman, Guizani-Tabbane et al. 2008). This phenomenon is termed as 
LPS tolerance similar phenomenon of and similar hyporesponsiveness is seen in 
macrophages infected by L. major promastigotes. Leishmania parasite is able to induce a state 
of tolerance which correlates with a blockade of intracellular MAPK and/or NF-kB 
signalling pathway (Ben-Othman, Guizani-Tabbane et al. 2008). 

Type 1 interferon response is usually associated with viral infections but their role in 
leishmaniasis is increasingly becoming important. Such response has been seen in infection 
with Leishmaniasis, which induces the expression in macrophages of PKR, a protein kinase 
that is activated by double stranded RNA. PKR appears to promote parasite survival 
through induction of the macrophage-deactivating cytokine IL-10 (Pereira, Teixeira et al. 
2010). 

CD4+TH1 cells are important for the control of Leishmania infections, owing their ability to 
make IFN┛, which activates macrophages and DCs, leading to parasite death (Fig 4). CD8+ T 
cells are known to provide immunity in visceral leishmaniasis and play an important role in 
resistance to reinfection (Muller, Kropf et al. 1993). CD8+ T cells are not always associated 
with disease resolution as seen in patients infected with L. braziliensis. These cells are 
correlated with disease progression when they express the granule-associated serine 
protease granzyme B. The factors that determine when CD8+ T cells are protective and when 
they promote disease remain puzzle to the investigators. Chronicity of infection with L. 
donovani appears to be caused by depletion of CD8+ T cells (Joshi, Rodriguez et al. 2009). 
Activation of CD8+ T cells depend upon dermal DCs and CD8+ T cells activated during 
Leishmaniasis infections can provide increased resistance to previously encountered 
pathogens. 

Inspite of robust immune response, small number of parasites persist following disease 
resolution. The production of IL-10 dampens the immune response and allows the some 
parasites to escape destruction. The IL-10 is produced by a variety of cells following 
Leishmanial infection, such as regulatory T cells, T helper 1 cells, CD 8+ T cells, B cells, 
natural killer cells, DCs, macrophages and neutrophils. CD8+CD40+ T cells may act against 
regulatory T cells, limiting the production of IL-10 during the early phase of infection, but 
themselves become susceptible to IL-10 as the infection progresses (Belkaid, Piccirillo et al. 
2002; Charmoy, Megnekou et al. 2007; Maroof, Beattie et al. 2008). Exactly how these 
immune mechanisms operate still remains unanswered and is an active area of research. 

Dramatic remodelling occurs when leishmaniasis involve infection of lymphoid tissues like 
spleen and lymph nodes. Immune suppression occurs due to loss of architectural integrity. 
Interventions which can restore tissue microarchitecture can have important immune 
restorative functions. 

A concept of concomitant immunity has been proposed in Leishmaniasis. It is a situation in 

which immunological resistance to reinfection co-exists at the same time as persistence of 

the original infection. The T cells which contribute to such immunity include CD4+T cells  
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Fig. 4. Cellular components of immune response. Control of response is produced by IL 10, 
produced by different cell types. Effector cells produce interferon-┛ which mediate parasite 
killing. 

with a phenotype of central memory T cells, effector T helper type 1 cells, and resting 
effector T helper type 1 cells. CD8+ T cells are important in providing resistance to 
reinfection. Till date no successful vaccine has been developed but recent studies have 
shown that most protective CD4+ T cells are those which are multifunctional, capable of 
producing IFN┛, IL-2 and TNF. IL-10 appears to limit the generation of these protective T 
cells during vaccination (Kedzierski 2010). In future, the application of genomic approaches 
and study of host factors will lead to a better understanding of pathogenesis and 
immunology related to leishmaniasis. Further studies are required to investigate 
unanswered questions related to innate and T cell response in leishmaniasis. 

4. Leishmania vaccines 

WHO has classified Leishmaniasis is an emerging disease. The available treatment options 
are various chemotherapeutic drugs which are not only costly but also have many adverse 
side effects. Safe and cost effective vaccine is a need of an hour. Various vaccine strategies 
have been tried but these are of a little hope. The classical vaccinology or first generation 
vaccines have been tried in the past which includes infectious material for inoculation, live 
attenuated parasites and killed parasites for vaccination. Leishmanization, was based on the 
fact that individual is refractory to reinfection after the lesions of primary illness heals. 
Initially, infectious lesion material was used but later it was replaced by culture of parasites 
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to inoculate uninfected individuals. This method was abandoned due to poor quality 
control, parasite persistence, emergence of HIV and ethical issues. Killed parasites replaced 
leishmanization, but they showed poor efficacy in clinical trials (Noazin, Modabber et al. 
2008). Second generation vaccines (modern vaccinology) using subunit vaccines, DNA 
vaccines and recombinant vaccines are being tried but their efficacy in field trials have not 
been reported. The major hurdle in vaccine designing is the translation of data from animal 
models to human disease, and the transition of laboratory experiments to field trials. Table 3 
summarizes the important vaccine candidates tested for the cure of leishmaniasis.   

Killed vaccines 

Vaccination trials in Brazil and Ecuador with killed Leishmania stocks have shown to provide 
immunity from natural infection. Killed vaccination induced Th1 type of immune response 
and delayed type of hypersensitivity skin test conversion can be used as a surrogate marker 
for protective immune response (Olivier, Baimbridge et al. 1992; Mendonca, De Luca et 
al.1995). 

Convit and colleagues used a combination of killed L. mexicana or L. braziliensis 
promastigotes and M. bovis BCG to induce the immunity against South American 
leishmaniasis. High cure rate have been documented with the induction of Th1 type of 
immune response (Castes, Moros et al. 1989; Convit and Ulrich 1993). Recombinant IL-12 
has been tried as an adjuvant  in monkeys to provide the immunity against cutaneous 
leishmaniasis using killed L. amazonensis (Kenney, Sacks et al. 1999)  

Live attenuated 

Live attenuated vaccines are well known for their better immunogenicity but there are 
chances of reverting back to virulent forms. However, recent advances in genomics have 
provided an opportunity  to manipulate the Leishmania genome by eliminating the virulent 
genes to produce the attenuated forms. Genes required for long term survival have been 
manipulated to produce the short lived forms in humans. In a mouse model, L. major 
parasites lacking the gene encoding for enzyme dihydrofolate reductase-thymidylate 
synthetase DHFR-TS have been produced to induce the  protection against infection with 
either L. major or L. amazonensis. Mutant lacking  genes  encoding for cysteine proteases cpa 
and cpb have also been studied. Thus, the use of attenuated organisms is very useful as it 
closely mimics to natural infection and can  lead to similar immune responses (Titus, 
Gueiros-Filho et al. 1995). 

Synthetic recombinant vaccines: 

These newer vaccines include recombinant DNA-derived antigens and peptides. The targets 

used as antigens may be species or life cycle stage specific. Recombinant antigens can be 

delivered as purified proteins, as the naked DNA encoding them, or as bacteria 

manufacturing the proteins of interest. These can be used as a potential vaccine candidate. 

Bioinformatics can be used to predict the immunogenic peptides which can be synthetically 

constructed. Though this approach sounds better but it suffers from many disadvantages 

such as the magnitude of the T-cell memory induced, the inability of all individuals in the 

population to respond to the peptide, and the high cost of production on large scale. Despite 

these limitations gp63 peptides have been successfully tested in animals (Campbell et.al 201; 

Carrión J. 2011). 
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Immunogens expressing Bacteria and Viruses as vaccines 

Leishmaniolysin or gp63 is the first recombinant antigen to be used against as a vaccine 
candidate against  leishmaniasis (Chang, Chaudhuri et al. 1990). The surface expressed 
glycoprotein leishmaniolysin (gp63) is one of the parasite receptors for host macrophages 
and mutants lacking this protein are avirulent. However, the T-cell responses to gp63 have 
been variable in animals and human studies (Olobo, Anjili et al. 1995). Parasite surface 
antigen have also been tested as a vaccine candidate. gp46/M2 or parasite surface antigen 2 
(PSA-2) is expressed in all Leishmania species except L. braziliensis. Thus, providing an 
opportunity for developing pan-Leishmania vaccine (Handman, Symons et al. 1995). The 
leishmanial eukaryotic ribosomal protein (LeIF), a homologue of the ribosomal protein 
cIF4A, is an another important vaccine candidate as it can  induce Th1-type cytokines in 
humans (Skeiky, Coler et al. 2002). This protein is highly conserved in evolution, but 
parasite specific epitopes can be used for  vaccination, so that autoimmune responses can be 
avoided.  Other vaccine candidates are amastigote specific proteins, such as A2, P4, and P8 
of L. mexicana pifanoi (Soong, Duboise et al. 1995). Another vaccine candidate is a flagellar 
antigen, lcr1, from L. donovani chagasi (Streit, Recker et al. 2000) but its role in humans is 
debatable as asmastigote forms  have a rudimentary flagellum.  

 
 
 

Candidate vaccine Advantages Disadvantages 

Whole killed Cost effective 
Good safety profile in South 
America and Sudan 

Quality control, difficult to 
standardize, variable potency 

Surface expressed glycoprotein 
leishmaniolysin (gp63) 

Good results in animals Poor T cell response in humans 

GPI-anchored membrane protein 
gp46 or Parasite Surface Antigen 
2 (PSA-2) 

Native polypeptides derived 
from promastigotes provide 
protection in mice  

Recombinant protein derived 
from either promastigotes or 
amastigotes protein showed poor 
efficacy 

Leishmania homologue for 
receptors of activated C kinase 
(LACK) 

Promote IL-4 secreting T cells 
(Th2 responses) 

Fails to provide protection against 
visceral leishmaniasis. 

Leish-111f: Single molecule 
constructed by fusion of three 
molecules: 
 L. major homologue of eukaryotic 
thiol-specific antioxidant (TSA 
L. major stress-inducible protein-1 
(LmSTI1)  
L. braziliensis elongation and 
initiation factor (LeIF) 
Leish-110f: improved version of 
Leish-111f 

Provides protection in mice 
against L. major and L. 
amazonensis infection 
Provides partial protection 
against visceral leishmaniasis in 
animal models 
Phase I and II clinical trials done 
 

Failed to protect dogs against 
infection 

Sandfly saliva components: 
maxadilan, 15 kDa protein, SP15, 
LJM19 

LJM 19: protection in hamsters 
Dogs: IgG2 and IFN-┛ 

Experimental stage 

 

Table 3. Summary of important vaccine candidates for leishmaniasis. 

www.intechopen.com



 
Recent Advances in Immunology to Target Cancer, Inflammation and Infections 

 

490 

DNA vaccine 

Vaccinations with DNA encoding gp63and PSA-2 have been tried. It has shown a good  

protection in animal models which is accompanied by Th1 immune responses (Gurunathan, 

Sacks et al. 1997; Walker, Scharton-Kersten et al. 1998). The genes encoding the vaccine 

candidate is cloned into mammalian expression vector, and the DNA is injected directly into 

muscle or skin. The plasmid DNA is taken up by cells and translocated to the nucleus, 

where it is transcribed into RNA and then translated in the cytoplasm. It has shown to 

induce both CD4+ and CD8+ T cell responses and they also ensure proper folding of proteins. 

Another advantage is that production on large scale is cheap and DNA is highly stable, so 

does not require cold chain. Research is still going on for developing a vaccine which can 

provide life long immunity without any side effects. Newer adjuvants are also being tried. 

Till date no successful vaccine has been developed but recent studies have shown that most 

protective CD4+ T cells are those which are multifunctional, capable of producing IFN┛, IL-

2 and TNF. IL-10 appears to limit the generation of these protective T cells during 

vaccination (Kedzierski 2010). In future, the application of genomic approaches and study of 

host factors will lead to a better understanding of pathogenesis and immunology related to 

leishmaniasis. Further studies are required to investigate unanswered questions related to 

innate and T cell response in leishmaniasis. 

5. Conclusions 

Recent studies have provided new and important information on the biology of 

Leishmania. The Leishmania genome sequence is now available as well as new methods for 

its manipulation. We have learned that Leishmania can exchange genetic material during 

its journey in the sand fly, and we understand better the molecular mechanisms that allow 

Leishmania promastigotes and amastigotes to survive in their respective environments. 

Recent investigation have provided new insight into the role of cells of the innate 

immunity, such as neutrophils, monocytes, NK, and DCs, as well as ‘non-immune’ cells 

such as keratinocytes. Now we have better understand how Leishmania evade the 

mammalian immune response and avoid the development of sterilizing immunity, 

therefore increasing its chances to secure transmission to a new host. The identification of 

a greater range of antigen candidates with broad species coverage, and a greater 

understanding of the immunology of protective immunity, these arguments should be 

balanced by the need to develop a stronger base in clinical vaccinology. This end is only 

likely to be accomplished by an accelerated programme of well-defined clinical trials, and 

in this context the use of therapeutic vaccine trials as a first step has much to offer. New 

generation vaccines hold promises to control leishmaniasis and data suggest that 

prophylactic vaccination in humans and dogs could generate protection and may able to 

interrupt transmission, ultimately reducing disease incidence. These new generation 

vaccines in a therapeutic setting as an adjunct with various chemotherapies have 

demonstrated safety and efficacy against various manifestations of Leishmania infection. 

New generation’s refined antigens and adjuvants for vaccines may provide the best 

range of vaccines aimed at controlling disease incidence and severity to Leishmania 

infection.  
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