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1. Introduction 

Enzyme is a protein molecule acting as catalyst in enzyme reaction. Enzyme inhibition is a 

science of enzyme-substrate reaction influenced by the presence of any organic chemical or 

inorganic metal or biosynthetic compound due to their covalent or non-covalent interactions 

with enzyme active site. It is well known that all these inhibitors follow same rule to 

interplay in enzyme reaction. Present chapter introduces beginners with basic tenets of 

classic presumptions of enzyme inhibition, types of enzyme inhibitors, different models of 

enzyme inhibition with established examples cited in literature, and scientific basis of 

emerging immobilized enzyme technology in different applications. In the end, limitations 

of using classic presumptions and variants of enzyme inhibition are highlighted with new 

challenges to achieve best results. Present time, best approach is 'customize new technology 

with detailed analysis to make it highly efficient' in both drug discovery and enzyme 

biosensor industry. However, other applications are described in following chapters on 

pesticides, herbicides.  

2. What are enzyme inhibitors? 

The enzyme inhibitors are low molecular weight chemical compounds. They can reduce or 

completely inhibit the enzyme catalytic activity either reversibly or permanently 

(irreversibly). Inhibitor can modify one amino acid, or several side chain(s) required in 

enzyme catalytic activity. To protect enzyme catalytic site from any change, ligand binds 

with critical side chain in enzyme. Safely, chemical modification can be done to test inhibitor 

for any drug value.  

In drug discovery, several drug analogues are chosen and/or designed to inhibit specific 

enzymes. However, detoxification or reduced toxic effect of many antitoxins is also 

accomplished mainly due to their enzyme inhibitory action. Therefore, studying the 

aforementioned enzyme kinetics and structure-function relationship is vital to understand 

the kinetics of enzyme inhibition that in turn is fundamental to the modern design of 

pharmaceuticals in industries [Sami et al. 2011]. Enzyme inhibition kinetics behavior and 

inhibitor structure-function relationship with enzyme active site clarify the mechanisms of 
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enzyme inhibition action and physiological regulation of metabolic enzymes as evidenced in 

following chapters in this book. Some notable classic examples are: drug and toxin action 

and/or drug design for therapeutic uses e.g., iodoacetamide deactivates cys amino acid in 

enzyme side chain; methotrexate in cancer chemotherapy through semi-selectively inhibit 

DNA synthesis of malignant cells; aspirin inhibits the synthesis of the proinflammatory 

prostaglandins; sulfa drugs inhibit the folic acid synthesis essential for growth of pathogenic 

bacteria and so many other drugs. Many life-threatening poisons, e.g., cyanide, carbon 

monoxide and polychlorinated biphenols are all enzyme inhibitors.  

Conceptually, enzyme inhibitors are classified into two types: non-specific inhibitors and 

specific inhibitors.  

The enzyme inhibition reactions follow a set of rules as mentioned in following rules. 

Presently, computer based enzyme kinetics data analysis softwares are developed using 

following basic presumptions. 

1. Enzyme interacts with substrate in 1:1 ratio at active site to catalyze the reaction.  
2. Enzyme binds with substrate at active site in the form of a lock-key 3D arrangement for 

induced fit. 
3. Inhibitor active groups compete with substrate active groups and/or active groups at 

enzyme allosteric catalytic site in a synergistic manner or first cum first preference 
(competition) to make enzyme-inhibitor-substrate/enzyme-substrate/enzyme-inhibitor 
complexes.  

4. Enzyme-inhibitor-substrate complex formation depends on active free energy loss and 
thermodynamic principles. 

5. Enzyme and substrate or inhibitors react with each other as active masses and reaction 
progresses in kinetic manner of forward or backward reaction. 

6. Kinetic nature of inhibitor or substrate binding with enzyme is expressed as kinetic 
constants of a catalytic reaction. 

7. Enzyme reaction(s) are highly depend on physiological conditions such as pH, 
temperature, concentration of reactants, reaction period to determine the rate of reaction.  

8. Substrate and inhibitor molecules arrange over enzyme active site on specific sub 
unit(s) in 3D manner. As a result enzyme-substrate-inhibitor exhibit binding rates 
depend on allosteric sites or subunit-subunit homotropic or heterotropic interactions. 

9. Intermolecular forces between enzyme subunits, substrate or inhibitor active group 
interactions, physical properties of binding nature: electrophilic, hydrophilic, nucleophilic 
and metalloprotein nature; hydrogen bonding affect the overall enzyme reaction rates and 
mode of inhibition (3D orientation of inhibitor molecule on enzyme active site).  

Other factors are also significant in determining enzyme inhibition reaction as described in 

each individual inhibitor in following sections. For basic principles of enzyme units 

(apoenzyme, holoenzyme, co-factor, co-enzyme) in enzyme catalysis, active energy loss, 

Michaelis-Menton Equations, LeChatelier’s principle, Lineweaber-Burk and semi-log plots, 

apparent and actual plots, readers are requested to read text books [Schnell et al. 2003, 

Nelson, et al. 2008, Jakobowski 2010a, Strayer et al. 2011]. Our focus is enzyme inhibition 

mechanisms with examples in following description. For multisubstrate enzymes, ping-

pong mechanism, allosteric mechanisms, and diffusion kinetics, readers are requested to 

read original papers [Pryciak 2008, Bashor 2008, Jakobowski 2010b] 
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These inhibitors may act in reversible or irreversible manner. Non-specific irreversible non-

competitive inhibitors include all protein denaturating factors (physical and chemical 

denaturation factors). The specific inhibitors attack a specific component of the holoenzyme 

system. The action depends on increased amount of substrate or by other means of 

physiological conditions, toxins. Specific inhibitors can be described in several forms 

including; 1) coenzyme inhibitors: e.g., cyanide, hydrazine and hydroxylamine that inhibit 

pyridoxal phosphate, and, dicumarol that is a competitive antagonist for vitamin K; 2) 

inhibitors of specific ion cofactor: e.g., fluoride that chelates Mg2+ of enolase enzyme; 3) 

prosthetic group inhibitors: e.g., cyanide that inhibits the heme prosthetic group of cytochrome 

oxidase; and, 4) apoenzyme inhibitors that attack the apoenzyme component of the 

holoenzyme; 5) physiological modulators of reaction pH and temperature that denature the 

enzyme catalytic site.  

The apoenzyme inhibitors are of two types; i) Reversible inhibitors; their inhibitory action is 

reversible because they make reversible association with the enzyme, and, ii) Irreversible 

inhibitors; because they make inactivating irreversible covalent modification of an essential 

residue of the enzyme. Apoenzyme inhibitors show effect on Km and Vmax. The reversible 

apoenzyme inhibitors are also called metabolic antagonists. They are of three subtypes; a) 

competitive, b) uncompetitive and c) non-competitive or mixed type. For example: enzyme 

inhibitors are used in drug design. 

Discovery of useful new enzyme inhibitors used to be done by trial and error through 

screening a huge library of compounds against a target enzyme at allosteric catalytic site. 

This approach is still in use for compounds with combinatorial chemistry and high-

throughput screening technology as described in following description based on recent 

concepts [El-Metwally et al. 2010]. However, rational drug design as an alternative approach 

uses the three-dimensional structure of an enzyme's active site or transition-state 

conformation to predict which molecules might be ideal inhibitors as given an example of 

urease in chapter 11 in this book. 3D-structure shortens the long screening list towards a 

right set of novel inhibitor which kinetically characterizes and allows specific structural 

changes in amino acids of catalytic site chain to optimize inhibitor-enzyme binding. 

Alternatively, molecular docking and molecular mechanics are computer-based methods 

that predict the affinity of an inhibitor for an enzyme. In following description, a glimpse of 

these mechanisms is given on different types of inhibitors based on recent classic book [El-

Metwally et al. 2010]. Readers are requested to read other classic details from advanced text 

books [Dixon and Webb, 1979]. 

3. Irreversible inhibition  

The irreversible apoenzyme inhibitors have no structural relationship to the substrate and 

bind covalently. They also bind stable non-covalently with the active site of the enzyme or 

destroy an essential functional group of active site. So, irreversible inhibitors are used to 

identify functional groups of the enzyme active sites at which location they bind. Although 

inhibitors have limited therapeutic applications because they are usually act as poisons. A 

subset of irreversible inhibitors called suicide irreversible inhibitors, are relatively inactive 

compounds. They get activated upon binding with the active site of a specific enzyme. After 

such binding, the suicide irreversible inhibitor is activated by the first few intermediary 
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steps of the biochemical reaction - like the normal substrate. However, it does not release 

any product because of its irreversible binding at the enzyme active site. Inhibitors make use 

of the normal enzyme reaction mechanism to get activated and subsequently inactivate the 

enzyme. Due to this very nature, suicide irreversible inhibitors are also called mechanism-

based inactivators or transition state analog inhibitors. Thus, inhibitor exploits the transition 

state stabilizing effect of the enzyme, resulting in a better binding affinity (lower Ki) than 

substrate-based designs. An example of such a transition state inhibitor is active form of the 

antiviral drug oseltamivir (Tamiflu; see Figure 1); this drug mimics the planar nature of the 

ring oxonium ion in the reaction of the viral enzyme neuraminidase [El-Metwally et al. 

2010]. After drug activation in the liver, the drug replaces sialic acid as the normal substrate 

found on the surface proteins of normal host cells. It prevents the release of new viral 

particles from infected cells. It has been used to treat and prevent Influenza virus A and 

Influenza virus B infections. Most of such inhibitors are classified as tight-binding 

competitive inhibitors in other references of enzymes. However, their reaction kinetics is 

essentially irreversible. 

O

O

H2N

HN

O

 

Fig. 1. The transition state analog oseltamivir - the viral neuraminidase inhibitor. 

The present art of drug discovery and design of new drugs is based on suicidal irreversible 

inhibitors. Chemicals are synthesized based on knowledge of 3D conformation of substrate-

active site binding at specific binding rates in presence of co-factors, co-enzyme (enzyme 

reaction mechanisms) to inhibit at specific enzyme active site with minimal side-effects due 

to its non-specific binding nature. Transition state analogs are extremely potent and specific 

inhibitors of enzymes because they have higher affinity and stronger binding to the active 

site of the target enzyme than the natural substrates or products. However, exact design of 

drugs that precisely mimic the transition state is a challenge because of unstable structure of 

transition state in the free-state. Prodrugs undergo initial reaction(s) to form an overall 

electrostatic and three-dimensional intermediate transition state complex form with close 

similarity to that of the substrate. These prodrugs serve as guideline for drug development 

to form transition state suitable for stable modification; or, using the transition state analog 

to design a complementary catalytic antibody; called Abzyme. Example: Abzymes are used 

in catalytic antibodies and ribozymes in catalytic ribosomes [El-Metwally et al. 2010].  

 Abzymes are antibodies generated against analogs of the transition state complex of a 
specific chemical. The arrangement of amino acid side chains at the abzyme variable 
regions is similar to the active site of the enzyme in the transition state and work as 
artificial enzymes. For example, an abzyme was developed against analogs of the 
transition state complex of cocaine esterase, the enzyme that degrades cocaine in the 
body [El-Metwally et al. 2010]. Thus, this abzyme has similar esterase activity that is 
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used as injection drug to rapidly destroy cocaine in the blood of addicted individuals to 
decreasing their dependence on it.  

 Thrombin inhibition is common in saliva of leeches and other blood-sucking organisms. 
They contain the anticoagulant hirudin that irreversibly inhibits thrombin, and, to 
regain thrombin action synthesis of new thrombin molecules is required. This made it 
unsafe as an anticoagulation drug. However, based on hirudin structure, rational drug 
design synthesized 20-amino acids peptide known as bivalirudin that is safe for long-
term use because of its reversible effects on thrombin; despite its high binding affinity 
and specificity for thrombin.  

 Ornithine decarboxylase by difluoromethylornithine is used to treat African 
trypanosomiasis (sleeping sickness). The enzyme initially decarboxylates 
difluoromethylornithine instead of ornithine and releases a fluorine atom, leaving the 
rest of the molecule as a highly electrophilic conjugated imine. The later reacts with 
either a cysteine or lysine residue in the active site to irreversibly inactivate the enzyme.  

 Inhibition of thymidylate synthase by fluoro-dUMP. Imidazole antimycotic drugs are 
examples of such group that inhibit several subtypes of cytochrome P450 [Sharma, 
1990]. The mechanisms of toxicities and antidotes of irreversible inhibitors are of 
medical pathological importance. Because of the irreversible inactivation of the enzyme, 
irreversible inhibition is of long duration in the biological system because reversal of 
their action requires synthesis of new enzyme molecules at the enzyme gene-
transcription-translation level.  

 Inhibition of acetylcholine esterase (ACE) by diisopropylfluorophosphate (DPFP), the 
ancestor of current organophosphorus nerve gases (e.g., Sarin and Tabun) and other 
organophosphorus toxins (e.g., the insecticides Malathion and Parathion and 
chlorpyrifos). ACE hydrolyzes the acetylcholine into acetate and choline to terminate 
the transmission of the neural signal form the neuromuscular excitatory acetylcholine 
presynaptic cell to somatic neuromuscular junction (see Figure 2). DPFP as a potent 
neurotoxin inhibits ACE and acetylcholine hydrolysis. Failure of hydrolysis leads to 
persistent acetylcholine excitatory state and improper vital function particularly 
respiratory muscles that may lead to suffocation; with a lethal dose of less than 100 mg. 
DPFP inhibits other enzymes with the reactive serine residue at the active site, e.g., 
serine proteases such as trypsin and chymotrypsin, but the inhibition is not as lethal as 
that of acetylcholine esterase. Similar to DPFP, malaoxon the toxic reactive derivative 
from Malathion (after its metabolism by the liver) binds initially reversibly and then 
irreversibly (after dealkylation of the inhibitor) to the active site serine and inactivates 
ACE and other enzymes. Lethal doses of oral Malathion are estimated at 1 g/kg of body 
weight for humans.  

 Inhibition of ACE by these poisons leads to accumulation of acetylcholine that over-
stimulates the autonomic nervous system (including heart, blood vessels, and glands), 
thereby accounting for the poisoning symptoms of vomiting, abdominal cramps, 
nausea, salivation, and sweating. Acetylcholine is also a neurotransmitter for the 
somatic motor nervous system, where its accumulation resulted in poisoning symptom 
of involuntary muscle twitching (muscle fasciculation), convulsions, respiratory failure 
and coma. Intoxication of Malathion is treated by the antidote drug Oxime that 
reactivates the acetylcholine esterase and by intravenous injection of the anticholinergic 
(antimuscarinic) drug atropine to antagonize the action of the excessive amounts of 
acetylcholine [El-Metwally et al. 2010]. 
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Fig. 2. Organophosphorus compounds and the suicidal irreversible mechanism-based 
inhibition of the enzyme acetylcholine esterase by diisopropylfluorophosphate. Malathion 
and parathion are organophosphorus insecticides. The nerve gases Tabun and Sarin are 
other organophosphorus compounds.  

Another example of irreversible inhibition is iodoacetate inhibition of the glycolytic 
glyceraldehyde-3-phosphate dehydrogenase (GPD). Iodoacetate is a sulfhydryl compound 
that covalently alkylates and blocks the sulfhydryl group at the active site of the enzyme. 
Iodoacetate also inhibits other enzymes with -SH at the active site (Figure 3).  

 

CH2 COOH

Iodoacetate

GPD Cysteine CH2 SH

IH

I CH2 COOHGPD Cysteine CH2 S

Active glyceraldehyde-3-phosphate
dehydrogenase

Inhibited glyceraldehyde-3-phosphate
dehydrogenase  

 

Fig. 3. The suicidal irreversible mechanism-based inhibition of the enzyme glyceraldehyde-
3-phosphate dehydrogenase by iodoacetate.  

 Allopurinol - the anti-gout drug - is a suicidal irreversible mechanism-based inhibitor of 
the enzyme xanthine oxidase that works as oxidase or dehydrogenase. The enzyme 
commits suicide by initial activating allopurinol into a transition state analog - 
oxypurinol - that bind very tightly to molybdenum-sulfide (Mo-S) complex at the active 
site (Figure 4). This enzyme accounts for the human dietary requirement for the trace 
mineral molybdenum. The molybdenum-sulfide (Mo-S) complex binds the substrates 
and transfers the electrons required for the oxidation reactions.  
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Fig. 4. The suicidal irreversible mechanism-based inhibition of the enzyme xanthine oxidase 

by allopurinol.  

 Guanosine analogue antiviral drug aciclovir - acycloguanosine (2-amino-9-((2-
hydroxyethoxy)methyl)-1H-purin-6(9H)-one), as one of the most commonly-used 
antiviral drugs, it is primarily used for the treatment of herpes simplex and herpes 
zoster (shingles) viral infections. Aciclovir (see Figure 5) started a new era in antiviral 
therapy, as it is extremely selective and low in cytotoxicity. Aciclovir as a prodrug 
differs from previous nucleoside analogues in that it contains only a partial nucleoside 
structure: the sugar ring is replaced by an open-chain structure. It is selectively 
converted into acyclo-guanosine monophosphate (acyclo-GMP) by viral thymidine 
kinase, which is far more effective (3000 times) in phosphorylation than cellular 
thymidine kinase. Subsequently, the monophosphate form is further phosphorylated 
into the active triphosphate form, acyclo-guanosine triphosphate (acyclo-GTP), by 
cellular kinases. Acyclo-GTP is a very potent inhibitor of viral DNA polymerase; it has 
approximately 100 times greater affinity for viral than cellular polymerase. As a 
substrate, acyclo-GTP is incorporated into viral DNA, resulting in chain termination. 
Acyclo-GTP is fairly rapidly metabolized within the cell, possibly by cellular 
phosphatases.  

HN

N N

N

O

OH2N

Aciclovir

OH

 

Fig. 5. Aciclovir; the prodrug for the suicidal irreversible inhibition of the viral DNA 

polymerase.  

 The antibiotic penicillin is another transition state analog suicidal inhibitor that binds 
irreversibly covalently to serine at the active site of the bacterial enzyme glycopeptide 
transpeptidase. The enzyme is a serine protease required for synthesis of the bacterial 
cell wall and is essential for bacterial growth and survival. It normally cleaves the 
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peptide bond between two D-alanine residues in a polypeptide. Penicillin structure 
contains a strained peptide bond within the β-lactam ring that resembles the transition 
state of the normal cleavage reaction, and thus penicillin binds very readily to the 
enzyme active site. The partial reaction to cleave the imitating penicillin peptide bond 
activates penicillin to bind irreversibly covalently to the active site serine (Figure 6).  
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Fig. 6. The suicidal irreversible mechanism-based inhibition of the bacterial enzyme 
glycopeptide transpeptidase by the antibiotic penicillin. 

 Aspirin (acetylsalicylic acid) provides an example of a pharmacologic drug that exerts its 

effect through the covalent acetylation of an active site serine in the enzyme 

cyclooxygenase (prostaglandin endoperoxide synthase). Aspirin resembles a portion of 

the prostaglandin precursor that is a physiologic substrate for the enzyme. 

 Heavy metal toxicity is caused by tight binding of a metal such as mercury, lead, 
aluminum, or iron, to a functional group at the active site of an enzyme. At high 
concentration of the toxin, heavy metals are relatively nonspecific for the enzymes they 
inhibit and inhibit a large number of enzymes. For example, it is impossible to specify 
which particular enzyme is implicated in mercury toxicity that binds reactive -SH 
groups at the active sites. Lead developmental and neurologic toxicity is caused by its 
ability to replace the normal functional metal in target enzymes; particularly Ca2+ in 
important enzymes, e.g., Ca2+-calmodulin and protein kinase C. Because of their 
irreversible effect, heavy metals are routinely use as fixatives in histological 
preparations. 

Kinetically, the irreversible inhibitors decrease the concentration of active enzyme and in 
turn decrease the maximum possible concentration of ES complex with ultimate reduction 
in the reaction rate of the inactivated individual enzyme molecules. The remaining 
unmodified enzyme molecules are normally functional considering their turnover number 
and Km. For example: Natural poisons act as Enzyme inhibitors and Inhibitory enzymes 

In nature, animals and plants are rich in poisons as secondary metabolites, peptides and 

proteins that can act as enzyme inhibitors. Natural toxins are small organic molecules and 

act as natural inhibitors for enzymes in metabolic pathways and non-catalytic proteins.  

 Neurotoxins are natural inhibitors, toxic but valuable for therapeutic uses at lower 

doses. For example, glycoalkaloids from Solanaceae family plants (potato, tomato and 

eggplant) act as acetylcholinesterase inhibitors to increase the acetylcholine 

neurotransmitter, muscular paralysis and then death. Many natural toxins are 

secondary metabolites. These neurotoxins also include peptides and proteins. An 

example of a toxic peptide is alpha-amanitin, found in death cap mushroom and acts 
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potent enzyme inhibitor, in this case preventing the RNA polymerase II enzyme from 

transcribing DNA. The algal toxin microcystin is also a peptide and is an inhibitor of 

protein phosphatases. This toxin can contaminate water supplies after algal blooms and 

is a known carcinogen that can also cause acute liver hemorrhage and death at higher 

doses. Proteins can also be natural poisons or antinutrients, such as the trypsin 

inhibitors that are found in some legumes, potato, and tomato. Several invertebrate and 

vertebrate venoms contain protein and peptide enzyme inhibitors for, e.g., plasmin, 

renin and angiotensin converting enzymes. Inhibitory enzymes are enzymes that 

irreversibly inhibit other enzymes by chemically modifying them. In the broad sense, 

they include all proteases and lysosomal enzymes. Some of them are toxic plant 

products, e.g., ricin, a glycosidase that is an extremely potent protein toxin found in 

castor oil beans. It inactivates ribosomes by cleavage the eukaryotic 28S rRNA and 

reduces protein synthesis and a single molecule of ricin is enough to kill a cell.  

4. Reversible inhibition 

Reversible inhibitors may be competitive, noncompetitive, or uncompetitive inhibitors 

relative to a particular substrate. Products of enzymatic reactions are reversible inhibitors of 

the enzymes. A decrease in the rate of an enzyme caused by the accumulation of its own 

product plays an important role in the balance and most economic usage of metabolic 

pathways. It prevents one enzyme in a sequence of reactions from generating a new product 

more than the capacity of the next enzyme in that sequence, e.g., inhibition of hexokinase by 

accumulating glucose 6-phosphate.  

With the reduction in the inhibitor concentration, the enzyme activity is regenerated due to 

the non-covalent association and the reversible equilibrium with the enzyme. The 

equilibrium constant for the dissociation of enzyme inhibitor complexes is known as Ki that 

equals [E][I]/[EI] [Cheng et al. 1973]. The inhibition efffect of Ki on the reaction kinetics is 

reflected on the normal Km and or Vmax observed in Lineweaver-Burk plots; in a pattern 

dependent on the type of the inhibitor [Nelson et al. 2008]. The inhibitor is removable by 

several ways. The three common types of reversible inhibitions are: 

 Competitive reversible inhibition. 

 Uncompetitive reversible inhibition. 

 Mixed reversible inhibition (or non-competitive inhibition). 

4.1 Competitive reversible inhibition  

The competitive inhibitor is structurally related to the substrate and binds reversibly at the 

active site of enzyme and occupies it in a mutually exclusive manner with the substrate. 

Therefore, the competitive inhibitor competes with the substrate for the active site. The 

binding is mutually exclusive because of their free competition. According to the law of 

mass action, relatively higher inhibitor concentration prevents the substrate binding. Since 

the reaction rate is directly proportional to [ES], reduction in ES formation for EI formation 

lowers the rate. Increasing substrate towards a saturating concentration alleviates 

competitive inhibition. In the time enzyme-substrate complex releases the free enzyme and a 

product, the enzyme-inhibitor complex does release neither free enzyme nor a product. 
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Reversible inhibition is of short duration in the biological system because it depends on 

substrate availability and/or rate of the catabolic clearance of the inhibitor (Figure 7). 
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K1 K2

K-1
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E + I EI + S No product

E + S            ES             E + P
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E + S            ES             E + P
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E + I EI + S No product

 

Fig. 7. The equation and the effect of the competitive inhibitor on the double reciprocal plot 
of the substrate-reaction rate relationship.  

Kinetically, the inhibitor (I) binds the free enzyme reversibly to form enzyme inhibitor 

complex (EI) that is catalytically inactive and cannot bind the substrate. The competitive 

inhibitor reduces the availability of free enzyme for the substrate binding. Thus, the Km of 

the normal reaction is increased to a new Km (aKm) as a function of the inhibitor 

concentration (expressed in the "a" factor - apparent Km in presence of the inhibitors), where 

the substrate concentration at Vo = ½ Vmax is equal to aKm. The "a" can be calculated from the 

change in the slope of the line at a given inhibitor concentration; 

 
I

I

[I] [E][I]
a = 1 + , where, K =

K [EI]
 (1) 

Therefore, competitive inhibitors do not affect the turnover number (active site catalysis per 
unit time) or the efficiency of the enzyme because once enzyme is free, enzyme behaves 
normally. The Michaelis-Menten equation for competitive inhibitors becomes 

 max
o

m

V [S]
V =

aK + [S]
 (2) 

 Consequently, the double reciprocal form of the equation is also modified so as the line 

slope becomes  m

max

aK

V
 and the intercept with y-Axis stays at 1

Vmax
  but the intercept with 

the x-axis at 
m

1
-

aK
 will differ according to the concentration of the competitive inhibitor. 

The later property is characteristic for competitive inhibitors. 

Examples include the classical competitive inhibitory effect of malonic acid on succinate 

dehydrogenase (SD) of the Krebs' cycle that reversibly dehydrogenates succinate into 

fumarate. Other less potent competitive inhibitors of succinate dehydrogenase include; 

oxalate, glutamate and oxaloacetate. The common molecular geometric feature of these 

compounds is the presence of two negatively charged -COOH groups suggesting that the 

active site of the flavoprotein SD has specifically positioned two positively charged binding 

groups (Figure 8). 
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Fig. 8. The substrate and different competitive inhibitors of succinate dehydrogenase (SD). 

Methotrexate - competitive inhibitor of dihydrofolate reductase (DHFR) is another example. 
The drug is used as anticancer antimetabolite chemotherapy particularly for pediatric 
leukemia. It hinders the availability of tetrahydrofolate as a carrier for one-carbon moieties 
important for anabolic pathways -particularly synthesis of purine nucleotides for DNA 
replication (Figure 9).  
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Fig. 9. The substrate and methotrexate as a competitive inhibitor for dihydrofolate 
reductase.  

Sulfanilamides - the simplest form of Sulfa drugs - were among earliest antibacterial 
chemotherapeutic drugs classified as enzyme inhibitors. They are competitive inhibitors of 
the bacterial folic acid synthesizing enzyme system from p-aminobenzoic acid. Bacterial 
cannot absorb pre-made folate that is necessary to be synthesized de novo. Structural 
similarity of sulfanilamide (and other sulfas derived from it) to p-aminobenzoic acid made 
them competitive inhibitors to the enzyme (Figure 10).  
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Fig. 10. The p-aminobenzoic acid substrate and sulfanilamide as a competitive inhibitor 
during the bacterial folate synthesis. 
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Male erectile impotence was a major medical problem. Now a group of chemicals with 
molecular structural similarity to cGMP is promising that competitively inhibit the cGMP-
phosphodiesterase-5. They include sildenafil citrate (Viagra; Figure 11), vardenafil (Levitra) 
and tadalafil (Cialis). The inhibition of this enzyme that has a limited tissue distribution 
including the penile cavernous tissue spares cGMP. Accumulation of cGMP leads to smooth 
muscle relaxation (vasodilation) of the intimal cushions of the helicine arteries, resulting in 
increased inflow of blood and an erection.  
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Fig. 11. The cGMP substrate and sildenafil a competitive inhibitor of the cGMP-
phosphodiesterase-5. 

Another example of these substrate mimics competitive inhibitors are the peptide-based 
protease inhibitors, a very successful class of antiretroviral drugs used to treat HIV, e.g., 
ritonavir that contains three peptide bonds (see Figure 12).  
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Fig. 12. The peptide-based competitive protease inhibitor ritonavir. 

Reversible competitive inhibitors of acetylcholinesterase, such as edrophonium, physostigmine, 
and neostigmine, are used in the treatment of myasthenia gravis and in anesthesia. The 
carbamate pesticides are also examples of reversible acetylcholinesterase inhibitors.  
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4.2 Uncompetitive reversible inhibition  

Uncompetitive inhibitor has no structural similarity to the substrate. It may bind the free 
enzyme or enzyme substrate complex that exposes the inhibitor binding site (ESI). Its binding, 
although away from the active site, causes structural distortion of the active and allosteric sites 
of the complexed enzyme that inactivates the catalysis. This leads to a decrease in both Km and 
Vmax. Increasing substrate towards a saturating concentration does not reverse this type of 
inhibition and reversal requires special treatment, e.g., dialysis. This type of inhibition is also 
encountered in multi-substrate enzymes, where the inhibitor competes with one substrate (S2) 
to which it has some structural similarity and is uncompetitive for the other (S1). The reaction 

without the inhibitor would be; E + S1  ES1 + S2  ES1S2  E + Ps and with uncompetitive 

inhibitor becomes; E + S1  ES1 + I  ES1I (prevents S2 binding)  no product. It is a rare 
type and the inhibitor may be the reaction product or a product analog.  

Kinetically, uncompetitive inhibition modifies the Michaelis-Menten equation by (a') factor 
that proportionates with the inhibitor concentration to be: 

 m ax
o

m

V [S]
V =

K + a'[S]
 (3) 

and in the double-reciprocal equation to be: 

 m

o max max

K1 a' 1
= + X

V V V [S]
 (4) 

while y-intercept is at 
max

a'

V
and x-intercept is at '

m

a

K
 , whereas, the line slope stays m

max

K

V
. 

This gives a number of lines in the Lineweaver-Burk plot that are parallel to the normal line 
with decreased 1/Vmax and –a'/Km proportional to concentrations of the uncompetitive 
inhibitor. The later is characteristic to uncompetitive inhibition (Figure 13).  

Vmax

Km
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1

1
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Decreases in a'/Vmax

Decreases in

a'
K2E + S             ES            E + P

K1

K-1 Ki
No product

I
ESI

 

Fig. 13. The equation and the effect of the uncompetitive inhibitor on the double reciprocal 
plot of the substrate-reaction rate relationship. 

Uncompetitive reversible inhibition is rare, but may occur in multimeric enzymes. Examples 
of uncompetitive reversible inhibitors include; inhibition of lactate dehydrogenase by 
oxalate; inhibition of alkaline phosphatase (EC 3.1.3.1) by L-phenylalanine, and, inhibition of 
the key regulatory heme synthetic enzyme; δ-aminolevulinate synthase and dehydratase 
and heme synthetase by heavy metal ion, e.g., lead. Heavy metals, e.g., lead, form 

mercaptides with -SH at the active site of the enzyme (2 R-SH + Pb  R-S-Pb-S-R + 2H). 
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Oxidizing agents, e.g., ferricyanide also oxidizes -SH into a disulfide linkage (2 R-SH  R-S-
S-R). Reversion here requires treatment with reducing agents and/or dialysis. 

4.3 Mixed (noncompetitive) inhibition 

The mixed type inhibitor does not have structural similarity to the substrate but it binds 
both of the free enzyme and the enzyme-substrate complex. Thus, its binding manner is not 
mutually exclusive with the substrate and the presence of a substrate has no influence on 
the ability of a non-competitive inhibitor to bind an enzyme and vice versa. However, its 
binding - although away from the active site - alters the conformation of the enzyme and 
reduces its catalytic activity due to changes in the nature of the catalytic groups at the active 
site. EI and ESI complexes are nonproductive and increasing substrate to a saturating 
concentration does not reverse the inhibition leading to unaltered Km but reduced Vmax. 
Reversal of the inhibition requires a special treatment, e.g., dialysis or pH adjustment. Some 
classifications differentiate between non-competitive inhibition as defined above and mixed 
inhibition in that the EIS-complex has residual enzymatic activity in the mixed inhibition. 

Kinetically, mixed type inhibition causes changes in the Michaelis-Menten equation so as  

 max
o

m

V [S]
V =

aK + a'[S]
 (5) 

Mixed type inhibition - as the name imply - has a change in the denominator with Km 
modified by factor (a) as in competitive inhibition, and [S] modified by factor (a') as in 
uncompetitive inhibition. In the double reciprocal equation 6, 

 m

o max max

aK1 a' 1
= + X

V V V [S]
 (6) 

A line slope is m

max

aK

V
, and the intercept with y-axis is at

max

a'

V
and with x-axis is at 

m

a'

aK
. This 

results in progressive decreases in Vmax and progressive increases in Km proportional to the 
increase in the mixed inhibitor concentration. The double reciprocal plot shows a number of 
lines reflecting decreases in Vmax/increases in Km but their intercept is to the left of the y-
axis. Mixed type inhibitor would be called non-competitive only if [a = a'], where, it will 
only lower Vmax without affecting the Km (Figure 14). 
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Fig. 14. The equation and the effect of the mixed type (noncompetitive) inhibitor on the 
double reciprocal plot of substrate-reaction rate relationship. 
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Examples of noncompetitive inhibitors are mostly poisons because of the crucial role of the 

targeted enzymes. Cyanide and azide inhibits enzymes with iron or copper as a 

component of the active site or the prosthetic group, e.g., cytochrome c oxidase (EC 

1.9.3.1). They include the inhibition of an enzyme by hydrogen ion at the acidic side and 

by the hydroxyl ion at the alkaline side of its optimum pH. They also include inhibition 

of; carbonic anhydrase by acetazolamide; cyclooxygenase by aspirin; and, fructose-1,6-

diphosphatase by AMP. Cyanide binds to the Fe3+ in the heme of the cytochrome aa3 

component of cytochrome c oxidase and prevents electron transport to O2. Mitochondrial 

respiration and energy production cease, and cell death rapidly occurs. The central 

nervous system is the primary target for cyanide toxicity. Acute inhalation of high 

concentrations of cyanide (e.g., smoke inhalation during a fire and automobile exhaust) 

provokes a brief central nervous system stimulation rapidly followed by convulsion, 

coma, and death. Acute exposure to lower amounts can cause lightheadedness, 

breathlessness, dizziness, numbness, and headaches. Cyanide is present in the air as 

hydrogen cyanide (HCN), in soil and water as cyanide salts (e.g., NaCN), and in foods as 

cyanoglycosides. Comparison of the three types of the reversible enzyme inhibitors is 

presented in Table 1. 

In a special case, the mechanism of partially competitive inhibition is similar to that of non-

competitive, except that the EIS complex has catalytic activity, which may be lower or 

even higher (partially competitive activation) than that of the enzyme-substrate (ES) 

complex. This inhibition typically displays a lower Vmax, but an unaffected Km value. We 

compare three main types of inhibitors in terms of reaction properties as shown in Table 1 

and Figure 15. 

 

Competitive inhibitor Uncompetitive inhibitor Mixed  
(noncompetitive inhibitor) 

 The inhibitor binds the 
catalytic/substrate 
binding site.  

 It competes with 
substrate for binding.  

 Inhibition is reversible 
by increasing substrate 
concentration. 

 Vmax  constant, the 
substrate concentration 
has to be increased as 
reflected on increased 
Km. 

 Substrate binding 
exposes the inhibitor 
binding site away from 
the catalytic/substrate 
binding site.  

 Increasing substrate 
concentration does not 
reverse the inhibition. 

 The inhibited reaction 
rate parallel the normal 
one as reflected on 
decreased both Vmax and 
Km. 

 The inhibitor binds each 
of the free enzyme and 
the substrate-enzyme 
complex away from the 
catalytic/substrate 
binding site.  

 Increasing substrate 
concentration does not 
reverse the inhibition. 

 Only Vmax is decreased 
proportionately to 
inhibitor concentration,  

 Km is unchanged since 
increasing substrate 
concentration is 
ineffective. 

Table 1. Comparison of the different types of reversible inhibition is shown in Table with a 
quick view of mechanism in sketches as below. 
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Fig. 15. Sketch of three different enzyme inhibition by competitive, uncompetitive and 
noncompetitive types are shown with illustration of enzyme-substrate or inhibitor binding, 
kinetics and graphs.  

In last decade, role of membrane receptors was explored in relation with enzyme inhibition. 

Membrane receptors or transmembrane proteins bind with natural ligands such as 

hormones, neurotransmitters in tissue membranes. Receptor-ligand binding modulates the 

binding of drugs with enzyme. Such ligand binding behavior also influences the analysis of 

competitive, uncompetitive and noncompetitive inhibition by biological effect of prodrugs 

on enzymes. It usually involves a shape change in the receptor, a transmembrane protein, 

which activates intracellular activities. The bound receptor usually does not directly express 

biological activity, but initiates a cascade of events which leads to expression of intracellular 

activity. However, occupied receptor actually expresses biological activity itself. For 

example, the bound receptor can acquire enzymatic activity, or become an active ion 

channel with similar competitive, noncompetitive behavior. Drugs targeted to membrane 

receptors can have biological effects similar to the natural ligands, they are called agonists, 

or conversely they may inhibit the biological activity of the receptor, they are called 

antagonists [Jakobowski 2010a]. 
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4.4 Agonist 

An agonist or test drug or substrate is similar to natural ligand and binds with receptor to 
produce a similar biological effect as the natural ligand. Agonist binds at the same binding 
site in competition with natural ligand to show full or partial response. So, it is called partial 

agonist. If receptor has a basal (or constitutive) activity in the absence of a bound ligand, it 
is called inverse agonist. If either the natural ligand or an agonist binds to the receptor site, 
the basal activity is increased. If an inverse agonist binds, the activity is decreased. Ro15-
4513 and benzodiazepines (Valium) bind with the GABA receptor. As a result, GABA 
receptor is "activated" to become a ion channel allowing the inward flow of Cl- into a neural 
cell, inhibiting neuron activation. Ro15-4513 binds to the benzodiazepine site, which leads to 
the opposite effect of valium, the inhibition of the receptor bound activity - a chloride 
channel as shown in Figure 16.  

 

Fig. 16. A sketch is shown for membrane receptor binding with ligand (agonist) acting like 
as enzyme. Reproduced with permission [Jakobowski 2010a]. 

4.5 Antagonist 

Antagonist or test inhibitor can inhibit the effects of the natural ligand (hormone, 
neurotransmitter), agonist, partial agonist, and inverse agonists. We can think of them as 

www.intechopen.com



 
Enzyme Inhibition and Bioapplications 20

inhibitors of receptor activity behaving as competitive, noncompetitive and irreversible 
antagonists as shown in Figure 17. For further details, readers are requested to read 
advanced text book [Nelson et al. 2008, Dixon and Webb 1979]  

 

 
 

Fig. 17. Sketch is shown for membrane receptor binding with ligand (acting as agonist) and 
antagonist (acting as inhibitor) in competition with agonist to bind with enzyme. 
Reproduced with permission [Jakobowski 2010a] 
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5. Inhibition by physiological modulators 

5.1 Temperature of reaction 

Some endothermic or exothermic chemical compounds change the temperature of reaction. 
Enzyme reaction experiences inhibition at higher or lower than optimal physiological 
temperature. For example, human body optimal temperature of human body is 37 oC. For 
most of the enzyme reactions, enzyme activity usually increases at 0 to about 40-50 oC in the 
absence of catalysts. As a general rule of thumb, reaction velocities double for each 
increment of 10oC rise. At higher temperatures, the activity decreases dramatically as the 
enzyme denatures as shown in Figure 18. 

 

Fig. 18. Figure shows the effect of temperature change on the rate of enzyme reaction. Notice 
the initial rise of rate of reaction and sudden fall near to optimal temperature 37-42 °C.  

5.2 Hydrogen ion concentration or pH of reaction 

Think of all the things that pH changes might affect. Many chemicals such as acids or 
alkaline chemical compounds if mixed in enzyme reaction medium can change the pH. As a 
result, reaction rate changes. It might  

 affect E in ways to alter the binding of S to E, which would affect Km  

 affect E in ways to alter the actual catalysis of bound S, which would affect kcat  

 affect E by globally changing the conformation of the protein  

 affect S by altering the protonation state of the substrate  

The easiest assumption is that certain side chains necessary for catalysis must be in the correct 
protonation state. Thus, some side chain, with an apparent pKa of around 6, must be 
deprotonated for optimal activity of trypsin which shows an increase in enzyme activity with 
the increase in range centered at pH 6. Which amino acid side chain would be a likely 
candidate to participate in enzyme inhibition? It all depends on net charge on active group of 
each amino acid in the active site chain. The pH of reaction thus depends on net pKa value of 
amino acids and presence of acid or alkaline nature of substrate effects on enzyme kinetics by 
formation of EH, ESH as shown in Figure 19. It can be modeled at the chemical and 
mathematical level to calculate velocity(v), Vm(apparent) and Km(apparent) as shown in 
Equations 7-9. Different enzymes show different behavior of enzyme catalyzed reactions such 
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as chymotrypsin, cholinesterase, papain, and papsin show distinct graphs (see Figure 20). For 
further details, readers are requested to read text books [Nelson et al. 2008, Berg et al. 2011] 

 

  
Vm app S

V =
Km app +S

 (7) 

 

Vm
Vm app =

1+H+/Kes1+Kes2 /H+  (8) 

 

Km(1+H+/Ke1+Ke2/H+)
Km app=

1+H+/Kes1+Kes2 /H+  (9) 

Fig. 19. Chemical equations showing the mechanism of pH effects on enzyme catalyzed 
reactions. Different mathematical equations 7-9 illustrate the modeling pH effects on 
enzyme catalyzed reactions. 

5.2.1 Three dimensional nature of enzyme-inhibitor complex at enzyme active site 

The role of non-covalent interactions such as hydrogen bonding, hydrophobic interaction 

and orientation of inhibitor and enzyme in an organized fashion was well described in 

classic paper [Amtul et al., 2002]. 3D nature of enzyme reaction can be understood as 

following. There are two sites on enzyme molecule: 1. at allosteric site, inhibitor binds with 

enzyme, and 2. at active site, substrate binds with enzyme. However, substrate and inhibitor 

interact with each other by non-covalent interactions of their chemical groups. Inhibitors 

interact at allosteric site and known as ‘pharmacohores’. Presently, structure-based design 

and testing, mechanistic biological approach is a state-of-art to develop new pharmacohores. 

The non-covalent interactions determine the chemoselectivity of the substrate and enzymes 

during formation of the ESI complex. In other words, ESI complex provides enzyme as a 

platform to perform catalysis. 3D geometrical shape and topology of active site match with 

orientation of chemical groups in substrate molecule that fit together in a ‘lock and key’ 

arrangement. Several possibilities happen to make enzyme-inhibitor complexes such as 

bidentate, tri-, tetra- and polydentate, trigonal, pyramidal, tetrahedral, polyhedral charge 

transfer complexes due to co-ordinate interactions between metallic co-factor with 

hydrophilic groups on inhibitor(s). In this process, geometry of amino acid side chains at 

allosteric site changes due to hydrogen bonding between amino acid residues. Suboptimal 
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Fig. 20. Graphs of different pH effects on enzyme catalyzed reactions as log Vm(app) and 
Vm/Km(app) are shown on left. Different enzymes such as chymotrypsin, cholinesterase, 
pepsin and papain are illustrated with different rates of enzyme reaction. Reproduced with 
permission [Jakobowski 2010a] 

interactions of metal-solvent, oxygen-water molecular bridge, free energy content loss, 

subunit-subunit biophysical interactions as a result play a significant role in inhibitor-

enzyme complex formation and completion of enzyme catalysis. 

For more details, readers are requested to read recent reference papers on 3D mechanistic 

studies on enzymes. Specific example on urease is cited in chapter 11 in this book. Now 

science is shifting to develop crystallized enzyme molecules, better structural-functional 

relationship in enzyme catalysis and immobilized enzyme chips. 

In following description, factors are discussed on different practical considerations that 

influence the enzyme reaction rates, enzyme inhibition kinetics, % binding efficiency on 

enzyme solid support with a glimpse of known theories and concepts on real-time, cheaper, 

economic, user-friendly immobilized enzyme technology.  

When actual and practical considerations are analyzed to work in enzyme reactor, the 

scenario becomes complicated. Several factors such as inhibitor chemical state, substrate 

structure, enzyme 3D conformation or peptide subunit interactions, physiological reaction 

www.intechopen.com



 
Enzyme Inhibition and Bioapplications 24

conditions in reactor and enzyme carrier supports also contribute in inhibition kinetics and 

rates of reaction to form ES,ESI and P. Every year list of new factors grows in new enzyme 

systems. 

Author believes that more and more contributory factors introduced, will influence enzyme 

reaction rate kinetics and more and more additive kinetic constants are introduced with new 

variants to define the action of inhibitors on enzyme catalysis.  

Other factors to keep in mind for new possibilities are: 

1. enzyme autoinhibition and enzyme molecular structural-functional factors affecting 3D 
conformation of active site compatible with active groups of substrate or inhibitor 

2. porosity and diffusion across the enzyme support material and availability of exposed 
active sites to react 

3. real-time recording the instant formation of ESI or ES or EP or EI on solid phase enzyme 
support organic chip 

4. sustrate-inhibitor interactions, % binding of active site with each additive 
5. computer based semi-corrected or averaged calculations of kinetic constants of 

inhibition kinetics 
6. thermodynamic states of the enzyme reaction in reactor and fluctuating physiological 

and physical states of substrate, inhibitor, enzyme complexes in reactor. 
7. synergy of inhibitors, substrate, subunits in enzyme on active site 

For all these factors and details, readers are expected to read advanced text books on 

enzyme inhibition and enzyme engineering. Readers will experience a wide variation in the 

scientific analysis of enzyme inhibition data in different enzyme reactors used in different 

studies. High efficiency with desired results of enzyme inhibitors is the new challenges to 

optimize reaction, scale-up, and phase out unwanted physiological factors from reaction. In 

following section, these issues are addressed. Author believes that above mentioned 

description is just iceberg from a large hidden treasure or unknown factors contributing 

enzyme inhibition to give desired outcome.  

6. Immobilized enzyme systems 

In search of economic, efficient and practical enzyme platforms to test enzyme inhibitors, 

new user-friendly immobilized enzyme technology is available now. It is based on principle 

that an enzyme molecule is contained within confined space for the purpose of retaining 

and re-using enzyme on solid medium in processing system or equipment. There are many 

advantages of immobilized enzymes and methods of immobilization such as low cost, 

suitability of reusable model system in membrane-bound enzymes in cell. However, some 

disadvantages are expansive methods of adsorption or covalent bound or matrix trapping or 

membrane trapping immobilization methods, low measurement of enzyme activity with 

mass transfer limitations. For knowledge sake, the entrapment of enzyme molecules on 

matrix, diffusion phenomenon and kinetics are important to understand. A brief description 

is given for interested readers on classic concepts and scientific basis of porous or non-

porous enzyme supports, theory of enzyme immobilization and efficiency of reaction 

outcome. For more details of each aspect, readers are requested to read individual research 

papers.  
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Matrix entrapment is done by mixing enzyme solution with polymer fluid in matrices such 

as Ca-alginate, agar, polyacrylamide, collagen. Membrane entrapment is done by confining 

enzyme solutions between semi-permeable membrane hollow fibers made of nylon, 

cellulose, polysulfone, polyacrylate etc. Surface immobilization by adsorption is done by 

attaching enzymes on stationary solids such as alumina, porous glass, cellulose, ion-

exchange resin, silica, ceramic, clay, starch etc. by physical forces keeping active sites intact. 

Covalent bonding is done by enzyme retention on support surfaces by covalent binding 

between functional groups such as amino, carboxylic, sulfhydryl, hydroxyl groups on the 

enzyme and those on the support surface keeping enzyme active site(s) free (see Figure 21) 

[Laider et al. 1980]. 

 

Fig. 21. Scheme of immobilization of enzyme is shown with chemical groups involved in 
binding of enzyme on solid surface. Reproduced with permission from reference Lieder et 
al.1980. 

Diffusional limitations are observed to various degrees in all immobilized enzyme systems. 

This occurs because substrate must diffuse from the bulk solution up to the surface of the 

immobilized enzyme prior to reaction. The rate of diffusion relative to enzyme reaction rate 

determines whether limitations on intrinsic enzyme kinetics is observed or not as shown in 

Figures 22 [Laider et al.1980]. However, rate of diffusion across and within matrix is 

determinant of immobilized enzyme reaction as shown in Figure 22 and 23.  

In immobilized enzyme reaction, two major effects due to diffusion and product inhibition are 

first observed by Lineweaber-Burk plots in classic study [Rees, 1984]. The diffusional effects 

and product inhibition both influenced the shape of Lineweaver-Burk plot (see Figure 22). In 

case of substrate inhibition effects binding of more than one substrate molecule(s) lead to 

inhibition showing same type of curved Lineweaver-Burk plot as those observed for 

diffusional limitation and product inhibition in immobilized enzymes. Combination of these 

two effects lead to intermediate behavior, such as normal Michaelis-Menten kinetics as shown 
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in Figure 24, 25 by curves [Rees, 1984]. However, immobilized enzyme system also suffers 

from both diffusion and product inhibition effects. As a consequence, it is important to 

consider diffusion effects and product inhibition effects while extracting catalytic parameters 

from kinetic data for immobilized enzyme systems. Use of non-porous support in enzyme 

immobilization minimizes the diffusion effects to some extent.  

   
  pi

kk
E + S ES EP E + P

   

Fig. 22. A sketch of porous matrix is shown (on left) and a scheme of substrate mass balance 
Equation to calculate rate of immobilized enzyme reaction rs is shown (on right) 

 

Fig. 23. A scheme of substrate mass balance is shown to calculate S with boundary 
conditions. 

Enzyme kinetics predicts the efficiency of reaction. Kinetics of immobilized enzymes 

depends on conformational alterations within the enzyme due to the immobilization 

procedure, or the presence and nature of the immobilization support. Immobilization can 

greatly affect the stability of an enzyme such as any strain into the enzyme will inactivate 

the enzymes under denaturing conditions (e.g. higher temperatures or extremes of pH). An 

example of unstrained multipoint binding between the enzyme and the support to cause 

substantial stabilization is illustrated in Figure 20. From mechanistic standpoint, a lesser 
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conformational change within the protein structure will initiate enzyme inactivation. As a 

result, covalent immobilization processes involve an initial freely-reversible stage. Covalent 

links may form, break and re-form till an unstrained covalently-linked structure is created. 

However, additional stabilization is derived from maximum enzyme-support compatibility, 

least enzyme molecule interactions, least proteolytic and microbiological attacks.  

 

Fig. 24. Effect of one or more inhibitor molecules on enzyme kinetics and their inhibition 
effect dependent on 1/So. Reproduced with permission from Rees et al. 1984. 

 

Fig. 25. A scheme of immobilized enzyme action is shown on non-porous solid support. 
Notice the dependence of Vm on available immobilized enzyme active sites (EL). 

The kinetic constants (e.g. Km, Vmax) of immobilized enzymes may be altered by the process 
of immobilization due to internal structural changes and restricted access to the active site. 
Thus, the intrinsic specificity (k./Km) of such enzymes may well be changed relative to the 
soluble enzyme. An example of trypsin is illustrated in Figure 21, where the freely soluble 
enzyme hydrolyses fifteen peptide bonds in the protein pepsinogen but the immobilized 
enzyme hydrolyses only ten. The apparent value of these kinetic parameters, when 
determined experimentally, may differ from the intrinsic values. This fact may be due to 
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changes in the properties of the solution in the immediate vicinity of the immobilized 
enzyme, or the effects of molecular diffusion within the local environment. The relationship 
between these intrinsic and apparent parameters is shown below in Figure 26. Typically, 
nonporous microenvironment consists of the internal solution plus part of the surrounding 
solution which is influenced by the surface characteristics of the immobilized enzyme. 
Partitioning of substances occurs between these two environments. Substrate molecule (S) 

Intrinsic parameters of the soluble enzyme 

 
Intrinsic parameters of the immobilized enzyme 

 
Apparent parameters due to partition and diffusion 

 

Fig. 26. A schematic cross-section of an immobilized enzyme particle (a) shows the 
macroenvironment and microenvironment. Triangular dots represent the enzyme 
molecules. Courtesy: Pangandai V. Pennirselvam, Ph.D UFRN, Lagoa Nova–Natal/RN 
Campus Universitário. North East, Brazil. 
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diffuses through the surrounding layer (external transport) in order to reach the catalytic 
surface and gets converted to product (P). In order for all immobilized enzyme to be 
utilized, substrate must diffuse within the pores in the surface of the immobilized enzyme 
particle (internal transport) [Pryciak 2008]. The degree of stabilization is determined by 
strength of the gel, and hence the number of non-covalent interactions. As a result, intrinsic 
parameters of enzyme result with specific apparent parameters dependent on partition and 
diffusion as shown in Figure 27. 

 The porosity (e) of the particle can be expressed as ratio of the volume of solution 
contained within the particle to the total volume of the particle. The tortuosity (t) is the 
average ratio of the path length, via the pores, between any points within the particle to 
their absolute distance apart.  

 The tortuosity, which is always greater than or equal to unity, depends on the pore 
geometry. The diagram exaggerates dimensions for the purpose of clarity.  

 The concentration of the substrate at the surface of the particles [Sr] depends on radius 
R or internal concentration [Si] at any smaller radius (r) is the lower value. 

 

Fig. 27. Illustration of the use of multipoint interactions for the stabilization of enzymes. 
(a) -------- activity of free un-derivatized chymotrypsin. (b) ….. activity of chymotrypsin 
derivatized with acryloyl chloride. (c) -- -- -- activity of acryloyl chymotrypsin copolymerized 
within a polymethacrylate gel. Up to 12 residues are covalently bound per enzyme molecule. 
Lower derivatization leads to lower stabilization. (d) ----- activity of chymotrypsin non-
covalently entrapped within a polymethacrylate gel. All reactions were performed at 60°C 
using low molecular weight artificial substrates. The immobilized chymotrypsin preparations 
showed stabilization of up to 100,000 fold, most of which is due to their multipoint nature 
although the consequent prevention of autolytic loss of enzyme activity must be a significant 
contributory factor. Reproduced with permission from Martinek et al, 1977a,b. 

In general, the use of immobilized enzyme can be divided into two major categories of 
applications: in biosensors and bioreactors. However, list is growing in the other fields of 
ecological, environmental, agriculture, health, oceanic, space and earth sciences. 
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7. New developments in art of enzyme inhibition  

Now a day, immobilized enzymes are used in industries and have value as medicinal and 

industrial enzyme products. Good examples of industrial enzymes are amylase, 

glucoamylase, trypsin, pepsin, rennet, glucose isomerase, penicillinase, glucose oxidase, 

lipase, invertase, pectinase, cellulase in medicinal use. With emergence of new inhibitors in 

the quest of drug discovery, several new inhibition mechanisms are expected in case of new 

substrate analogues. New substrate–enzyme active site interactions are envisaged due to 

different binding intricacies. Some examples of emerging concepts are outlined in following 

description and readers are expected to read advanced literature on these applications. 

 Slow-tight inhibition: Slow-tight inhibition occurs when the initial enzyme-inhibitor 

complex EI undergoes isomerizing conformational change to a more tightly binding 

complex. However, the overall inhibition process is reversible. This manifests itself as 

slowly increasing enzyme inhibition. Under these conditions, traditional Michaelis-

Menten kinetics gives a false value of a time-dependent Ki. The true value of Ki can be 

obtained through more complex analysis of the on (kon) and off (koff) rate constants for 

inhibitor association.  

 Substrate and product inhibition: Substrate and product inhibition is where either the 
substrate or product of an enzyme reaction inhibits the enzyme's activity. This 
inhibition may follow the competitive, uncompetitive or mixed patterns. In substrate 
inhibition there is a progressive decrease in activity at high substrate concentrations. 
This may indicate the existence of two substrate-binding sites in the enzyme. At low 
substrate, the high-affinity site is occupied and normal kinetics is followed. However, at 
higher concentrations, the second inhibitory site becomes occupied, inhibiting the 
enzyme. Product inhibition is often a regulatory feature in metabolism and can also be a 
form of negative feedback; see allosteric regulation [Pryciak 2008, Bashor 2008]. 

 Antimetabolites: They are chemicals that interfere with the normal metabolism of 

normal biochemical metabolite(s). This in most of case is due to their structural 

similarity to such physiological substrates and therefore works as competitive enzyme 

inhibitors. They include antifolates such as methotrexate, hydroxyurea and purine and 

pyrimidine analogues. They are mainly used as cytotoxic anticancer drugs through 

inhibiting DNA and RNA synthesis and cell division. An example of nitroimidazole is 

described in detail on its metabolic effects at cellular level in this book [Sharma 2012a].  

 Antienzyme: Intestinal parasites, e.g., Ascaris, protect themselves from digestion by 
expressing on their surface substances that are protein in nature which inhibit the action 
of digestive enzymes, e.g., pepsin and trypsin. The blood plasma and extracellular 
fluids are containing several types of protease inhibitors particularly important in 
controlling the blood clot formation and dissolution and matrix and cytokine 
homeostasis. Most of these inhibitors are peptides and several of them are also isolated 
from raw egg white, potatoes, tomatoes and Soya bean and other plant sources. Most of 
the natural peptide protease inhibitors are similar in structure to the amino acid 
sequence of the peptide substrates of the enzyme. Designed peptide protease inhibitors 
are important drugs, e.g., captopril that is a metalloprotease angiotensin-converting 
enzyme peptide inhibitor. Inhibiting this enzyme prevent activation of angiotensin and 
therefore prevent vasoconstriction to lower blood pressure. Crixivan is an anti-
retroviral aspartyl protease peptide inhibitor used in the treatment of Human 
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Immunodeficiency Virus (HIV)-induce acquired immunodeficiency syndrome (AIDS). 
It inhibits the HIV protease that cleaves the large multidomain viral protein into active 
enzyme subunits. Because these peptide inhibitors may not be specific, they have 
several side-effects as drugs.  

 Antibodies against several nonfunctional plasma enzymes have clinical diagnostic 
importance since they are longer living than the enzyme itself and hence reflect the 
disease history better. In this respect, autoimmune antibodies are clinically important in 
diagnosis of autoimmune diseases, e.g., anti-glutamic acid decarboxylase antibodies in 
type 1 diabetes mellitus. 

 Biosensors: Light inhibits most enzyme activity although some enzymes, e.g., amylase 
are activated by red or green light and also specific DNA repairing enzymes (e.g., UV-
specific endonuclease) are activated by the blue and UV light. Ultraviolet rays and 
ionizing radiations cause denaturation of most enzymes. Most enzymes contain 
sulfhydryl (-SH) groups at their active sites which upon oxidation by oxidants and free 
radicals by oxidants and free radicals inactivate the enzyme. Examples: Effect of 
radiations, light and oxidants on the rate of the enzyme catalyzed reaction. 

 Other application of membrane bound redox enzymes constitutes them as a scaffolding 
enzyme arrangement into systems for multi-step catalytic processes. The reconstruction 
of portions of this redox catalytic machinery, interfaced to an electrical circuit leads to 
novel biosensing devices or biosensors. An example of nitric oxide synthase enzyme is 
cited in this book [Sharma, 2012b].  

 In EzNET® water purifying system, nitrate pollution is eliminated. Enzyme is 
immobilized on “beads” with an electron-carrying dye as shown in Figure 28. 
Reduction of nitrate to environmentally safe nitrogen gas is driven by a low voltage 
direct current. 
 

 
 

Fig. 28. EzNET® system shows immobilized enzyme on “beads” with an electron-carrying 
dye. In this system, reduction of nitrate generates environmentally safe nitrogen gas driven 
by a low voltage direct current. Source: The Nitrate Elimination Co., Inc. 2000. 
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 In biolumescence detection for toxicity of HPV chemicals or drug development, 62 kDa 
MW oxygenase (yellow green light emitted at 560 nm) enzyme gives 88 photon/cycle 
light output proportional to [ATP] according to:  

Luciferin + luciferase + ATP  luciferyl adenylate-luciferase + pyrophosphate 

Luciferyl adenylate-luciferase + O2  Oxyluciferin + luciferase + AMP + light 

Strong inhibition of luciferase by chloroform or HPV chemicals indicates the efficiency of 

immobilized recombinant luciferase enzyme system as shown in Figure 20. Inhibition by 

chloroform is much reduced in the mutant Luciferase compared to the wild type Luciferase 

as shown in Figures 29, 30. 

 

Source: Kim et al. AIChEngg Annual Meeting 2003, San Francisco, CA. 

Fig. 29. A sketch of recombinant luciferase is shown illustrating the gene clone. 

 In the search for new therapeutics, the high throughput screening (HTS) of ligands for key 
target proteins, enzymes represent the principal hit identification tool for early drug 
discovery [Bartolini et al. 2009]. However, output depends on cost-based or amount-based 
limitation of target availability, need of speed, automation and easy coupling of the 
enzyme assay with separation systems (affinity chromatography of immobilized proteins) 
and appropriate detectors. Good example is targeting in drug discovery represented by 
enzyme inhibition mechanism in monolithic immobilized enzyme reactors (IMERs) to 
represent different phases of the drug discovery pathway-starting with active compounds 
(hit) identification, through drug development and lead optimization, early ADMET 
(absorption, distribution, metabolism, excretion, toxicity) studies and quality control of 
protein drugs. Some details are described in chapters in this book [Bartolini et al. 2005, 
2007]. Interested readers are requested to read advanced text books on these 
aspects. Different IMER have own requirements for optimal performances to show an 

www.intechopen.com



 
Enzyme Inhibition: Mechanisms and Scope 33 

increased data output, reliability and stability to translate into cost reduction for potential 
applications in pharmacy industry [Bartolini et al. 2005, 2007]. 

 
 

  

 

Source: Kim et al. AIChEngg Annual Meeting 2003, San Francisco, CA. 

Fig. 30. Inhibition of luciferase activity by increasing the concentration of chloroform. 

8. Softwares and computerization in enzyme inhibition kinetics 

Recently softwares have popped up to visualize custom visual interface to see curve fits in 
real-time, graph transforms, equations using kinetic data entry in terms of substrate, inhibitor, 
activator, velocity, and standard deviation of the velocity. Data tables are directly generated 
linked to the Fitting Panel of software. The data and results analysis is transferred in user-
friendly lay-out, ANOVA window, % inhibition using Monte-Carlos fits, and receptor or 
ligand binding calculator. For interested readers, VISUALENZYMICS 2010® is available for 
statistical analysis for enzyme kinetics.[ http://www.softzymics.com/visualenzymics.htm].  

9. Limitations and challenges 

Above mentioned description on mechanism and applications shows a clear issue on need 
of careful analysis for enzyme inhibition factors, presumptions of enzyme reaction, use of 
new immobilized enzyme support and enzyme recording/monitoring methods. Challenge 
is that most of times, basic presumptions do not hold true in enzyme reactors and addition 
of new factors further complicate the calculation of reactor outcome. Most of the times, 
computer based kinetic calculations average out outcome as less realistic with more chances 
of variants. Other major challenge is that each time enzyme reactor outcome depends on 
individual inhibitor and individual enzyme reactor at different times. It is less reproducible 
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and unpredictable because of synergy, interplay of known and unknown physical, 
physiological, biological, molecular factors affecting reaction kinetics.  

10. Impact of enzyme inhibition science in business 

The major current and emerging therapeutic markets for enzyme inhibitors used in human 

therapeutics are very high. New information is available on biochemistry for enzyme 

inhibitors and classes of enzyme inhibiting products with broad current or potential 

therapeutic applications in large markets. However, more than 100 enzyme inhibitors are 

currently marketed and double than those are under development. A better understanding 

of the emerging enzyme inhibitors on enzyme mechanism is main key. These include 

selected indications for asthma and chronic obstructive pulmonary disease (COPD), 

cardiovascular diseases, erectile dysfunction, gastrointestinal disorders, hepatitis B virus 

infection, hepatitis C virus infection, herpesvirus infections, human immunodeficiency virus 

(HIV)/acquired immune deficiency syndrome (AIDS) and rheumatoid arthritis and related 

inflammatory diseases. Key information from the business literature and thorough enzyme 

inhibition research is the basis of expert opinion on commercial potential and market sizes 

from enzyme industry professionals. Since initial reports on chemical immobilization of 

proteins and enzymes first appeared ∼30 years ago, immobilized proteins are now widely 

used for the processing of products in industries from food business to environmental 

control. In recent years, use of chemical immobilization was extended to immobilized 

antibodies or antigens in bioaffinity chromatography. In coming years, it is speculated that 

immobilization techniques of proteins and enzymes will have greater impact on point-of-

care medical and health business.  

11. Conclusion 

Enzyme inhibition is significant biological process to characterize the enzyme reaction, 

extraction of catalysis parameters in bio-industry and bioengineering. Conceptual models of 

inhibition define the interactions of substrate-enzyme or inhibitor-enzyme or both substrate-

enzyme-inhibitor in the moiety of active site. In recent years, application of enzymes and 

enzyme inhibition science have gone in healthcare, pharmaceutical, bio-industries, 

environment, and biochemical enzyme chip industries with great impact on healthcare and 

medical business. Last decade has shown the measurement and accuracy of enzyme 

detection up to the scale of picometer and enzyme industry is entering in the area of 

picotechnology. Immobilized enzyme technology has given a new way of economic tools in 

drug discovery and biosensor industry. Every year new enzyme inhibitors are discovered 

useful as drugs but success still needs to minimize challenges. 

12. Acknowledgements 

Author acknowledges the suggestions of Dr Pagandai V. Pannirselvam, MTech, Ph.D at 

Centro de Technologia, UFRN, Lagoa Nova–Natal/RN Campus Universitário. North East, 

Brazil. Author contributed to explain intriguing issues on enzyme inhibition and 

highlighted the need of better understanding on mechanism of inhibitors before applying 

them in industries.  

www.intechopen.com



 
Enzyme Inhibition: Mechanisms and Scope 35 

13. References 

Amtul, Z. Atta, Ur. R., Siddiqui, R.A., Choudhary, M. I. (2002). Chemistry and mechanism of 
urease inhibition. Current Medicinal Chemistry, Vol 9, pp 1323-1348. 

Bartolini M., Cavrini V., Andrisano V. (2005) J. Chromatogr A, Choosing the right 
chromatographic support in making a new acetylcholinesterase microimmobilized 
enzyme reactor for drug discovery. Vol 1065, pp 135-144.  

Bartolini M, Greig NH, Yu QS, Andrisano V. (2009) Immobilized butyrylcholinesterase in 
the characterization of new inhibitors that could ease Alzheimer’s disease. J 
Chromatogr A. Vol 1216(13), pp 2730-38.  

Bartolini M., Cavrini V., Andrisano V. Characterization of reversible and irreversible 
acetylcholinesterase inhibitors by means of an immobilized enzyme reactor. J. 
Chromatogr. A (2007) Vol 1144, pp 102 –10.  

Bartolini M, Andrisano V. (2009) Immobilized enzyme reactors into the drug discovery 
process: The Alzheimer’s Disease case. Web Source:  

 http://www.farm.unipi.it/npcf3/pdf/BartoliniManuela.pdf 
Bashor, C.J., Helman,N.C., Yan, S., Lim, W.A. Using Engineered Scaffold Interactions to 

Reshape MAP Kinase Pathway Signaling Dynamics. Science.Vol 319 (5869), pp1539-
1543 

Berg, J.M., Tymoczko, J.L., Stryer, L. (2011) Biochemistry ISBN-13: 978-1429231152, Freeman 
WH and Company. 

Cleland, W.W.(1979) Substrate inhibition, Methods Enzymol. Vol 63, pp 500-513. 
Dixon,M., Webb,E.C. (1979) Enzymes, 3rd ed., Academic Press, New York. 
El-Metwally, T.H., El-Senosi, Y. (2010) Enzyme Inhibition. Medical Enzymology: Simplified 

Approach.Chapter 6, Nova Publishers, NY. pp 57-77. 
Jakbowski H. (2010a) Personal communication. Online study. Chapter 6- Transport and 

Kinetics. C. Models of Enzyme Inhibition and D. More complicated Enzymes. 
Internet source.  

 http://employees.csbsju.edu/hjakubowski/classes/ch331/transkinetics/olcompli
catedenzyme.html  

--ibid- (2010b)  
 http://employees.csbsju.edu/hjakubowski/classes/ch331/transkinetics/olinhibiti

on.html 
Laider, K., Bunting, P. (1980) The kinetics of immonbilized enzyme systems. Methods 

Enzymol. Vol 64, pp 227-248. 
Martinek, K., Klibanov, A.M., Goldmacher, V.S. & Berezin, I.V. (1977a) The principles of 

enzyme stabilization 1. Increase in thermostability of enzymes covalently bound to 
a complementary surface of a polymer support in a multipoint fashion. Biochimica 
et Biophysica Acta, Vol 485, pp 1-12.  

Martinek, K., Klibanov, A.M., Goldmacher, V.S., Tchernysheva, A.V., Mozhaev, V.V., Berezin, 
I.V. & Glotov, B.O. (1977b) The principles of enzyme stabilization 2. Increase in the 
thermostability of enzymes as a result of multipoint noncovalent interaction with a 
polymeric support. Biochimica et Biophysica Acta Vol 485, pp 13-28. 

Nelson, D.L., Cox, M.M. (2008) Lehninger Principles of Biochemistry. 5th Edition ISBN-13: 
978071677108, Freeman W.H. and Company. 

Pryciak, P. (2008) Customized Signaling Circuits. Science 319, pg 1489. 

www.intechopen.com



 
Enzyme Inhibition and Bioapplications 36

Rees, D.C. (1984) A general solution for the steady state kinetics of immobilized enzyme 
systems. Bulletin of Mathematical Biology, Vol 46, 2,pp 229-234. 

Sami, A.J., Shakoor, A.R.. (2011) Cellulase activity inhibition and growth retardation of 
associated bacterial strains of Aulacophora foviecollis by two glycosylated 
flavonoids isolated from Mangifera indica leaves. Journal of Medicinal Plants 
Research (2011) Vol. 5(2), pp. 184-190. 

Sharma,R. (1990) The effect of nitroimidazoles on isolated liver cell metabolism during 
development of amoebic liver abscess. Dissertation submitted to Indian institute of 
Technology, Delhi and CCS University. 

Sharma, R. (2012a) Mechanisms of Hepatocellular Dysfunction and Regeneration: Enzyme 
Inhibition by Nitroimidazole and Human Liver Regeneration. In: Enzyme Inhibition: 
Concepts and Bioapplications. Chapter 7, InTech Web Publishers, Croatia. ISBN 979-
953-307-301-8.  

Sharma, R. (2012b) Inhibition of Nitric Oxide Synthase Gene Expression: In Vivo Imaging 
Approaches of Nitric Oxide with Multimodal Imaging. In: Enzyme Inhibition: 
Concepts and Bioapplications. Chapter 8, InTech Web Publishers, Croatia. ISBN 979-
953-307-301-8.  

www.intechopen.com



Enzyme Inhibition and Bioapplications

Edited by Prof. Rakesh Sharma

ISBN 978-953-51-0585-5

Hard cover, 314 pages

Publisher InTech

Published online 09, May, 2012

Published in print edition May, 2012

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

Enzyme Inhibition and Bioapplications is a concise book on applied methods of enzymes used in drug testing.

The present volume will serve the purpose of applied drug evaluation methods in research projects, as well as

relatively experienced enzyme scientists who might wish to develop their experiments further. Chapters are

arranged in the order of basic concepts of enzyme inhibition and physiological basis of cytochromes followed

by new concepts of applied drug therapy; reliability analysis; and new enzyme applications from mechanistic

point of view.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Rakesh Sharma (2012). Enzyme Inhibition: Mechanisms and Scope, Enzyme Inhibition and Bioapplications,

Prof. Rakesh Sharma (Ed.), ISBN: 978-953-51-0585-5, InTech, Available from:

http://www.intechopen.com/books/enzyme-inhibition-and-bioapplications/enzyme-inhibition-mechanisms-and-

scope



© 2012 The Author(s). Licensee IntechOpen. This is an open access article

distributed under the terms of the Creative Commons Attribution 3.0

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.


