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1. Introduction 

Twenty years ago, Farmer, Packard, and Perelson presented an elegant dynamical model [1] 
to study Idiotype Network theory [2-19], in which they showed that every molecular and 
cellular binding site (cell receptor) can be modeled by binary bit-strings of length ℓ. In such a 
model, an antibody molecule can always recognize an antigen when there is 
complementarity between their bit-strings. The coincidence of antigens and lymphocyte 
receptors (lock-and-key model) is determined by considering the number of complementary 
bits [8,20]. For instance, if a B lymphocyte is represented by a binary string 00010101 (ℓ = 8) 
and an antigen is represented by the 11101010 binary string, the immune response is 
activated (Fig. 1). The match between bit-strings does not need to be perfect, however; some 
bit positions are allowed in which two strings differ. These differences between strings 
(mismatches) reflect the degree of affinity between the entities of the immune system in 
mammals and determine the quality of the response. 

 

Fig. 1. Pictorial representation of the binding site (cell antigen) by means of a bit-string 
frame [6]. 

In another work, Lagreca et al. (2001) [21] also proposed a dynamic model that was based on 
the recognition of shapes or patterns using bit-strings, but used the iterative solution of a 
coupled map system that enabled the treatment of high dimensions. In the model created by 
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Lagreca et al. (2001), the B cell and the antibody populations are treated as a clone pools 
because their receptors are represented by the same bit-strings. Because a bit-string can be 
considered as the binary representation of an integer, the model indexes each clone to an 
entire σ, and the temporal evolution of the populations is described by the N (σ, t) 

concentration. The model also considers a source term that simulates the role played by the 
bone marrow, where new bit-strings are presented. The death or depletion of clones occurs 
in two ways: 1) by means of natural death (apoptosis), described by the parameter d; and 2) 
by means of a general suppression mechanism, described by a Verhulst-like factor [22]. This 
factor is widely used in simulations of biological systems, because it limits the maximum 
population that can survive in a particular environment [22]. The Lagreca et al. model (2001) 

considers this maximum B cell population ( maxN ) to be the same for every clone, and the 

populations are normalized by the max( , ) ( , ) /y t N t N   function. 

Thus, considering a discrete temporal evolution, the following coupled map set proposed by 
Lagreca et al. [21] allows part of an adaptive immunological system to be simulated: 

( , 1) (1 ( , )).y t y t     

 


            


1

( , )
. (1 ) ( , ) (1 )( ( , ) ( , )) ( ( , ) ( , ) ,

( )

B

h F h i F i
tot i

y t
m d y t b a y t y t a y t y t

y t


        (1) 

where (1 ( , ))y t  is the Verhulst-like factor; yF (σ,t) describes the antigen population, 

characterized by a σ bit-string which, in this case, represents distinct antigenic determinants; 

σ represents the perfect complementary shape of σ; and i  are the nearest neighbors of  σ  

in a B-dimensional hypercube. The term m represents the population of cells produced by 

bone marrow; the (1-d) term represents the percentage of the lymphocyte population that 

survives a natural cell death (apoptosis); and the other terms describe the clonal 

proliferation y(σ,t) that occurs because of interaction with complementary B cells and/or 

antigens. 

The b parameter is a clonal proliferation constant (typically related to the mean number of 

new cells produced by the pre-existing cells), and ( )Toty t  is the total population, given by 

equation 2: 

      , ,tot Fy t y t y t


        (2) 

The parameter ha is the connectivity factor between a specific bit-string and the specular 

image of its neighbors. When ha = 0.0, only a perfect coincidence of complementary shapes 

is valid. When ha = 0.5, a bit-string can recognize equally both its own specular image and 

the nearest neighbors of its specular image. The temporal evolution of the antigen pool is 

defined by equation 3. 

 
1

1 1
B

F
F F h h i

tot i=

y (σ,t)
y (σ,t + ) = y (σ,t) k ( a )y(σ ,t) + a y(σ ,t) ,

y (t)

    
  

   (3) 
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where k is an antigen removal parameter that represents the interactions with the clonal 
populations. 

In fact, it is well-known that the soluble antibody population is one of the essential 
mechanisms of immunological response regulation [23-25]. However, despite the pioneering 
work of Lagreca et al. (2001) in developing a coupled map for studying the behavior of the 
mammalian immune system, their model did not consider these populations [1-6], which 
makes the model incomplete with respect to the regulation of the immune response by 
adaptive mechanisms. This omission opens up the possibility of extending their work by 
taking the soluble antibody populations into account. We have performed that work and 
present our immunological modeling and simulation findings in this paper. 

2. Materials and methods 

In this section, we briefly describe the Verhulst approach and provide details of an extension 
to the Lagreca et al. (2001) model, which includes an antibody variable to address the 
regulation of the structural mechanisms that are mediated by the immunoglobulin 
population. This variable was not considered in the simplified model proposed by Lagreca 
et al. [21]. 

2.1 The Verhulst approach 

Since the early nineteenth century, studies on population dynamics have been developed to 
identify possible nonlinear behaviors. One of the first efforts aimed at predicting biological 
population behavior was made by Pierre François Verhulst (1804-1849), a Belgian 
mathematician. He proposed a nonlinear model in which the death rate was proportional to 
the square of the number of individuals in the population. The model can be expressed by 
differential equations [26-30], as follows: 

 2dN
= AN BN

dt
   

where N is the number of individuals, and A and B are constants related to the growth rate 

and the population growth limitation, respectively. 

The Verhulst model was used again in 1976, by Robert May [27], to study insect population 

dynamics. In his experiments, he replaced the original differential method by what is now 

known as the map methodology, in which each value is obtained by its anterior value: 

N1 = AN0 – B N02 

N2 = AN1 – BN12 

Nn+1 = ANn – BNn2     

At the limit of saturation, ANmax – BNmax2 = 0, then Nmax = 0  or  Nmax = A/B.  

Solving 
21n+ n n máx

máx máx máx máx

NN N N
= A B

N N N N
 and inserting n

n
máx

N
x =

N
results in the following: 
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xn+1 = Axn – Bxn2.A/B. Defining the parameter A (birth rate) = r (control parameter), we 
obtain:                       

 xn+1=rxn(1– xn) ,  [0,1]nx   (4) 

In equation (4), known as a logistic map, the values for [0,1]nx   and r are dimensionless and 

represent population fractions as a function of each of the n iterations, respectively, while r 

is a constant that represents the population growth rate in each new iteration. The term (1– 

xn) is known as the Verhulst factor [21,31,32]. 

The bifurcation diagram of the logistic map is built by the iterative resolution of the logistic 
equation, starting with an arbitrary x0 initial value and choosing sequential values for the 

parameters r, r  [rmin ,rmax]. The bifurcation diagram of the logistic equation is shown in Fig. 
2. 

 

Fig. 2. Classical bifurcation diagram of a logistic map as a function of the parameter r [33]. 

In Fig. 2, the attractor is a fixed point up to the first bifurcation. For each bifurcation, there 
occurs a period of duplication before the system reaches the chaotic phase. However, to 
illustrate the dynamics of this simple model, it is important to show that, for r between 0 
and 1, the population death rate is not dependent on the initial population. With r between 1 
and 3, the population is prone to an attractor of a fixed point type. For r greater than 3.54, 
the population wiggles between values of 8, 16, 32, and so on. At approximately r=3.57, the 
end of the cascade duplication period occurs and chaos begins. From this value, small 
variations in the initial population produce very different results over time, which is the 
fundamental characteristic of chaos. For r greater than 4, the populations are outside the 
[0,1] interval. 

It is possible to demonstrate that the Lagreca et al. (2001) model for clonal populations 
reduces to equation 4 when there is no further exposure of the system to the antigens. This 
reduction occurs because, under this one condition, the additive term (m) in equation 1, 
which represents the bone marrow contribution for the immune repertoire, is very small 
when compared with the clonal proliferation parameter (b) [34,35]. A detailed 
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demonstration of this assertion is presented in subsection 3 of the section on the model 
parameters. 

2.2 Simulation model 

As in the Lagreca et al. (2001) model [21], our extended Ag-dependent model has molecular 

receptors of B cells that are represented by bit-strings with 2B of diversity, where B is the 

number of bits in the string. The individual components of the immune system represented 

in the extended model are B cells, antibodies, and antigens located at the vertices of 

hypercubes of size B. B cells (clones) are characterized by their surface receptors and are 

modeled by a binary bit-strings. The epitopes [1,8,17-19], which are portions of an antigen 

that can be connected by the B cell receptor (BCR), are also represented by bit-strings. The 

antibodies have receptors (paratopes) [1,8,17-19] that are represented by the same bit-string 

models as the BCR B cell that produced them. Thus, the new dynamic equations that 

describe the behavior of the adaptive immune system, taking into account the inclusion of 

antibody populations, are the following: 

  ( , )
( , 1) (1 ( , )) (1 ) ( , ) ,

( ) ha
tot

y t
y t y t m d y t b t

y t


    

        
  

,    (5) 

for a clonal population, with complementary shapes included in the term ( , )
ha t  , 

1

( , ) (1 )( ( , ) ( , ) ( , )) ( ( , ) ( , ) ( , ))
h

B

a h F A h i F i A i
i

t a y t y t y t a y t y t y t       


       . 

The clonal populations can range from the value generated by bone marrow (m) up to its 

maximum value (unity) because the Verhulst factor is a limiting factor [21,31,32]. 

In the model presented in this paper, the ( )Tot ty  term represents the sum of the components 

that belong to an adaptive subset of the immune system, as described in the introduction to 

this work. Such elements, when added to antibody populations, are expressed as bit-string 

concentrations. 

Therefore, the sum of every adaptive component considered by our model is given by 

equation (6). 

        , , ,tot F Ay t y t y t y t


          (6) 

The temporal evolution of the antigens can be defined by equation (7). 

 
1

( , )
( , 1) ( , ) (1 ) ( , ) ( , ) ( , ) ( , ) ,

( )

B
F

F F h A h i A i
tot i

y t
y t y t k a y t y t a y t y t

y t


     



               
  (7) 

The antibody population is described by a group of 2B variables, also defined by a B-
dimensional hypercube, interacting with the antigen populations of equation (8). 
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     
         

 1

, ,
, 1 , 1 , , ( , )

h

B
A

A A A h F h F i a
tot toti

y t y t
y t y t b a y t a y t k t

y t y t

 
     



 
      

 
  ,(8) 

where bA is the antibody proliferation parameter; and k is the parameter related to the 
antibodies and antigens that will be removed. 

In our model, equation 8, which considers the adaptive interactions that have been 

described in the specialized literature, is included. Thus, antibody proliferation is given by 

the recognition ( , ) ( , )A Fy t y t   [1,8,17-19]. The antibody population is regulated by the 

intersect ion of  ( , ) ( , )Ay t y t   [1 ,8 ,17-19] ,  ( , ) ( , )A Fy t y t   [1 ,8 ,17-19] ,  and  

( , ) ( , )A Ay t y t   [19,36]. In all cases, the connectivity between the first two neighbors was  

considered. The factors 
( , )

( )
F

TOT

y t

y t


and 

( , )

( )
A

TOT

y t

y t


also help to regulate the antigen and antibody 

populations, while the term 
( , )

( )TOT

y t

y t


is the corresponding clonal regulation factor involved 

in the formation of immunological memory. 

The role performed by the clonal regulation factor, in addition to helping with the B cell 
response regulation, is fundamental to the regulation of the memorization ability and clonal 
homeostasis [37-39]. The importance of the effect of the clonal regulation factor over 
immune system memory evolution is shown in Fig. 3. Three distinct situations are possible: 

1. antibody populations are included in the model (which corresponds to the model 
proposed in this work); 

2. antibody populations are not included in the model (which corresponds to the Lagreca 
et al. [21] model); 

3. memory expansion is not limited by the clonal regulation factor (which corresponds to 
the results obtained by P. G. Etchegoin [40]). 

Fig. 3 illustrates the situation in which growth capacity increases indefinitely, which is when 
the clonal regulation factor is suppressed in the modeling phase. This shows that clonal 
regulation can be fundamental to the immune system reaching clonal homeostasis. 

In the proposed Ag-dependent model, each bit-string is associated with an integer that is 

situated in an interval , 0 2 1BM   , and each represents a clonal population, antigen, 

or antibody located in the B-dimensional hypercube vertex. The neighbors i of a specific 

  or   are expressed by the Boolean functions (2 1 )i
i xor    or (2 1 )i

i xor   , 

respectively. The complementary way of obtaining   is obtained by M    [21]. 

An example of the way in which the B cell, antibody, or antigen populations are localized in 
3-dimensional space is shown in Fig. 4. 

For the cubic configuration in Fig. 4, the following algorithm describes how to obtain the 
first neighbors and the complementary shape of the B cell population identified by the 
integer 4  : 

- For a cubic configuration (B=3), there exists a repertoire containing 2 8B   integer 
numbers arranged in the cube vertex. These integer numbers represent the 8 different B 
cell populations; 
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Fig. 3. Capacity of immune system memory in three distinct situations. 

 

Fig. 4. Spatial arrangement of a B cell population that is identified by 4 integers. Antigens 
and antibodies also are spatially arranged in the same way, in various cubes. 
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- Each integer number M must be restrained in the interval 0 2 1BM   ; thus, each 

cube vertex is identified [16]; 
- With this condition, the smallest value of M is equal to 0 and the largest value is equal 

to 7. Consequently, the shape space S is equal to {0,1,2,3,4,5,6,7}; 
- To represent the reactions of the lock-and-key type described in the introduction, every 

cell population in a cubic configuration needs to be represented by 8 bit-strings; 

2
0 1 2

0 1 2
0

4 2 2 2 2 4i
i

i

a a a a


       

If, for example, 2 1a = , 1 0a = and 0 0a = , then in this case 4 in the decimal base corresponds 

to (1 0 0) in the binary base; 

- For the other 7 vertices of the cube: 

0 (000),       

1 (001),  
 

2 (010),    

3 (011),    

4 (100),     

 

7 (111);    

- For a lock-and-key reaction to occur, there must be another shape   that is complementary 

to 4  , i.e., M    [16,21]. Then, 2 1 7BM    and 4 7 4 3M         , or 

(0 1 1), in a binary base. This complementary shape is, in principle, an antigen population. 

However, based on Immune Network Theory, B cells also recognize antibodies and other 

complementary lymphocytes [1,8,17-19,36];                                                                   

- Last, search for the first neighbors of the complementary shape 3  . If  

(2 1 )i
i xor    [16,21], then, for B = 3 (i = 1,2,3), we get the following: 

1
1 (2 1 3) 2(010),xor     

2
2 (2 1 3) 0(000),xor       

3
3 (2 1 3) 4(100).xor     

In this example, a B cell population identified by 4   or (1 0 0) would have recognized an 

antigen population that is perfectly complementary and is identified by 3   (0 1 1). The 

antigen populations identified as the first neighbors for 3   are 0, 2, and 4 and can be 

recognized by the 4   B cell population, depending on the value of the connectivity 

parameter ha , which is included both in our proposed model and in the Lagreca et al. model [21]. 
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Also, for better visualization, we used a 3-dimensional spatial configuration. Similar 

constructions for this work were made for B-dimensional spaces. Therefore, equations (5) to 

(8) constitute a set of maps that describes the main interactions of the immune system 

between the entities that interact through the lock-and-key type of connection, in other 

words, adaptive immune system entities that self-recognize. Such an equation set is 

iteratively resolved, considering various initial conditions.   

2.3 Simulation dynamics 

In this section, we present the dynamics of the simulations that were used to reproduce the 

proposed experiments in silico, and we evaluate the behavior of the proposed model. 

To simulate the behavior of the immune system by means of the proposed mathematical 

model, we developed computational applications in the Fortran programming language 

(IBM’s Mathematical FORmula TRANslation System). The source code was compiled 

with GFortran (GNU Fortran Compiler) on a Linux Operating System platform. 

Simulations were performed by a 2 GHz processor, with 4 GB of random-access 

memory (RAM). 

To establish the relationship between antigen mutation and the memory of the lymphocyte 

population, we performed 3 in silico experiments with 30 samples , ( 1, )( 1, )j kE E j k    . 

The same parameters were used in every ( 1, )jE E j    experiment to represent identical 

individuals. The antigens were identified by the following expression:
 

, ( 1, ) ( 1, )( 1, )i j kV E V i E j k      , where the i, j, and k indexes describe the inoculation 

order, the experiment, and the sample, respectively. The number   is the number of 

inoculations in each experiment,   is the number of experiments, and   is the number of 

samples in each experiment. 

The antigen injection simulations were performed every 1,000 temporal steps (in 

arbitrary units – a.u.), representing the administration of a new antigen dose in a 

hypothetical mammal. In the first experiment, we injected 110 different antigen 

populations in the sample, in the second, 250, and, in the third, 350. To represent the 

mutation within a population of the same antigen, we used 10 different seeds for the 

pseudo-random number generator. In the first experiment, a seed was associated with 

each sample, and the same set of seeds was used to perform the other experiments. In 

this way, to represent the mutation, we considered that inoculated antigens in the same 

position belonged to the same species and underwent a mutation for each different 

sample. The difference between the samples is in the bit-string variation of the 

inoculated antigens, and the difference between the experiments is in the duration of 

the time steps. The design of the experiments and the antigen identification used in this 

work are shown in Fig. 5. 

In the schematic diagram shown in Fig. 5, the antigen (i.e., a virus strain) is identified as 
V1E12, which is the mutation of the antigen V1E11 (belonging to an antigen population of 
the same species), and the antigen V2E11 is different from the V1E11 antigen (which belongs 
to various antigen populations). 
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Fig. 5. In each experiment, different lifetimes were considered for individual hypothetical 
mammals. The lifetime (“lifespan”) for E1, E2, and E3 is 110000, 250000, and 350000 
respectively. 

2.4 Model parameters 

The following table shows the ranges for the parameters used in our simulations, based on 
the literature. 

 

Symbol Function Value used in the model 
Information obtained 
from the literature 

 d  Apoptosis 0.99 

De Boer et al. [41] (2001): 
0.95 
Bueno et al.[42] (1999): 0.95 
Lima et al. [43] (2007): 

0.95d >  

m
 

Source term 710 0.1if  p <
    0.0 0.1if  p   

Lagreca et al.[21] (2001): 
0.0005 
von Laera et al. [34] (2005): 
0.01 
Monvel et al.[38] (1993): 

0.0m   

b  Clonal proliferation 2.0 

De Boer et al. [41] (2001): 
2.5-3.0 
Utzny et al. [44] (2001): 2.0 
von Laera et al. [34] (2005): 
1.2 

k  
Removal of antibodies and 
antigens 

0.1 
von Laera et al. [34] (2005): 
0.01-0.1 

Table 1. Parameters used in the proposed model. 

2.4.1 The apoptosis clonal parameter (d) 

In the extended model presented in this paper, d  represents the fraction of cells that is 

subjected to natural death (apoptosis) or programmed death; thus, 1s d  , where 1s d   
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is the fraction of cells that avoids apoptosis. In the literature, the apoptosis of lymphocytes is 
typically assumed to occur in percentages not less than 95% [41.43]. For the simulations 
developed in this study, the natural death parameter was fixed at 0.99 (99%). To give an idea 
of the effect of varying this parameter, the performances of the model for two different 
apoptotic events and for the first inoculation antigen were compared (See Fig. 6). 

 

Fig. 6. Evolution of populations of antigens, B lymphocytes, and antibodies with respect to 

natural death parameter d = 0.99 and d = 0.95. The parameter 100Ab =  and initial antigen 

dosing 0.5inicialAg = . The virgin state of the system is the range of 0 to 1000. 

2.4.2 The source term (m) 

The source term m simulates the stochastic behavior of the bone marrow in the production 
of new lymphocytes [21.38]. 

In the model described in this work, if the pseudo-random number generator returns a 

value less than o r equal to 0.1p  , the source term takes the value 710m  , because m is 

experimentally small compared with the levels of lymphocytes produced in the immune 

response [34,35,38]. If the generator returns values greater than 0.1p  , the source term 

takes the value 0.0m   [21]. 
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2.4.3 The clonal proliferation parameter (b) 

Both the pioneering work and the recent work in the literature on theoretical immunology 
present results on the dynamics of the immune system and the search for attractors of the 
fixed point type to determine in machine clonal homeostasis (equilibrium) in the virgin state 
(antigen without inoculation) and in the excited state (when an antigen is recognized by 
some clonal population) [37,38,40]. 

The condition 0F Ay y   is satisfied when the virgin state of the immune system is 
considered, i.e., without the presentation of antigens, no antibodies are produced. Also, 
considering that the system only allows high-affinity connections (connections between 
perfectly complementary shapes), the connectivity factor 0ha  . 

In the virgin state, the sum total of the immune populations is restricted to B lymphocytes: 

( ) [ ( , ) ( , ) ( , )] ( , )Tot F Ay t y t y t y t y t
 

         

Hence, equation 5 reduces to the following: 

( , )
( , 1) [1 ( , )]{ (1 ) ( , ) ( , )}.

( , )

y t
y t y m d y t b y t

y t



   


     


. 

As in the dynamic simulation used in this work, the virgin state occurs in the interval of 0 to 
1000 time steps, and only a pseudo-random number is drawn. Then, 

*( , ) ( , ) ( , ) ( ) ty t y t y t y t y


      and ( , )ty y t , 

because, according to Immune Network Theory, for each lymphocyte population, there is 
another complementary population [17,18,19]. A more detailed explanation can be found in 
the results section. 

Because the bone marrow term in the absence of infection (virgin state of the immune system) 
is much smaller than the clonal proliferation parameter (m<<b) [34,35], we have the following: 

1 [(1 ) ](1 )t t t ty d y by y     or [1 ] (1 ).t td b y y   . 

Defining 1r d b   , the equality results in the following: ( 1 (1 )t t ty ry y   , a logistic map-
type equation). Moreover, for the system under study to evolve to a fixed point, the 
condition  1 1 3d b     must be satisfied. 

Consequently, taking into account an apoptosis parameter equal to 0.99d  , the clonal 

proliferation parameter b must be located within the following range: 

1 1 0.99 3 0.99 2.99.b b        In the simulations presented in this paper, the clonal 

proliferation parameter b  was set to 2.0 . 

2.4.4 The antibody and antigen removal parameter (k) 

The parameter for the removal of antigens and antibodies k  was set to 0.1 , to ensure that 

the populations of antigens and antibodies decay to zero before the antigen is presented. 
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This procedure, which is adopted for a new antigen, is applied only after the previous 
antigen has been completely removed [21.45]. 

2.4.5 Connectivity ( ha ) 

The connectivity parameter used was 7, so that 99% of the populations are coupled to their 
perfect complement, and only 1% of the populations are coupled to the first neighbors of 
their complement. The quality of the immune response is directly related to the degree of 
affinity among the elements of the adaptive system [8]. 

2.4.6 Bit-string length (B) 

Considering the available hypercube immune populations represented by the model, the length 

of the bit-string B was set at 12. This value corresponds to 122 4,096  different antigens. 

2.4.7 Antibody proliferation parameter ( Ab ) 

In the model presented in this work, the initial antigenic dose ( )initialAg  was set to study the 
influence of parameter Ab  on the immune memory in some simulations. 

In other simulations, this parameter was set to study the consequences to the memory of 
varying the antigen dosage. To clarify, the limit value of  0.0Ab   corresponds to the model 
previously proposed by Lagreca et al. [21], and the limit value of 0.0

initial FAg y   
corresponds to the virgin state of the immune system. 

3. Results 

The clonal populations that were excited after selection by an antigen (or an antigen 
population) are shown in Fig. 7, as follows: (a) for the first antigen inoculation; and (b) for 
the second antigen inoculation, with a dosage of 0.1. In this evolution, two populations were 
excited with the first antigen inoculation at step 1000: the clonal population that recognized 
the specific antigen (B1 – Burnet idiotypic cells [18.19]) and the clonal population (J1 – Jerne 
anti-idiotypic cells [18.19]) complementary to B1. At step 2000, the second antigen was 
inoculated, and four populations survived: the clonal population that was selected by the 
second antigen (B2), the clonal population (J2) that is complementary to B2, the clonal 
population that was selected by the first antigen (B1), and the clonal population (J1) that is 
complementary to B1. 

At step 1000, clonal populations B1 and J1 are excited when they are selected by the first 
antigen, as shown in Fig. 7 (a). However, in step 2000, when populations B2 and J2 are 
excited, the clonal populations B1 and J1 are already memories of the first antigen. To 
maintain the homeostasis of the system, there is a decrease in the concentrations of the four 
remaining populations, as shown in Fig. 7 (b). 

3.1 Antigen persistence 

The temporal evolution (kinetics) of the Burnet cells is shown in Fig. 8 for each antigen i. Fig. 
8 shows that the population selected by the first antigen begins to decrease after the second 
inoculation. 
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Fig. 7. Surviving clonal populations: (a) for the first antigen inoculated, and (b) for the first 
and second antigens inoculated. 
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Fig. 8. Evolution of populations in memory, up to 11,000 time steps (concentration of 
antigens equal to 0.10 a.u.). The first and seventh clonal populations remain excited, while 
the others disappear – except for the last populations, which were excited near the end of 
the range. 

This behavior occurs because the immune system has a maximum number of cells that it can 
support; in other words, when new antigens are memorized, others need to be forgotten 
(immune homeostasis turnover). At time step 7,000, when the seventh inoculation is 
performed, the first population begins to increase, indicating that it can be stored for a long 
period. In our Ag-dependent approach, this behavior indicates that an increase in the 
lifetime (lifespan) of memory can be generated by antigen survival (antigenic dependence). 

3.2 Antigen mutation 

To study the influence of antigenic mutation on memory (B cell antigen-dependent 
memory), simulations of inoculations of the 30 samples were also performed, with an 
antigenic dosage of 

0.1 . .initialAg a u The durations of memory populations in each experiment (E1, E2, and E3) 

are shown in Fig.9. 
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Fig. 9. Lifetime on a logarithmic scale for the clonal populations in each sample and in three 
experiments. For best viewing results, the graphs were truncated at 60 time steps 
(experiment E1) and 40 time steps (experiments E2 and E3). The arrows indicate the antigen 
populations that led to the production of immune memory. 

In Fig. 9 (a), for example, all of the lifetimes (lasting memories) are related to antigens of 
different species (V1E11...V110E11). In contrast, the first lifetime in Fig. 9 (a)-(j) refers to an 
antigen that has already undergone mutation (V1E11...V1E110). Similar memory 
developments for experiments E2 and E3 are also shown in Fig. 9. The behavior of the 
average durability of the memories is shown in Fig. 10 (a) - (c). 
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Fig. 10. Temporal averages of memory lifespans. In (a), to 350 antigen inoculations; in (b), to 
250 antigen inoculations; and in (c), to 110 antigen inoculations. 

The average lifespans are calculated from the memory lifespans generated by each mutated 

antigen, as follows: 

- For experiment E1 (Fig. 10 (c)), the first average lifetime is obtained by  
10

1 1,
1

1

10
k

k

V E

  and 

the last average lifetime is obtained by  
10

110 1,
1

1

10
k

k

V E

 ; 
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- For experiment E2 (Fig. 10 (b)), the first average lifetime is obtained by 
10

1 2,
1

1

10
k

k

V E

  and 

the last average lifetime is obtained by  
10

250 2,
1

1

10
k

k

V E

 ; 

- For experiment E3 (Fig. 10 (a)), the first average lifetime is obtained by 
10

1 3,
1

1

10
k

k

V E

  and 

the last average lifetime is obtained by  
10

350 3,
1

1

10
k

k

V E

 . 

From Figs 9 and 10, the resulting set for this dynamics suggests that different antigens, and 
mutated antigens, generate different lifespans for immunological memory. 

4. Discussion and conclusion 

In this paper, an Ag-dependent mathematical model was used to explore how the key 
elements of the adaptive immune system function. The same model was also used to 
investigate the factors that are potentially responsible for maximum immunization capacity 
[40-55]. 

Inspired by the following statement of Elgueta et al.: "After 20 years, the role for persisting 
antigens, immune complexes, and FDCs is still not satisfactorily resolved [...] It is completely 
unknown how the memory B cell compartment is sustained [...] The role of antigens, FDCs, 
and immune complexes is still open to further investigation" [56], we have paid special 
attention to the phenomenon of immune memory and its relationship to antigen mutation 
and antigenic persistence. 

Our results suggest that not only antigen type but also antigen mutation can influence the 
durability of immunizations, indicating that the role of antigen persistence is important for 
prolonging immune memory. These results were discussed with respect to recent work, and 
we refer to the adoption of parameter values chosen among data gathered from the 
literature. The model used in this study took into consideration that the immune system is a 
network of molecules and cells that can recognize itself [1-6,17]. The cells that recognize 
antigens select a complementary set of clones (anti-idiotypic antibodies) that can react with 
the idiotypes of other cells. Thus, the clonal expansion of complementary cells can also occur 
when these two types of cells interact through lock-and-key connections [8]. In the results 
presented here, such behavior was observed when an antigen was inoculated into the 
system and two B cell populations were excited: the population of cells that recognized the 
antigen and the population of cells that recognized its complementary shape, as shown in 
Fig. 7. 

The results also show that an important factor in the durability of immunological memory is 
the mutation of antigen populations. In 2009, Tarlinton et al. [49] published a review paper, 
suggesting that the homeostasis of immune memory can only occur if new memory 
populations arise over others, i.e., to create dynamic equilibrium among memory cells, some 
need to disappear for others to arise, because the immune system has a maximum memory 
capacity [40-55]. Choo et al., in a recent paper published in The Journal of Immunology [57], 
reported the same finding, based on the Ag-independent premise. Choo et al. (2010) have 
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determined, by means of a quantitative analysis, that the homeostatic turnover of Ag-
specific CD8 memory T cells is stochastic rather than deterministic. 

Then, the results we show in Fig. 8 indicate, in part, an alignment with the work of Choo et 
al.(2010) and with that of Tarlinton et al., because some populations were "forgotten" so that 
others could be “memorized”, thereby complying with the principle of homeostatic 
turnover. However, Tarlinton et al.(2008) [49] and Choo et al. (2010) [57] suggest that the 
mechanism for achieving homeostasis is stochastic, contrary to earlier work of Matzinger 
(1995)[50] and Nayak et al. (2001)[19], who indicated that the durability of memory depends 
on the antigen type. 

The results presented in Figs. 9 and 10 suggest that the homeostatic turnover of a memory B 
cell depends on the antigen type and also on their mutation(s). Thus, our model aligns best 
with the earlier work of Nayak et al.(2001) and Matzinger et al. (1995), and it also aligns to 
some extent with the work of Tarlinton et al., specifically with respect to storage capacity 
(homeostatic turnover). However, our results do not line up with a hypothesis of 
randomness (stochastically) for the kinetics of immune memory, as inferred by Choo et al. 

The results presented here considered a pool of B cells, but similar conclusions can be drawn 

from a pool of CD4 T cells. In our simulations, memory lifespan is dependent on the 

antigen, and the dynamic behavior of memory is strongly deterministic. These results are 

especially interesting, because they may suggest a deterministic chaotic behavior for the 

immune memory. In chaotic behavior, there is a mix of stochasticity and determinism, i.e., 

there exists a well-defined mathematical function for the problem, but small changes in 

initial conditions can lead to unpredictable results. In conclusion, our results have shown 

that Choo et al.(2010) may have inferred an “apparent” stochastic behavior for homeostatic 

turnover in their work; however, this behavior may be linked to a deterministic-chaotic 

dynamic equilibrium. Nevertheless, this finding also indicates that, although the memory 

behavior is deterministic, just is possible to predict the durability of immunization inferred 

by a vaccine within a limited interval of antigenic concentration, i.e., outside chaotic region. 

5. References 

[1] Farmer, J. D., Packard, N. H., Perelson, A. S. The Immune System, Adaptation, and Machine 
Learning. Physica D, Amsterdam, v. 22, pp. 187-204, July 1986. 

[2] Roitt, I., Brostoff, J., Male, D. Immunology. 4th Ed. New York: Mosby, 1998. 
[3] Hofmeyr, S. A. An Interpretative Introduction to the Immune System Design. In: Principles for 

the Immune System and Other Distributed Autonomous Systems. Cohen, I., Segel, L. A. 
(eds.). Oxford: Oxford University Press, pp. 302-340, 2000.   

[4] Klein, J. Immunology. Oxford: Blackwell Scientific Publications, 1990. 
[5] Lederberg, J. Ontogeny of the Clonal Selection Theory of Antibody Formation. Annals of the 

New York Ac. of Sc., v. 546, pp. 175-182, 1988. 
[6] Perelson, A. S., Weisbuch, G. Immunology for Physicists. Rev. of Modern Physics, Seattle, 

v. 69, n. 4, pp. 1219-1267, Oct. 1997. 
[7] Celada, F., Seiden, P. A computer model of cellular interaction in the immune system. 

Immunology Today, Amsterdam,  pp. 1356-1362, February 1992.   
[8] Perelson, A. S., Mirmirani, M., Oster, G. F. Optimal Strategies in Immunology II. B Memory 

Cell Production. J. Math. Biol., Oxford, v. 5, pp. 213-256, October 1978. 

www.intechopen.com



 
Recent Advances in Immunology to Target Cancer, Inflammation and Infections 

 

442 

[9] Kaufman, M., Urbain, J., Thomas, R. Towards a logical analysis of the immune response. J. 
Theor. Biol., Amsterdam, v.  11,  pp.  527-561, January 1985.   

[10] Kaufman, M., Weinberg, E. D. The NK Model of Rugged Fitness Landscapes and Its 
Application to Maturation of the Immune Response, J. Theor. Biol., Amsterdam, v. 141, 
pp. 211-245, December 1989. 

[11] Celada, F., Seiden, P. Affinity maturation and hypermutation in a simulation of the humoral 
immune response. Eur. J. Immunol., Weinheim, v. 26, pp. 1350-1358, June 1996. 

[12] Menchón, S. A., Ramos, R. A., Condat, C. A. Modeling subspecies and the tumor-immune 
system interaction: Steps toward understanding therapy. Physica A: Statistical 
Mechanics and its Applications, v. 386, pp. 713-719. 

[13] MO, H. Review of Modeling and Stimulating Human Immune Sysytem. Artificial Intelligence 
Applications and Innovations. IFIP International Federation for Information 
Processing, 2005, v. 187/2005, pp. 845-854. 

[14] Rapin, N., Lund, O., Bernaschi, M., Castiglione, F. Computational Immunology Meets 
Bioinformatics: The Use of Prediction Tools for Molecular Binding in the Simulation of the 
Immune System . PLoS One. v. 5(4), p. e9862, 2010. 

[15] Lundegaard, C., Lund, O., Kesmir, C., Brunak, S., Nielsen, M. Modeling the adaptive 
immune system: predictions and simulations. Bioinformatics. v. 23, pp. 3265-3275, 2007. 

[16] Boer, R. J., Oprea, M., Rustom. A., Murali-Krishna, K., Ahmed, R., Perelson, A. 
Recruitment Times, Proliferation, and Apoptosis Rates during the CD8+ T-Cell Response 
to Lymphocytic Choriomeningitis Virus. JOURNAL OF VIROLOGY, v. 75, pp. 10663-
10669, 2001. 

[17] Jerne, N. K. Towards a Network Theory of the Immune System. Ann. Immunol. v. 125C, pp. 
373-389, October 1974. 

[18] Shibani Mitra-Kaushik, S., Shaila, M. S., Anjali K. Karande, A. K., Nayak, R. Idiotype and 
Antigen-Specific T Cell Responses in Mice on Immunization with Antigen, Antibody, and 
Anti-idiotypic Antibody. Cellular Immunology v. 209, pp. 109-119, 2001. 

[19] Nayak, R., Mitra-Kaushik, S., M. S. Shaila. Perpetuation of immunological memory: a relay 
hypothesis. Immunology v. 102, pp. 387-395, 2001. 

[20] Castro, L. N. Fundamentals of Natural Computing: Basic Concepts, Algorithms, and 
Applications. Chapman & Hall/CRC Computer & Information Science Series, 2006. 

[21] Lagreca, M. C., Almeida, R. M. C., Santos, R. M. Z. A Dynamical Model for the Immune 
Repertoire, Physica A, v. 289, pp. 191-207, 2001. 

[22] Ausloos, M., Dirickx, M. The Logistic Map and the Route to Chaos. 413 p. Springer, 2006. 
[23] Heyman, B. Feedback regulation by IgG antibodies. Immunology Letters, v. 88, pp. 157-161, 

2003. 
[24] Hjelm, F., Carlsson, F., Getahun, A., Heyman, B. Antibody-Mediated Regulation of the 

Immune Response. Scandinavian Journal of Immunology, v. 64, 177-184, 2006. 
[25] Nimmerjahn, F., Ravetch, J. V. Antibody-mediated modulation of immune responses, v. 236,  

pp. 265-275, 2010. 
[26] Ferrari, P. C.,  Angotti, J. A. P., Tragtenberg, M. H. R. Introdução ao Caos em Sistemas 

Dinâmicos. Mini-curso. Instituto de Física – UFG, 2006. 
[27] May, R. M. Simple Mathematical Models with Very Complicated Dynamics. Nature, V. 261, 

p. 459, 1976. 

www.intechopen.com



An Ag-Dependent Approach Based on Adaptive Mechanisms  
for Investigating the Regulation of the Memory B Cell Reservoir 

 

443 

[28] Aubin, D., Dalmedico, A. D. Writing the History of Dynamical Systems and Chaos: Longue 
Dureé and Revolution, Disciplines and Cultures. Historia Mathematica, v. 29, pp. 273-
339, 2002. 

[29] Erneux, T. Applied delay differential equations. In: Surveys and Tutorials in the Applied 
Mathematical Sciences. Springer, p. 210, 2009. 

[30] Moreira, I. C. Os primórdios do Caos Determinístico. Ciência Hoje, v. 14, pp. 10-16, 1992. 
[31] Dudek, M. R. Lotka-Volterra PopulationModel of Genetic Evolution. Communications in 

Computational Physics, v. 2, pp. 1174-1183, 2007. 
[32] Bagnoli, F., Bezzi, M. Eigen’s Error Threshold and Mutational Meltdown in a Quasi-

species Model, International Journal of Modern Physics C, v. 9, pp. 1-7, 1998. 
[33] Gould, H., Tobochnik, J. An Introduction to Computer Simulation Methods: Applications to 

Physical Systems. Addison-Weley Publishing Company. 1996. 
[34] von Laer, D., Hasselmannb, S., Hasselmannb, K. Impact of gene-modified T cells on HIV 

infection dynamics. Journal of Theoretical Biology, v. 238, pp. 60-77, 2008. 
[35] Walker, R. E., Carter, C. S., Muul, L., Natarajan, V., Herpin, B. R., Leitman, S. F., Klein, 

H. G., Mullen, C. A., Metcalf, J. A., Baseler, M., Falloon, J., Davey, R. T., Kovacs, J. 
A., Polis, M. A., Masur, H., Blaese, R. M., Lane, H. C. Peripheral expansion of pre-
existing mature T cells is an important means of CD4þ T-cell regeneration HIV-infected 
adults. Nat. Med. v. 4, pp. 852-856, 1998. 

[36] Heyman, B. Regulation of Antibody Responses via Antibodies, Complements, and FC 
Receptors. Annu. Rev. Immunol. v. 18, pp. 709-737, 2000. 

[37] Rustom Antia, r., Pilyugin, s. s.,  Ahmed, r. Models of immune memory: On the role of cross-
reactive stimulation, competition, and homeostasis in maintaining immune memory. 
Immunology, v. 95, pp. 14926-14931, 1998. 

[38] Monvel, J. H. B., Martin, O. M. Memory capacity in large idiotypic networks. Bulletin of 
Mathematical Biology. v. 57, pp. 109-136, 1995. 

[39. Vani, J., Elluru, S., Negi, V., Lacroix-Desmazes, S.. Michel D. Role of natural antibodies in 
immune homeostasis: IVIg perspective. Autoimmunity Reviews, v. 7,  pp. 440-444, 2008. 

[40] Etchegoin, P. G. Vaccination pattern affects immunological response. Physica A: Statistical      
Mechanics and its Applications, v. 354, pp. 393-403, 2005. 

[41] Boer, R. J., Oprea, M., Rustom. A., Murali-Krishna, K., Ahmed, R., Perelson, A. 
Recruitment Times, Proliferation, and Apoptosis Rates during the CD8+ T-Cell Response 
to Lymphocytic Choriomeningitis Virus. Journal of Virology, v. 75, pp. 10663-10669, 
2001. 

[42] Bueno, V., Pacheco-Silva, A. Tolerância oral: uma nova perspectiva no tratamento de doenças 
autoimunes. Revista da Associação Médica Brasileira, v. 45, pp. 79-85, 1999. 

[43] Lima, F. A., Carneiro-Sampaio, M. The role of the thymus in the development of the immune 
system. Reviews and Essays, v. 29, pp. 33-42, 2007. 

[44] Utzny, C., Burroughs, N. J. Long-term Stability of Diverse Immunological Memory. J. Theor. 
Biol., v. 211, pp. 393-402, 2001. 

[45] Yao, W., Hertel, L., Wahl, L. M. Dynamics of recurrent viral infection.  Proc. R. Soc. B, v. 
273, pp. 2193-2199, 2006. 

[46] Dimitrijevic, L., Zvancevic-Simonovic, S., Istojanovic, M., Inic-Kanada, A.,  Ivkovic, I. 
The Possible Role of Natural Idiotopes in Immune Memory. Clinical & Developmental 
Immunology, v. 11, pp. 281-285, 2004. 

www.intechopen.com



 
Recent Advances in Immunology to Target Cancer, Inflammation and Infections 

 

444 

[47] Obukhanych, T. V.,  Nussenzweig, M. C. T-independent type II immune responses generate 
memory B cells. Journal of Experimental Medicine, v. 203, pp. 305-310, 2006. 

[48] Lanzavecchia, A., Sallusto, F. Human B cell memory. Current Opinion in Immunology, v. 
21, pp. 298-304, 2009. 

[49] Tarlinton, D., Radbruch, A., Hiepe, F., Thomas Dorner, T. Plasma cell differentiation and 
survival. Current Opinion in Immunology, v. 20, pp. 162-169, 2008. 

[50] Matzinger, P. Immunology: memories are made of this? Nature, pp. 369-605, 1995. 
[51] Hendrikxa, L. H., Berbersa, G. A. M., Veenhovenb, R. H., Sandersc, E.A.M., Buismana, 

A. M. IgG responses after booster vaccination with different pertussis vaccines in Dutch 
children 4 years of age: Effect of vaccine antigen content. Vaccine, v. 27, pp. 6530-6536, 
2009. 

[52] Tizard, I. R. Immunology: An Introduction. 4th ed. Philadelphia: Saunders College 
Publishing, 1995. 

[53] Abbas, A. K., Lichtman, A. H., Pober, J. S. Cellular and Molecular Immunology. 
[54] Kamradt, T., Avrion, M. N. Advances in immunology: Tolerance and Autoimmunity. N Engl 

J Med, v. 344, pp. 655-64, 2001. 
[55] Peter, D., Roitt, I. M. Advances in immunology: The Immune System. New Engl. J. Med., v. 

343, pp. 37-49, 2000. 
[56] Elgueta, R., Vries, V. C., Noelle, R. J. The immortality of humoral immunity. 

Immunological Reviews, v. 236, pp. 139-150, 2010. 
[57] Choo, D. K., Murali-Krishna, K., Anita, R., Ahmed, R. Homeostatic Turnover of Virus-

Specific Memory CD8 T Cells Occurs Stochastically and Is Independent of CD4 T 
Cell Help. Journal of Immunolody, v.185, pp. 3436-44, 2010. Esta precisa ser a 
referência número 1. 

www.intechopen.com



Recent Advances in Immunology to Target Cancer, Inflammation

and Infections

Edited by Dr. Jagat Kanwar

ISBN 978-953-51-0592-3

Hard cover, 520 pages

Publisher InTech

Published online 09, May, 2012

Published in print edition May, 2012

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

Immunology is the branch of biomedical sciences to study of the immune system physiology both in healthy

and diseased states. Some aspects of autoimmunity draws our attention to the fact that it is not always

associated with pathology. For instance, autoimmune reactions are highly useful in clearing off the excess,

unwanted or aged tissues from the body. Also, generation of autoimmunity occurs after the exposure to the

non-self antigen that is structurally similar to the self, aided by the stimulatory molecules like the cytokines.

Thus, a narrow margin differentiates immunity from auto-immunity as already discussed. Hence, finding

answers for how the physiologic immunity turns to pathologic autoimmunity always remains a question of

intense interest. However, this margin could be cut down only if the physiology of the immune system is better

understood. The individual chapters included in this book will cover all the possible aspects of immunology and

pathologies associated with it. The authors have taken strenuous effort in elaborating the concepts that are

lucid and will be of reader's interest.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Alexandre de Castro (2012). An Ag-Dependent Approach Based on Adaptive Mechanisms for Investigating the

Regulation of the Memory B Cell Reservoir, Recent Advances in Immunology to Target Cancer, Inflammation

and Infections, Dr. Jagat Kanwar (Ed.), ISBN: 978-953-51-0592-3, InTech, Available from:

http://www.intechopen.com/books/recent-advances-in-immunology-to-target-cancer-inflammation-and-

infections/an-ag-dependent-approach-based-on-adaptive-mechanisms-for-investigating-the-regulation-of-the-

memory



© 2012 The Author(s). Licensee IntechOpen. This is an open access article

distributed under the terms of the Creative Commons Attribution 3.0

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.


