
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IntechOpen

https://core.ac.uk/display/322414795?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

21

Real-Time Petri Net Based Control System
Design for Distributed Autonomous Robotic

Manufacturing Systems

Gen’ichi Yasuda
Nagasaki Institute of Applied Science,

Japan

1. Introduction

Generally speaking, flexible manufacturing systems are made up of some flexible
production machines with some local storage facilities for tools and parts, some handling
devices such as robots and a versatile transportation system. It is expected that more and
more robots will be introduced into manufacturing systems to automate various operations
in the near future. However, it is quite obvious that a single robot cannot perform effective
tasks in an industrial environment, unless it is provided with some additional equipment
that allows the machine to grasp, handle and dispose correctly workpieces or mechanical
parts onto which technological operations are to be performed. Therefore, in order to avoid
the need of loading and unloading of parts to the robot manually, it is usually required to
integrate the robot into the production line that also includes machine tools, conveyors, and
other special purpose machines. Mainly to provide flexibility to robots, a lot of researches
have been done to develop an effective programming method for robots. But not much
research has been done to integrate a system which includes various machines (robots and
other devices) that cooperate in the same task (Holding & Sagoo, 1992). A common
programming language for tasks that involve more than one robot or machine should be
provided (Holt & Rodd, 1994).

Robot programs often must interact with people or machines, such as feeders, belt
conveyors, machine tools, and other robots. These external processes are executing in
parallel and asynchronously; therefore, it is not possible to predict exactly when events of
interest to the robot program may occur. The programmable logic controllers (PLC) are
widely used to the programming and control of flexible manufacturing systems.
Implementation languages can be based on ladder diagrams or more recently state
machines. However, when the local control is of greater complexity, the above kinds of
languages may not be well adapted. It is important to have a formal tool powerful enough
to develop validation procedures before implementation. Conventional specification
languages such as ladder diagrams do not allow an analytical validation. Presently, the
implementation of such control systems makes a large use of microcomputers. Real-time
executives are available with complete sets of synchronization and communication
primitives (Yasuda, 2000). However, coding the specifications is a hazardous work and
debugging the implementation is particularly difficult when the concurrency is important.

www.intechopen.com

Manufacturing System

434

The Petri net and its graphical representation is one of the effective means to describe
control specifications for manufacturing systems. From the plant control perspective, the
role and the presence of nets were considered in the scheduling, the coordination and the
local control level (Silva, 1990). However, in the field of flexible manufacturing cells, the
network model becomes complicated and it lacks the readability and comprehensibility.
Therefore, the flexibility and expandability are not satisfactory in order to deal with the
specification change of the control system. Despite the advantages offered by Petri nets, the
synthesis, correction, updating, etc. of the system model and programming of the controllers
are not simple tasks. The merging of Petri nets and knowledge based techniques seems to be
very promising to deal with large complex discrete event dynamic systems such as flexible
manufacturing systems (Gentina & Corbeel, 1987; Maletz, 1983; Wang & Sarides, 1990).

The aim of this chapter is to introduce manufacturing engineering specialists to the basic

system level issues brought up by the development of computer-controlled robotic

manufacturing systems and how Petri nets are applied to resolve the above mentioned

problems of control system design. After some terminology concerning basic Petri nets, the

extensions of Petri nets for manufacturing system control are briefly reviewed. Based on the

hierarchical and distributed structure of the manufacturing system, the net model of the

system is decomposed into a set of interacting local nets and a system coordinator net to

perform distributed autonomous multitasking control based on Petri nets.

2. Modeling of discrete event manufacturing systems with Petri nets

The Petri net is one of the effective means to represent discrete event manufacturing

systems. Considering not only the modeling of the systems but also the well-defined control,

the guarantee of safeness and the capabilities to represent input and output functions are

required. Therefore the Petri net has been modified and extended.

2.1 Modification of basic Petri nets

A Petri net is a directed graph whose nodes are places shown by circles and transitions
shown by bars. Directed arcs connect places to transitions and transitions to places.

Formally, a Petri net is a bipartite graph represented by the 4-tuple { , , , }G P T I O (Murata,

1989) such that:

1 2{ , ,..., }nP p p p is a finite, not empty, set of places;

1 2{ , ,..., }mT t t t is a finite, not empty, set of transitions;

P T , i.e. the sets P and T are disjointed;

:I T P is the input function, a mapping from transitions to bags of places;

:O T P is the output function, a mapping from transitions to bags of places.

The input function I maps from a transition jt to a collection of places ()jI t , known as

input places of a transition. The output function O maps from a transition jt to a collection

of places ()jO t , known as output places of a transition.

Each place contains integer (positive or zero) marks or tokens. The number of tokens in each

place is defined by the marked vector or marking 1 2(, ,...,)T
nM m m m . The number of

www.intechopen.com

Real-Time Petri Net Based Control System Design
for Distributed Autonomous Robotic Manufacturing Systems

435

tokens in one place ip is simply indicated by ()iM p . The marking is shown by dots in the

places. The marking at a certain moment defines the state of the net, or the state of the

system described by the net. The evolution of the state therefore corresponds to an evolution

of the marking, caused by the firing of transitions. The firing of an enabled transition will

change the token distribution (marking) in a net according to the transition rule. In a basic

Petri net, a transition jt is enabled if ()i jp I t , () (,)k i i jM p w p t , where the current

marking is kM and (,)i jw p t is the weight of the arc from ip to jt .

Because discrete event manufacturing systems are characterized by the occurrence of events
and changing conditions, the Petri net type considered is the condition-event net, in which
conditions can be modeled by places whilst events can be modeled by transitions. Events are
actions occurring in a system. The occurrence of these events is controlled by system states.
Because the condition-event system is essentially asynchronous, events always occur when
their conditions are satisfied. Consequently, bumping occurs when despite the holding of a
condition, the preceding event occurs. This can result in the multiple holding of that
condition. From the viewpoint of discrete event process control, bumping phenomena
should be excluded. So, the firing rule of the basic Petri net should be modified so that the
system is free of this phenomenon. Thus the axioms of the modified Petri net are as follows:

1. A transition jt is enabled if for each place ()k jp I t , 1km and for each place

()l jp O t , 0lm ;

2. When an enabled transition jt is fired, the marking M is changed to M , where for

each place ()k jp I t , 0km and for each place ()l jp O t , 1lm ;
3. In any initial marking, there must not exist more than one token in each place.

The number of arcs terminated at or started from a place or a transition is unlimited, but at
most one arc is allowed between a transition and a place. According to these axioms, the
number of tokens in each place never exceeds one, thus, the modified Petri net is said to be a
safe graph. The modified Petri net is a subclass of the Petri net, and it is transformed into the
equivalent Petri net as shown in Fig. 1.

(a) (b)

Fig. 1. (a) A place in the modified Petri net and (b) its equivalent Petri net

2.2 Extensions for real-time control

The extended Petri net adopts the following elements as input and output interfaces which
connect the net to its environment: gate arc and output signal arc. A gate arc connects a
transition with a signal source, and depending on the signal, it either permits or inhibits the
occurrence of the event which corresponds to the connected transition. Gate arcs are
classified as permissive or inhibitive, and internal or external. When the signal is 1 (true), a
permissive arc permits the occurrence of the event. On the other hand, an inhibitive arc
inhibits the occurrence of the event when the signal is 1. An internal arc deduces the signal

www.intechopen.com

Manufacturing System

436

from a place, and the signal is 1 when a token exists in the place, otherwise 0 (false). An
external arc deduces the signal from an external machine. An output signal arc sends the
signal from a place to an external machine. In addition to the axiom 1, a transition is enabled
if it does not have any internal permissive arc signaling 0 nor any internal inhibitive arc
signaling 1. An enabled transition is fired if it does not have any external permissive arc
signaling 0 nor any external inhibitive arc signaling 1. Thus the enabling condition and the
external gate condition are formally expressed as follows.

 , , , ,
1 1 1 1

QM N R
I O IP II

j j m j n j q j r
m n q r

t p p g g

 (1)

 , ,
1 1

U V
E EP EI
j j u j v

u v

g g g

 (2)

where

M : set of input places of transition j

,
I
j mp : state of input place m of transition j

N : set of output places of transition j

,
O
j np : state of output place n of transition j

Q : set of internal permissive gate signals of transition j

,
IP
j qg : internal permissive gate signal variable q of transition j

R : set of internal inhibitive gate signals of transition j

,
II
j rg : internal inhibitive gate signal variable r of transition j

U : set of external permissive gate signals of transition j

,
EP
j ug : external permissive gate signal variable u of transition j

V : set of external inhibitive gate signals of transition j

,
EI
j vg : external inhibitive gate signal variable v of transition j

All the variables are logical binary variables, and , denote the logical product and the

logical sum, respectively, and 1 2
1

...
m

i m
i

a a a a

 . The state (marking) change, that is, the

addition or removal of a token of a place, is described as follows:

 , , () ()I I E E
j m j m j j j jp p t g RST t g (3)

 , , () ()O O E E
j n j n j j j jp p t g SET t g (4)

where

()SET and

()RST denote the set and the reset function, respectively.

Fig. 2 shows an example of extended Petri net model of robotic task control by transition
firing with permissive and inhibitive gate arcs. The robot starts the loading operation based
on signals from the switches, sends the commands through output signal arcs, and receive
the status signals from the sensors through permissive gate arcs. Fig. 3 shows an example
detailed net model of the lowest level local control of a machining center.

www.intechopen.com

Real-Time Petri Net Based Control System Design
for Distributed Autonomous Robotic Manufacturing Systems

437

 Robot

Processing Unloading Loading

Machine controller (PLC)

S0 S1 S2 S3

M0

C1 C2 C3

C1-C3: commands
S0-S3, M0,M1: external sensors, switches

M1

 : Permissive gate

: Inhibitive gate

Fig. 2. Extended Petri net representation of robotic task with output signal arcs and gate arcs.

ProcessingLoading

S6

A1 A4: actuators (solenoid valves)
S1 S7: external sensors

Forward Clamping
Un-
clamping Backward

Unloading

Ready

Start S5

S1

S3

S2

S4

S7

A2

A1

A3

Machining unit

A4

A7: actuators (solenoid valves)

Processing

A5-
SPM: spindle motor

Rapid Reverse

A5 A6

A7

SPM

Machining

S8

Fig. 3. Detailed net model of real-time control of manufacturing tool

www.intechopen.com

Manufacturing System

438

3. Edition and simulation of net models

When programming a specific task, the task is broken down into subtasks. These subtasks
are represented by a place. The internal states of machines are also represented by a place.
The relations between these places are explicitly represented by interconnections of the
transitions, arcs and gates. The whole task is edited with a net edition and simulation
system. In parallel a graphic robot motion simulator system is used to edit a subtask
program for a robot. The basic edition and simulation procedure is shown in Fig. 4.

 Start

Draw/modify the net model

Yes

Deadlock ?
Yes Yes

No

Arbitrate conflict Add/modify transition parameters

Generate structural data tables

Test enabling conditions

Test firability conditions

Wait for
external signal ?

Display firable transitions

Fire and transfer tokens

Continue ?

End

Add/modify gate arcs

No No

Fig. 4. Flow chart of net edition and simulation procedure

The net simulator is a tool for the study of condition-event systems and used to model
condition-event systems through its graphical representation. When the net modeling is
finished, the net is transformed into a tabular form and several data tables corresponding to
the connection structure of the net are automatically generated (Yasuda, 2008). These tables
are the following ones:

1. The table of the labels of the input and output places for each transition;
2. The table of the transitions which are likely to be arbitrated for each conflict place;
3. The table of the gate arcs which are internal or external, permissive or inhibitive, for

each transition.

Although a variety of software implementations of Petri nets is possible using multitask

processing (Taubner, 1988), a simple implementation method is adopted, where just one

process is provided for the management of all places and tokens. Through the simulation

steps, the transition vector table is efficiently used to extract enabled or fired transitions.

www.intechopen.com

Real-Time Petri Net Based Control System Design
for Distributed Autonomous Robotic Manufacturing Systems

439

The table of marking indicates the current marking for each place. Using these data tables,

the flow of the net simulation consists in the following steps:

1. Search enabled transitions using the axiom 1 or (1);
2. Test the enabled transitions considering gate conditions (2);
3. Arbitrate enabled transitions in conflict using some arbitration rule;
4. Execute transition firing and output corresponding signals to external machines;

5. Change the marking to the new marking using the axiom 2 or (3), (4) and update the

system state.

The flow chart of the enabling condition test is shown in Fig. 5. The simulation algorithm is

based on the execution rules of the net. The simulator tests each transition as to whether its

input and output places and its internal gate arcs satisfy the enabling condition. If there is

no enabled transition, it means that the net is in a deadlock condition. The simulator warns

and requires the operator to change the initial marking or structure of the net. If there are

some enabled transitions, it tests each of them as to whether its external gate arcs satisfy the

firability condition, as shown in Fig. 6. If there is no firable transition, the simulator stops

and shows which transitions are waiting for the gate signals.

For an example net as shown in Fig, 7, the enabling condition and the firability condition are

written as (5), (6), respectively. The simulator tests each transition in the specified order of

(5), (6). Fired transitions are memorized, and through their output places the output

transitions of each place are searched. The enabling condition test is performed only for

these transitions in order to shorten computation time. In Fig. 7, the enabling condition of

only the transition t1 is evaluated, since the transition t5 is fired previously.

 Start

Empty input place exist?

Marked output place exist?

Internal permissive gate signal = 0?

Internal inhibitive gate signal = 1?

This transition is enabledThis transition is disabled

Yes

No

No

No

No

Yes

Yes

Yes

To next transition

Fig. 5. Flow chart of enabling condition test

www.intechopen.com

Manufacturing System

440

External permissive gate signal = 0?

External inhibitive gate signal = 1?

This transition is firable This transition is unfirable

No

No

Yes

Yes

To next enabled transition

Enabled transition

Fig. 6. Flow chart of firability condition test

t1 t2 t3

t4

t5

p5

p4

p1

p2

p3
g11

g12

g21

g22

g3

g4

g5

p6

Fig. 7. Example of net representation with parallel activities.

1 6 1t p p

2 1 2 3t p p p

3 2 4t p p

4 3 5t p p

5 4 5 6t p p p

(5)

6 1 11 12()p RST t g g

1 1 11 12()p SET t g g

1 2 21 22()p RST t g g

2 2 21 22()p SET t g g

3 2 21 22()p SET t g g

2 3 3()p RST t g

4 3 3()p SET t g

3 4 4()p RST t g

5 4 4()p SET t g

4 5 5()p RST t g

5 5 5()p RST t g

6 5 5()p SET t g

(6)

If the transitions connected to a conflict place may happen to be in conflict, according to the

rules of the net, only one of them is chosen to fire arbitrarily and the others become

unfirable. The arbiter assigns the right of the order of firing among the transitions connected

to a conflict place. But the right vanishes when the specified transition is not firable. The

arbiter has a pointer to memorize the transition to be assigned the right next. The procedure

of the arbitration is shown in Fig. 8. After the arbitration, all the firable transitions are

displayed and fired. The simulator moves the tokens; it remove tokens in all the input places

www.intechopen.com

Real-Time Petri Net Based Control System Design
for Distributed Autonomous Robotic Manufacturing Systems

441

of the fired transitions and put a token in each output place of the transitions. If some error

is found or the simulation result does not satisfy the specification, it can be easily amended

by reediting the net and by simulating it again. The edition and simulation are performed in

an interactive form on a graphic display. The software written in Visual C# under OS

Windows XP allows net models be modified on-line and simulation immediately restarted.

 Start

Firable transition exist among
conflicting transitions?

Is pointed transition firable?

Other conflicting transitions are unfirable

Yes

No

To next conflict place

Increment pointer

Increment pointer

Yes

No

Fig. 8. Flow chart of arbitration procedure

In the basic Petri net, the firing of a transition is indivisible; the firing of a transition has
duration of zero. The real-time performance of systems can be studied by adding time to the
basic Petri net. An approach known as the timed Petri net associates a time parameter T
with a transition, such that once the transition is enabled, it will fire after the period T. If the
enabling condition is not satisfied before the schedule time comes, then the transition can
not be fired and the passage of time is cancelled. Time values may be associated with places
in order to maintain the instantaneous firing rule for transitions. A place with capacitance
CN, such as buffers in manufacturing systems, can be represented as a cascade connection of
ordinary places with capacitance 1. The internal gate signal from the place is 1 when the
number of tokens in the place is CN, and 0 when the number is 0. These extensions are
illustrated in Fig. 9(a) and (b).

 T

CN

 (a) (b)

Fig. 9. Example of representation of (a) timed transition (b) place with capacitance N

4. Net models of multitasking control

Manufacturing tasks are a combination of several processes. These processes represent
subtasks that are composed of task units. Tasks that include cooperative subtasks of different

www.intechopen.com

Manufacturing System

442

machines are typical examples of concurrent processes. A system with one process is the
degenerate case of a system of concurrent processes, which is obtained by combining nets
representing several processes. Every sequential program can be represented by a flow chart.
A flow chart is composed of nodes and arcs between them. It represents the flow of control in
a program and can be represented by a Petri net, by replacing the nodes with places and the
arcs with transitions as shown in Fig. 10. Each arc of the flow chart is represented by exactly
one transition in the corresponding net. Petri net models of sequential constructs are shown in
Fig. 11. A token residing in a place means that the program counter is positioned ready to
execute the next instruction. Places for motion and computational actions have a unique
output transition. Decision actions introduce conflict into the net. The choice can either be
made nondeterministically or may be controlled by some external signal.

computation

 (or motion)

a

b

a b

(a)

decision

a

b

a

b

c c

T
T

F

F

(b)

Fig. 10. Translation from nodes in a flow chart to places in a Petri net: (a) computation or
motion, (b) decision

(a)

(b)

(c)

Fig. 11. Net representations of sequential constructs; (a) sequence, (b) decision, (c) iteration

www.intechopen.com

Real-Time Petri Net Based Control System Design
for Distributed Autonomous Robotic Manufacturing Systems

443

In the case of two concurrent processes, where each process can be represented by a net
model of a sequential process, the composite net which is simply the union of such nets can
represent the concurrent execution of two processes. Parallelism is usefully introduced into
a system only if the component processes can cooperate in the system. Such cooperation
requires the sharing of information and resources between the processes. This sharing must
be controlled to ensure correct operation of the overall system. One of the most popular
synchronization mechanisms has been the P and V operations on semaphores. The WAIT
and SIGNAL statements are used in a program written in a high level robot language and
provides a variation of the P and V operations as a basic inter-process communication
mechanism. Fig. 12 shows the net representation of an example of synchronization
mechanism.

signal

wait

wait

signal

Fig. 12. Net representation of synchronization mechanism using asynchronous
communication

Fig. 13 shows the net representation of cooperative operation using synchronization
mechanism, where shared transitions require mutual synchronization between two robots.
In contrast to decentralized implementation, synchronization can be also implemented by
centralized coordination (Yasuda, 2010).

Waiting

Waiting

Grasp and move
to passing point Release

Move to passing
point

Grasp

Robot 1
(Right arm)

Robot 2
(Left arm)

Fig. 13. Net representation of operation that passes a part from right arm to left arm

The main flow of execution control of robotic action using output signal arc and permissive
gate arc is described as the following steps:

1. When a token is placed in a place which represents an action, the net based controller
initiates the execution of the action (subtask) attached to the fired transition by sending
the “start” signal through the output signal arc to the machine controller.

www.intechopen.com

Manufacturing System

444

2. Then the machine controller interprets the request and runs the execution routine by
sending the commands through serial interface to the robot or other external machine.

3. When the action is completed, the machine controller informs the system controller to
proceed with the next activations by sending the “end” signal through external
permissive gate arc.

When a token is placed in a place which is “ready” state in the net model, the controller
sends the “ready” signal. If the machine receives the signal, it runs the processing routine
which performs the initializations and other preliminary processing for the next execution
routines. When the processing routine is completed, it sends the “ack” (acknowledgement)
signal to the system controller. The “end” and “ack” signals work as gate signals for the
system controller.

5. Implementation of real-time control system for robotic cells

To implement the Petri net based modeling and control method, the net based task editor
and simulator, and the real-time controller based on tasks represented as net models were
developed (Yasuda, 2008). The subtasks and sets of point data needed to execute the whole
task are initially identified. Then they are edited and tested with the net based edition and
simulation system. Initially, the proposed method is used to execute a simple example of
pick-and-place task by a single robot. The experimental set up includes the following
equipment: a small industrial robot with an arm (Mitsubishi Electric, Movemaster II
RM501), two belt conveyors with their sequence control circuits, a NC machine tool and a
general PC. All the software is written in Microsoft Visual C# on Windows XP. The task
specification is represented as the flow of a workpiece and written as the following steps:

1. A workpiece arrives at point E1.
2. Conveyor CV1 carries the workpiece to point E2.
3. Robot R1 transfers the workpiece to point E3.
4. Machining operation M1 is done.
5. Robot R1 transfers the workpiece to point E4.
6. Conveyor CV2 carries the workpiece to point E5.

Synchronous cooperation is required to perform the loading and unloading operations

between the robot and the conveyor or machining center. The cooperation can be

implemented by a system coordinator which coordinates the machine controllers such that

associated transitions of the local net models fire simultaneously. For high efficiency, it is

desirable that the system accepts as many workpieces as possible, but it must not be in a

deadlock condition. Generally, if there are some paths between two transitions, the largest

number of tokens in each path is the smallest number of places of the paths. The task

specification is shown as follows. Using the place of capacity control, the net representation

of the task program written under these requirements is shown in Fig. 14.

Another example is a cooperative task by two arm robots which must synchronize their
actions with each other. The task specification is summarized as the following steps:

1. A workpiece arrives at point E1.
2. Robot R1 transfers the workpiece to the exchange area, and at the same time Robot R2

moves to the exchange area.

www.intechopen.com

Real-Time Petri Net Based Control System Design
for Distributed Autonomous Robotic Manufacturing Systems

445

 Capacity control

Robot R1

Hold Transfer Wait

Conveyor CV1

Processing Hold Transfer

Machine M1

Release Release

Conveyor CV2

Output

Fig. 14. Net representation of pick-and-place operation with a single robot

3. The workpiece is exchanged from robot R1 to robot R2.
4. Robot R2 changes the workpiece orientation.
5. Robot R2 transfers the workpiece to the exchange area. Robot R1 moves to the exchange

area.
6. The workpiece is exchanged from robot R2 to robot R1.
7. Robot R1 transfers the workpiece to point E2.

Following the same procedure of the former example, the subtasks and sets of point data

needed to execute the whole task are initially identified. Then they are edited and tested

with the net based edition and simulation system. The net representation is written using

shared transitions for system coordination as shown in Fig. 15. An experimental view of the

cooperative task, passing and exchanging a workpiece, by two robots is shown in Fig. 16.

The detailed procedure of the implemented real-time control based on tasks represented as

net models is described as follows. If there is a token in a place corresponding to subtasks,

the net based controller sends a message to the respective hardware controllers such as arm,

hand, sensor, etc. to execute the defined subtask with certain point data. These parameters

(hardware controller code, subtask file code, point data file code) are defined during the net

edition procedure. The net based controller was developed with all functions of the edition

and simulation to permit correction or modification of the net model on-line. This

characteristic is important to facilitate the debugging work. By executing the net model, the

Capacity control

Robot R1

Robot R2

Hold Transfer Wait Open

Approach Close Wait Wait Wait

Wait Transfer Close

Approach Open

Release

Return
Change
orientation

Fig. 15. Detailed net model of cooperative task by two arm robots

www.intechopen.com

Manufacturing System

446

Fig. 16. Experiments of cooperative task by two arm robots

developed control system activates the arm, hand, and sensor, etc. and coordinates each
individual controller. In making these experiments, it was verified that the implemented
system can be used as an effective tool for introducing robots into the manufacturing system.
The system can be used to verify and correct control algorithms including robot movements
and to evaluate the effectiveness of a robot and other machines in the planning stage.

A multi-computer control architecture composed a system computer and several control
computers has been adopted as shown in Fig. 17. The computer control architecture was

Fig. 17. Multi-computer control architecture composed a system computer and several
control computers with dual port memory

www.intechopen.com

Real-Time Petri Net Based Control System Design
for Distributed Autonomous Robotic Manufacturing Systems

447

developed for the use of distributed autonomous control of independent actuators or
machines in compact factory automation systems (Yasuda & Tachibana, 1987). The system
controller controls communication between the system controller and control computers
through the bus controller based on the master-slave mode. The system computer installs
the conceptual net model for system coordination and installs local net models in the control
controllers through the common bus. The control computers are equipped with interface
circuits to actuators and external sensors for direct machine control and monitoring. Then,
in the real-time control, the system computer communicates with each control computer
through dual port memory with respect to firing of shared transitions and gate arc signals
(Yasuda, 2011). The presented control flow of the net model is successfully executed using
output signal arc and permissive gate arc. The net model in the system controller is
conceptual for system coordination and not so large. The computation speed of 50 MHz of
the general microprocessor is satisfactorily high in comparison with those of controlled
devices such as robotic arms, conveyors, machine tools and external sensors.

6. Conclusions

A Petri net based specification and real-time control method for large complex robotic
manufacturing systems was introduced as an effective prototyping tool to realize
distributed autonomous control systems corresponding to the hardware structure of robotic
manufacturing systems. From the design point of view, the use of nets has many advantages
in modeling, qualitative analysis, performance evaluation and code generation. The Petri net
appears as a key formalism to describe, analyze and implement the distributed autonomous
control system for manufacturing systems in future.

7. References

Gentina, J. C. & Corbeel, D. (1987). Coloured Adaptive Structured Petri-Net: A Tool for the
Automatic Synthesis of Hierarchical Control of Flexible Manufacturing Systems,
Proceedings of 1987 IEEE International Conference on Robotics and Automation, pp.
1166-1172

Holt, J. D. & Rodd, M. G. (1994). An Architecture for Real-Time Distributed AI-Based
Control Systems. In: IFAC Distributed Computer Control Systems 1994, 47-52

Holding, D. J., & Sagoo, J. S. (1992). A Formal Approach to the Software Control of High-
Speed Machinery. In: Transputers in Real-Time Control, G. W. Irwin & P. J. Fleming
(Eds.), 239-282, Research Studies Press, Taunton, Somerset, U.K.

Maletz, M. C. (1983). An Introduction to Multi-robot Control Using Production Systems,
Proceedings of IEEE Workshop on Languages for Automation, pp. 22-27

Murata, T. (1989). Petri Nets: Properties, Analysis and Applications. Proceedings of the IEEE,
Vol. 77, No. 4, pp. 541-580

Silva, M. (1990). Petri Nets and Flexible Manufacturing. In: Advances in Petri Nets G.
Rozenberg (Ed.), LNCS 424, 374-417, Springer-Verlag, Berlin, Germany

Taubner, D. (1988). On the Implementation of Petri Nets. In: Advances in Petri Nets G.
Rozenberg (Ed.), LNCS 340, 419-439, Springer-Verlag, Berlin, Germany

Wang, F. & Saridis, G. N. (1990). A Coordination Theory for Intelligent Machines,
Proceedings of the 11th IFAC World Congress, pp. 235-240

www.intechopen.com

Manufacturing System

448

Yasuda, G. (2000). A Multiagent Control Architecture for Multiple, Cooperating Robot
Systems, Proceedings of the International Conference on Production Research Special
ICPR-2000, Paper ID 224, August, 2000

Yasuda, G. (2008). Implementation of Distributed Control Architecture for Industrial Robot
Systems Using Petri Nets, Proceedings of the 39th International Symposium of Robotics,
pp.533-538

Yasuda, G. (2010). Petri Net Based Implementation of Hierarchical and Distributed Control
for Discrete Event Robotic Manufacturing Systems, Proceedings of the 2010 IEEE
International Conference on Control Applications, Part of 2010 IEEE Multi-Conference on
Systems and Control, pp.251-256

Yasuda, G. (2011). Design and Implementation of Distributed Control Architecture for
Flexible Manufacturing Cells Based on Petri nets, Proceedings of 12th Asia-Pacific
Industrial Engineering & Management Systems Conference, pp. 852-864

Yasuda, G. & Tachibana, K. (1987). A Multimicroprocessor-Based Distributed Processing
System for Advanced Robot Control, Proceedings of the IXth International Conference
on Production Research, pp.1926-1933

www.intechopen.com

Manufacturing System

Edited by Dr. Faieza Abdul Aziz

ISBN 978-953-51-0530-5

Hard cover, 448 pages

Publisher InTech

Published online 16, May, 2012

Published in print edition May, 2012

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

This book attempts to bring together selected recent advances, tools, application and new ideas in

manufacturing systems. Manufacturing system comprise of equipment, products, people, information, control

and support functions for the competitive development to satisfy market needs. It provides a comprehensive

collection of papers on the latest fundamental and applied industrial research. The book will be of great

interest to those involved in manufacturing engineering, systems and management and those involved in

manufacturing research.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Gen'ichi Yasuda (2012). Real-Time Petri Net Based Control System Design for Distributed Autonomous

Robotic Manufacturing Systems, Manufacturing System, Dr. Faieza Abdul Aziz (Ed.), ISBN: 978-953-51-0530-

5, InTech, Available from: http://www.intechopen.com/books/manufacturing-system/real-time-petri-net-based-

control-system-design-for-distributed-autonomous-robotic-manufacturing-sys

© 2012 The Author(s). Licensee IntechOpen. This is an open access article

distributed under the terms of the Creative Commons Attribution 3.0

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.

