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1. Introduction 

A texture is a pattern represented on a surface or a structure of an object. Classifying a 
texture involves pattern recognition. Integration of texture classification is a one step ahead 
for machine vision application. For the past few decades until now, many researchers from 
various fields have been trying to develop algorithms to do texture discrimination. Alfréd 
Haar created the first discrete wavelet transform (DWT) in Haar (1911) which led to the 
development of the fast Fourier transform (FFT) and the other forms of DWT to detect 
periodic signals. Haralick had developed grey level co-occurrence probabilities (GLCP) with 
statistical features to describe textures (Haralick et al., 1973). The hidden Markov model 
(HMM) is another statistical method used for pattern recognition (Rabiner, 1989). 

The classification process starts with image acquisition to retrieve the partial information 
carried by the test image. The general framework of texture classification is divided into two 
important stages, which are feature extraction and feature selection. Feature extraction is a 
process of transforming a texture into a feature domain based on the intensity distribution 
on a digital image. On the other hand, feature selection is a process of integrating a set of 
conditional statements and routines, so that the computing system can logically decide 
which pixels belong to which texture. 

The texture classification methods are the tools which have been used to assist in medical 
imaging. For example, to classify the breast cancer tumour in Karahaliou et al. (2007) based on 
mammography imagery, to detect abnormalities in patients using Magnetic Resonance 
Imaging (MRI) imagery (Zhang et al., 2008), and precisely segmenting human brain images on 
Computed Tomography (CT) imagery for visualization during surgery (Tong et al., 2008). 

In food science, texture classification techniques aid on improving the quality of food and 
decrease the rate of food poisoning cases.  For instance, a non-supervised method of texture 
classification is proposed to estimate the content of Intramuscular Fat (IMF) in beef on Du et 
al. (2008) and thus improving the meat quality. 

In remote sensing, texture classification is used to analyze satellite Synthetic Aperture Radar 
(SAR) imagery for multiple purposes. The analyzed satellite imagery might be used to 
monitor flood situations (Seiler et al., 2008), large scale construction planning, archeological 
research, weather forecasting, geological study etc.  Texture segmentation is also applied in 
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the study of global warming by detecting and estimating the size of the icebergs at the 
North Pole from time to time (Clausi, 2002a).  

Another breakthrough in the advancement of security is in biometric authentication. One of 
the biometric measures is in using the human eye as an identity of a person. The human iris 
contains texture patterns which are unique in nature and thus texture classification 
techniques can be applied on this iris imagery (Bachoo & Tapamo, 2005). 

The first section has briefly introduced the texture classification and its applications. We 
highlighted the importance of texture classification in science. A literature review on the 
current existing methods is discussed in Section 2 and 3. The main challenge of texture 
classification is pointed out. Section 4 explains the theories behind our research 
methodologies. The non-parametric statistics are developed and used to generate statistical 
features from a given textured image. In the feature extraction section, we will provide a 
general formulation for our proposed method called cluster coding and explain briefly the 
parameters being used for texture classification purposes. Furthermore, the solution to solve 
the misclassification problem is also provided. A practical analysis on the digital 
mammogram using our proposed method is shown in Section 5. We will conclude with a 
summary of our contributions in Section 6. 

There are four goals in this chapter which are as follows: - 

a. To show how statistical texture descriptions can be used for image segmentation. 
b. To develop algorithms for feature extraction based on texture images. 
c. To develop algorithms for texture segmentation based on texture features analyzed. 
d. To illustrate the above objectives using an application on a mammogram image. 

2. Feature extraction 

There are several mathematical models which are used to extract texture features from an 
image. This section briefly discusses the five main feature extraction methods, namely 
autocorrelation function (ACF), Gabor filter, DWT, HMM, and GLCP. Besides, some 
combination of methods using different models are also developed to increase the 
robustness of texture segmentation system. We will briefly discuss two hybrid methods; 
these are Gabor wavelet and wavelet-domain HMM. 

Gabor filter is one of the texture descriptors based on the Fourier transform (FT). A discrete 
FT is first taken from the test image to generate a two dimensional (2D) sinusoidal signal. 
For texture recognition, the Gabor filter bank contains a list of sub-bands of different signals 
generated by different textures. After the sub-bands are determined, the 2D signal of test 
image will multiply one of the chosen sub-bands and yield only the frequencies that match 
the sub-band. The product is then transformed back by taking the inverse FT and this leaves 
only the location of the texture feature which matches the signal. The process continues with 
each possible sub-band and produces the locations where the same signals occur (Petrou & 
Sevilla, 2006).  

Gabor filter is useful in adapting sinusoidal signals whereby it can be decomposed into a 
weighted sum of sinusoidal signals. Thus Gabor filter is suitable to decompose textural 
information. Experiments done by Clausi & Deng (2005) stated that the Gabor filter can well 
recognize low and medium frequencies, but it produces inconsistent measurements for high 
frequencies due to the noise in the signal. The feature domain generated by Gabor filters are 
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not distinctive enough for high frequencies and thus could affect the segmentation result 
(Hammouda & Jernigan, 2000). 

Texture pattern can also be modeled as a transitional system using HMM. A Markov model 
assumes a texture pattern have a finite number of states and times. Each probability of a 
state is determined by the previous probability of the state. Three issues can arise from 
HMM observations; these are evaluation, decoding, and learning. HMM evaluation is to 
compare the probabilities of different models which best describe the texture feature. HMM 
decoding is to decompose and provide an estimated basis of texture patterns based on the 
HMM observations. The HMM learning searches for which model parameters best describe 
the texture pattern (Sonka et al., 2007). 

The HMM can generate a consistent measurement for texture patterns based on the best 
probabilities. However, one or more observations which produce undesired probabilities 
could generate disorderly sequences due to the noisy pattern in the test image (Sonka et al., 
2007). 

ACF is another method to describe texture patterns. The function helps to search for 
repeated patterns in a periodic signal. The function also identifies the missing basis of 
texture patterns hidden under the noisy patterns. In using the ACF, the mean of each image 
is adjusted before applying the general formula. Thus we are actually computing the 
normalized auto-covariance function. One can characterize a texture pattern by inferring the 
periodicity of the pattern (Petrou & Sevilla, 2006). 

The ACF feature is well demonstrated and distinctive between textures on a three 
dimensional (3D) graph. In feature selection, inferring the periodicity of a texture feature is 
done by observing several threshold points of the auto-covariance function and then 
counting the number of peaks for each threshold in a fixed variation. This may result in a 
random fluctuation and texture segmentation may fail because of two issues; there is not 
enough information by taking only one dimensional (1D) threshold to compare and an 
appropriate set of standard deviation of the distances between peaks are needed to know 
when the periodicity end. For example, the lagged product estimator and time series 
estimator are proposed to select ACF feature in Broerson (2005). But to appropriately 
characterize the texture pattern by its periodicity is still an active area of research. 

Instead of using the Gabor filter for feature extraction, wavelet is well known today as a 
flexible tool to analyze texture. Wavelet is a function whereby the basic function, namely the 
mother wavelet is being scaled and translated in order to span the spatial frequency domain. 
The DWT is done by the product of a corresponding signal generated by a pattern and the 
complex conjugate of the wavelet, and then integrating over all the distance points 
conveyed by the signal. In texture analysis, a tree data structure namely a packet wavelet 
expansion is used to split the signal into smaller packets and expand a chosen band at each 
level of resolution (Petrou & Sevilla, 2006). 

The DWT can become rotation invariant in texture analysis by taking the logarithm of the 
frequency sub-band. However this will damage the frequency components of the 
corresponding signal generated by a texture pattern and thus may obtain inaccurate result 
(Khouzani & Zadeh, 2005). 

GLCP method is a non-parametric solution whereby the textures are described in a discrete 
domain (Petrou & Sevilla, 2006). GLCP statistics are used to preserve the spatial 
characteristics of a texture. The selection of certain texture is possible as it is based on the 
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statistical features. The best statistical features that are used for analysis are entropy, 
contrast, and correlation (Clausi, 2002a). However, further analysis in Jobanputra & Clausi 
(2006) shows that correlation is not suitable for texture segmentation. GLCP statistics can 
also be used to discriminate between two different textures. Boundaries can be created from 
the shift on statistical feature while moving from one texture to another (Jobanputra & 
Clausi, 2006). Clausi & Zhao (2002) also proposed grey level co-occurrence linked-list 
(GLCLL) structure and grey level co-occurrence hybrid histogram (GLCHH) structure in 
Clausi & Zhao (2003) to this non-parametric solution for storing purpose in order to speed 
up the computational time for GLCP feature extraction. 

Wavelet-domain HMM can be described as a finite state machine in the wavelet domain. 
The hidden Markov tree (HMT) can identify the characteristics of the joint probabilities of 
DWT by capturing the scale dependencies of wavelet co-efficient via Markov chains (Fan & 
Xia, 2003). Since this method is based on the wavelet domain, the disorder sequence of 
signal generated by the noise in the texture patterns may weaken the cross-correlation 
between DWT sub-bands (Fan & Xia, 2003). Ming et al. (2008) proposed the wavelet hidden-
class-label Markov random field to suppress the specks of noise, but there are some small 
blobs of noises still appearing in the results of the segmented imagery. 

3. Feature selection 

The texture feature selection stage is the most important part of the texture segmentation 
process because it determines which pixels belong to which texture of an image. The use of 
parameters of a chosen method is crucial to the output of the result.  

K-means algorithm has become a popular clustering method which is used for pattern 
recognition. Given the number of clusters, K, the algorithm will start at a random K number 
of centres. Then, each of the centres will group the features using the closest distances or 
Euclidean distance measures. The locations of the features with the same cluster will 
determine the new centre for each cluster. The process will then repeat until the centre of 
each texture class remains the same. 

K-means algorithm assumes that all clusters are in spherical shape, but it may return 
inappropriate result for non-spherical clusters (Clausi, 2002b). In the real life 2D feature set 
is not always in spherical shape and normally the number of classes is unknown. 

Support vector machines (SVM) algorithm is a slow but highly accurate clustering method. 
The SVM training algorithm was introduced by Boser et al. (1992). The purpose of SVM is to 
map feature vectors into a higher dimensional feature space, and then creating a separating 
hyperplane with maximum margin to group the features. Support vectors (SVs) contain 
highlighted pixels that help to create the margins or boundaries in an image. The higher 
dimensional space is defined by a kernel function. Some of the popular kernels are shown in 
Schölkopf & Smola (2002). A combined GLCP and SVM technique has been proposed for 
two class segmentation with significant result in Khoo et al. (2008). 

Expectation-maximization (EM) algorithm is a statistical estimation algorithm used for finding 
maximum likelihood and estimates of parameters in probabilistic models. The parameters 
involve means, variances, and weights (Tong et al., 2008). The EM algorithm starts by 
initializing the parameters to compute the joint probability for each cluster. The algorithm then 
iterates to re-estimate the parameters and maximize the probability for each cluster until the 
set of convergence values of probabilities are obtained (Bishop, 2006). The convergence 
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probabilities are only dependent upon the statistical parameters, so we must carefully choose 
these parameters, especially the parameters for texture patterns (Diplaros et al., 2007). 

The self-organizing map (SOM) is an unsupervised single layer artificial neural network 
(ANN). In the SOM training environment, a digital image is mapped as a grid. A set of 
neurons will be placed at random grid points where each neuron is stored as a cluster centre 
(Chen & Wang, 2005). SOM clusters regions which have similar pattern and separates the 
dissimilar patterns based on a general distance function (Martens et al., 2008). The SOM 
learning process is similar to the K-means clustering where it iterates until each of the 
cluster centre converges to the centre of the possible texture patterns. 

The advantage of SOM is that the more number of neurons are placed in the grid, the higher 
classification result will be obtained. However, if the numbers of neurons are too large, SOM 
may end up with over classification (Martens et al., 2008). On the other hand, the numbers 
of neurons required is unknown. Furthermore, the classification using SOM may fail at the 
local minimum in training (Abe, 2005). 

4. Methodology 

A texure pattern can be identified by  

a. Counting the number of repetition of its primitive, 
b. Average brightness of the primitive, and 
c. The structural distribution of its primitive. 

In a stochastic texture, it is not possible to determine (a), (b), and (c). To classify this texture, a 
measure of its density has to be computed. Therefore, the statistical modelling of GLCP is used 
to extract textural features. A general classification approach, namely the cluster coding is 
proposed. This approach preserves the textural information of a given textured image. 

4.1 Enhanced two-dimensional statistical features 

Given a textured image, the grey level intensities of the pixel set can be retrieved. A grid with 
equal sized cells is fitted onto the image. For each cell, the grey level intensities of the local 
neighbourhood pixels are taken into consideration when computing the joint probabilities 
density function. The Equation 1 shows the statistical feature for a cell, v(i,j) based on the joint 
probability density function. i and j are the positions of a cell on the image. 
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where F(s,t) represents the frequency of occurrence between grey levels, s and t. G is the 
quantized grey levels which forms a G×G co-occurrence matrix. 

Histogram equalization is applied to achieve higher separability between to different 
textures in the image. The feature set, v is distributed in a frequency histogram in order to 
calculate the cumulative distribution function, cdfk using Equation 2, 
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The general definition for histogram equalization (Gonzalez & Woods, 2006), Hk is 

  { }min

min

( 1),  1,2,..., 1k
k

cdf cdf
H G k G

t cdf

−
= × − ∈ −

−
 (3) 

where cdfk, a cumulative distribution function is the total number of feature sets and min is 
the minimum for the set of cumulative distribution function. The design process is shown in 
Figure 1. 

Start

If cell reached the pixel block at the bottom right 
corner of the test image

First cell start from the pixel block at the 
upper left corner of the test image

In the local window/ pixel block:
1.For each pixel, get the values of quantized grey level at the current 
and the neighbour position.
2.Assign the values of the pixel pair in step 1 as entry position to the 
GLCM, then increase the position in the matrix by one to become the 
frequency of occurrence between the pixel pair, F(s,t).
3.Repeat step 1 & 2 for other angles used in another GLCM.

Based on the frequencies stored in GLCM,
1.Compute the joint probability density 
function or GLCP.
2.Compute all the selected statistical 
features based on GLCP.

Reset all entries of the 
GLCMs and the GLCP.

Move to the next cell
(Cell sequence started from 

top to bottom, then follow by 
left to right)

NO

YES
End

Initialize a GLCM(G×G) for each 
angle used.

1.Compute a grey level intensity, Ii for each pixel on a test 
image.
2.Set a grey level quantization, G value.
3.Compute the corresponding grey level quantized value for 
each Ii.
4.Set the cell size, M×N.
5.Set the distance between pixel pair (fixed to 1).
6.Set the angles to be used.

 

Fig. 1. The flowchart of the GLCP algorithm for feature extraction. 

www.intechopen.com



 
A Design for Stochastic Texture Classification Methods in Mammography Calcification Detection 

 

49 

4.2 Cluster coding classification 

Figure 2 demonstrates the basic concept of the cluster coding algorithm. The classification 

process is run on a split-and-merge operation. The splitting part is shown in Figure 2(b) and 

2(c), while the merging part is shown in Figure 2(d). 

    
(a)                                   (b)                                   (c)                                   (d) 

Fig. 2. Cluster coding conceptual diagram. (a) Desired segments. (b) Feature A coded in 2 

clusters. (c) Feature B coded in 2 clusters. (c) Summation of codes from (b) and (c). 

Each feature set is split up into coded clusters using the mean shift estimator (MSE). Mean 

shift estimator locate the local maxima of a feature set. The MSE is defined as, 

 
1 2

1 2

| ( , ) ( , |) ( , )
( ( , ))

| ( , ) ( , )|

K v i j v i j v i j
MSE v i j

K v i j v i j

δ δ

δ δ

− + +⎡ ⎤⎣ ⎦=
− + +⎡ ⎤⎣ ⎦

 (4) 

where K is the smoothing kernel function. δ1 and δ2 are the shifting parameters of v(i,j). The 

mode seeking of one-dimensional version of feature set is illustrated in Figure 3. In the 

figure, the dotted line is the splitting point at the position 3.5. The flowchart for cluster 

coding is shown in Figure 4. 

 
 

Fig. 3. Line graph of the feature values and the corrresponding MSE. 
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1. Determine feature to be used.
2. Configure a suitable threshold using MSE for 
each domain.
3. Split each feature into 2 clusters.

Start

Check if codes exist

1. Each regions assigned with a unique code.
2. Sum up all codes from each region in every 
feature.

Check for the first 
code

YES NO

1. Create a new cluster.
2. Plus 1 count for the population of the 
new cluster.

NO

Plus 1 count for the population of 
the existing cluster .

YES

Sort each cluster in descending order (Start 
from the biggest population of the cluster to 

the smallest population of the cluster)

Check if there exist clusters with 
small population.

Assign a special label for 
these clusters as 

undetermine cluster.

YES

NO

End

The initial block start at the top 
left of the image.

Move to the next cell
(Cell sequence started from top 
to bottom, then follow by left to 

right)

Check if the current cell reached 
the bottom right of the image.

NO

YES

 

Fig. 4. The flowchart of the cluster coding algorithm. 

4.3 Correction for misclassification 

Each classified region on the image is identified. Two rules are set, in order to examine the 
region as to whether it is a misclassified blob or a texture class on the image. If the region is 
the texture class, then 
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Rule I: The located region has achieved the minimum population, and 
Rule II: There is no dominated population encircled by it’s neighbourhood region. 

The region reclassifies if there exist a dominated population surrounding its neighbourhood 
region. Figure 5 provides the detail flowchart for this approach. 

 Start

Check if the centre pixel 
already visited

1.The initial pixel start at the top left of 
the image.
2. Set the first pixel as centre pixel .

1. Search all the same and connected pixels 
and store in the interior vector.
2. Store any counter label of edges in the 
edge vector.

Check if both the Rule I and Rule II 
are true.

1. Count the size for each label of the edges 
from the edge vector.
2. Determine the label of dominant edge, 
edgedmt among all the edges.

NO

YES

NO

All the interior pixels are merge to the 
label of dominant edges.

1.Move to the next pixel.
2. Set the next pixel as centre pixel.

YES

Check if the centre pixel reached 
the bottom right of the image.

NO

End

YES

 

Fig. 5. The flowchart of the modified flood fill algorithm for cluster merged. 
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5. Results and applications 

The design in Section 4 is developed using C++ programming language and implemented 
on a computer with the specification of 1.66GHz Intel Core 2 Dual processor, 3.37GB DDR2 
RAM memory, and 256MB nVidia Quadro FX 1500M GPU for image display. This section is 
divided into three subsections; the initial tests using artificially created texture images 
followed by the application background and the application results. 

5.1 Initial test  

An initial testing procedure is being carried out to verify the design mentioned in Section 4. 
Three Brodatz’s textures are used to fill the regions as can be seen in Figure 6(a). The 
oriental rattan (D64) is fitted in the Times New Roman font type of the character ‘S’. The 
non-linearity of the ‘S’ shape in Figure 6(a) is intentionally created to add the complexity of 
the classification process. 

  
(a)                                                           (b) 

  
(c)                                                       (d) 

Fig. 6. Brodatz’s textures classification test. (a) Texture mosaic contains handmade paper 
(D57), oriental-rattan (D64), and raffia (D84). (b) Classification with cluster coding. (c) Blobs 
correction with Rule I and II in Section 4.3. (d) Edge detection based on (c). 
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Although there are misclassfied blobs in Figure 6(b), the reclassification has effectively 

corrected the entire classified image as illustrated on Figure 6(c). Figure 6(d) is the final 

classification result based on the edge detection in Figure 6(c). The edges in Figure 6(d) is 

captured by detecting the boundaries between the different classes using both the vertical 

line and horizontal line scans. 

Test Data 

Accuracy (%) 

Euclidean Distance 

K-means Clustering 
Proposed Method 

Bi-dimensional data sets, 

Hammouche, et al. (2006) 
78.7178 97.2484 

Table 1. Comparative performance with K-means Clustering. 

We also perform a quantitative comparison with the Euclidean distance based K-means 

clustering (EDKMC) using the image data sets from Hammouche, et al. (2006) with a 

summary of the accuracy shown in Table 1. The proposed method has achieve less 

classification errors with only 2.7516% as compared to EDKMC errors with 21.2822%. 

5.2 Mammographic scanner 

Mammographic scanner is a specialized device which is used to detect early stage of breast 

cancer. The device makes use of a low dose X-ray, which is a safer way to make diagnosis as 

compared to other vision machines which use higher doses of radiation, such as normal X-

ray and Positron Emission Tomography (PET). 

Besides, the introduction of digital mammography has made it possible to acquire image 

data from the electrical signals of the device for analysis. The classification algorithms can be 

integrated to analyse the image data with the computer. 

The device still emits ionizing radiation, which could cause mutations of human cells. 

Therefore an appropriate design of algorithm is crucial to reduce false positive of diagnosis 

and at the same time reduces the frequencies of scanning. 

5.3 Mammogram results and analysis 

Three possible masses can be seen in the mammogram, which are the calcification clusters, 

cysts, and fibroadenomas. Table 2 explains the details of these masses. The masses need to 

have a multiple viewing observations because the ductal carcinoma or cancer cells might be 

hidden beneath them. Figure 7 shows the examples of masses appearance in mammograms. 

Further diagnosis can be found in Breast cancer - PubMed Health (2011). 

 

Masses Description 

Calcification clusters Calcium salts crystalized in the breast tissue. 

Cysts Fluid-filled masses. 

Fibroadenomas Movable and rounded lumps. 

Table 2. The common masses appearance in mammogram. 
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                                                (a)                                                        (b) 

Fig. 7. Masses appearance in mammograms (Ribes, et al., 2008). (a) A sample of 
microcalcification clusters. (b) A sample of simple cyst. 

  
                                                           (a)                                   (b) 

  
                                                            (c)                                    (d) 

Fig. 8. Mammogram test. (a) A mammogram captured from a woman‘s left breast 
(BreastCancer.org, 2011). (b) Image negative. (c) Areas of macrocalcification clusters using 
the approach in Section 4. (d) Edge detection based on (c). 
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In Figure 7, doctors may have difficulty to spot cancer cells in these masses, particularly the 
calcification clusters in a mammogram. This is because the areas contain textural 
information which are random in nature. Statistical features can be used to measure the 
correlation between the breast tissues and the masses. 

Figure 8(a) shows a women’s left breast. Notice that the breast contains calcification clusters 
scattered around the tissues and there is no sign of cyst or fibroadenomas, as appeared in 
the mammogram. 

Negative image is first obtained to remove the unnecessary dark areas in the mammogram 
(Gonzalez & Woods, 2006), as shown in Figure 8(b). The v(i, j) of the enhanced-GLCP is then 
computed to produce 2D feature space for classification. Finally, the classification is carried 
out using the proposed cluster coding algorithm. 

The propose method highlights the areas of calcification which have the potential spread of 
cancer cells. The end result in Figure 8(d) is optimum since the areas of calcification are in 
the closed boundaries. 

6. Conclusion 

The semantic of cluster coding with MSE is easy to understand and program. The enhanced 
2D statistical features have obtained separability between different textures using histogram 
equalization. The design has been successfully applied in the mammogram for calcification 
clusters detection purpose. This approach can help the doctor or radiologist to focus on the 
critical areas of the mammogram. 
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