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1. Introduction  

The growth of the complexity of automated systems in industry has occurred extensively in 
recent years due to the production demand increase, quality improvements and flexibility to 
restructure the manufacturing systems in order to satisfy new procedures. Nevertheless, the 
evolution of control devices and their functionalities, such as processor speed, memory and 
network communication has advanced in parallel with the factories' requirements. Although 
the evolution of automation in industrial processes is a fact, there is still a scarcity of formal 
methods for analysis, project and implementation of control systems for Discrete Event 
Systems (DES) in order to reduce the development time, reduce human resources 
investment, and satisfy the operational requirements for certain systems in an effective way. 
Furthermore, the occurrence of programming bugs resulting in errors due to interruption in 
the process and losses due to poorly designed software is obviously unacceptable nowadays 
in this market that has a just-in-time mindset and is strongly focused on profits. 

Usually, the projects for supervisory control systems are based on the knowledge of the 
system's practitioner, according to his experience in programming. The usage of formal 
methods is sparse, such that the reuse of documentation and source code as well as the 
dissemination of the knowledge generated are both impaired. Moreover, the automation 
of manufacturing systems has brought an increase in the complexity of control systems, so 
that to elaborate and implement robust and reliable control logic is not a trivial task. In 
order to minimize the risks due to programming errors and to permit a formal method for 
modelling DES, Ramadge & Wonham (1989) introduced the Supervisory Control Theory 
(SCT), which guarantees optimal control logic (nonblocking and minimally restrictive) for 
these systems. 

A Discrete Event System (DES) consists of a system with discrete states that are driven by 
events. In other words, its state evolution depends on the occurrence of discrete 
asynchronous events over time (Cassandras & Lafortune, 2008). Discrete Event Systems are 
quite common in the industry nowadays and the events may be classified as uncontrollable 
and controllable. Examples of controllable events are the start and end of an operation and 
examples of uncontrollable events are the activation and deactivation of a presence sensor. 
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The Supervisory Control Theory (SCT) is already widespread in the academic environment, 
using the automata theory as a base to model the control systems. However, such a theory is 
not common in the industrial environment. Therefore the resolution of supervisory control 
problems has been done without the usage of a formal procedure. 

The SCT allows the solution of control problems in a systematic manner. This technique 

guarantees that the resulting supervisor will satisfy the specifications imposed by the 

designer, avoiding general control issues, such as blocking. Besides, due to its heuristic 

nature, the SCT facilitates the code writing changes before implementation in a controller, in 

case there is some inclusion/exclusion of devices or changes in the system layout. 

Although the SCT provides an automatic method to synthesize control systems for DES, 

when analysing the monolithic supervisor obtained from the SCT, it is difficult to visualize 

the process dynamics in an easy way as the system complexity grows. That occurs due to 

the large number of states and no distinction about what kind of event, uncontrollable or 

controllable, has priority to occur when the supervisor is in a certain state. Furthermore, the 

implementation of this supervisor in a controller will require considerable non-volatile 

memory, neither being an elegant solution nor justifying the adoption of a formal method. 

PLC (Programmable Logic Controller) implementation of DES supervisory control was 

discussed in many works, as in (Ariñez et al., 1993; Lauzon, 1995; Leduc & Wonham, 1995; 

Leduc, 1996; Lauzon et al. 1997; Fabian & Hellgren, 1998; Dietrich et al., 2002; Hellgren et al., 

2002; Liu & Darabi, 2002; Music & Matko, 2002; Queiroz & Cury, 2002; Chandra et al., 2003; 

Hasdemir et al., 2004; Manesis & Akantziotis, 2005; Vieira et al., 2006, Noorbakhsh & 

Afzalian 2007; Hasdemir et al., 2008; Silva et al., 2008; Leal et al., 2009; Uzam et al., 2009; 

Moura & Guedes, 2010). 

In brief, other works presented methodologies using extended automata with variables in an 

attempt to minimize the exponential growth of states resulting from the automata 

composition, such as (Chen & Lin, 2000; Yang & Gohari, 2005; Gaudin & Deussen, 2007; 

Skoldstam et al., 2008), amongst others. 

This chapter intends to propose a formal methodology to model control systems for 

industrial plants through extended automata called Mealy state machines (Mealy, 1955) and 

subsequent implementation in Programmable Logic Controllers (PLCs) using the Ladder 

language. An algorithm proposed by Possan (2009), which explores the benefits of SCT to 

design a supervisor, is used to convert the automaton which represents the supervisor to a 

finite state machine with outputs. Another algorithm is then used to reduce the state 

machine to have a simplified structure implemented in a PLC. The simplified state machine 

representation is a different way of viewing a DES, resulting in a systematic way to 

implement the source code in a controller with reduced memory usage. The code 

implementation takes into consideration some common issues found in synchronous 

controllers, such as PLCs. 

A Mealy state machine is a finite state machine with outputs, composed of an oriented 

graph where the nodes are called states and arcs are called transitions. It is a powerful 

model to represent the behavior of processes in general. 

The chapter is structured as follows: Section 2 introduces the proposed methodology; 
Section 3 covers the monolithic approach defined by the SCT; Section 4 shows a system to be 
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used as example to illustrate the modelling and implementation; Section 5 presents in detail 
the transformation algorithm to obtain a Mealy state machine; Section 6 relates to the state 
machine simplification procedure; Section 7 presents common issues found during 
supervisor implementation in synchronous controllers while Section 8 describes how to 
implement the simplified state machine in PLC using the Ladder language. Finally, Section 9 
covers the conclusion.  

2. Methodology for the control system design 

Figure 1 shows an overview of the proposed methodology. It starts with the supervisor 
synthesis. The synthesis is done based on the SCT and a monolithic supervisor is obtained. 
The supervisor is then used as input for the transformation algorithm to obtain the state 
machine. The machine is then simplified to have a reduced number of state transitions. The 
simplified machine, on the other hand, represents a model to generate the code for a 
controller (PLC, microcontroller or any other data processing unit). This chapter is focused 
on the state machine implementation using the Ladder language for PLCs. 

Supervisor Synthesis

Using the SCT

Plant Model Specifications

Algorithm to Obtain the 

State Machine

State Machine Simplification

Code Generation for PLCs

 

Fig. 1. Proposed methodology 

The synthesis of the supervisor and the obtaining and simplification of the state machine 
will be described in the next three sections. 

3. Supervisor synthesis using the SCT 

The monolithic approach for the synthesis of an optimal supervisor (nonblocking and 
minimally restrictive) is based on three main steps:  

a. obtain a model for the physical system (plant) to be controlled;  
b. obtain a model which represents the specifications to be respected; and  
c. synthesize a nonblocking and optimal control logic. 
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The plant model is built through the synchronous composition (Cassandras & Lafortune, 
2008) of all the existing subsystem models in the system. The same procedure is done to 
build the specification model. The plant and the target language, obtained through the 
synchronous composition of the plant with the specification, will be used as input to obtain 
the monolithic supervisor. This procedure can be done using the computational tool named 
Grail for Supervisory Control (Reiser et al., 2006).  

In the SCT, the plant is assumed to spontaneously generate events. The supervisor observes 
the string of events generated by the plant and might prevent the plant from generating a 
subset of the controllable events, thus disabling them. However, the supervisor has no 
means of forcing the plant to generate an event, as shown in Figure 2-a. 

In practice, the modelled behavior of the plant does not correspond exactly to the real 
behavior due to the assumption that controllable events are not generated by the plant, as 
presumed by the SCT. This is because in most real systems, the events modelled as 
controllable correspond to commands that actually must be generated by the control system. 
These commands must be sent by the controller to the actuators because they would not 
occur spontaneously. Thus, the implementation is performed according to the structure 
proposed by Queiroz & Cury (2000) to keep such coherence. Figure 2-b shows the 
representation for real systems, where  the electric signals coming from the sensors 
(responses from the plant) correspond to the observed (uncontrollable) events while the 
electric signals sent to the actuators (actions in the plant) correspond to the disabled 
(controllable) events.  

Supervisor

Plant

Observed

Events

Disabled

Events

Control Unit

Process to be 

Controlled

Electric signals 

from the sensors

Electric signals to 

the actuators

 

Fig. 2. Monolithic approach: (a) Ramadge-Wonham Framework, (b) Similar representation 
for a real system 

4. A motivation example 

In this section, a manufacturing system is used to demonstrate the proposed methodology. 
This system is composed of three apparatus and two intermediary buffers with a capacity of 
one which are available between the apparatus, as illustrated in Figure 3. 
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The apparatus are represented by Ai, where i = 1, 2, 3 and the buffers are represented by Bj, 
where j = 1, 2. 

 

 

Fig. 3. Manufacturing system 

The controllable events that correspond to the start of the apparatus' operation are 
represented by ax, while the uncontrollable events that correspond to the end of operation 
are represented by bx, where x = 1, 2, 3. 

The plant and specifications are modelled using automata and the controllable events are 
represented with a dash. The behavior of each apparatus (or subsystem) can be modelled by 
the automaton shown in Figure 4. Notice that state 0 is double circled. This is a marked state 
that represents a completed task. 

0 1

ax

bx  

Fig. 4. Automaton for the apparatus Ax 

When modelling this plant, only the apparatus were taken into consideration. The buffers 
were considered only in the in the control specification model. 

The specifications for this system are restrictions of coordination to avoid overflow (the 
apparatus finishes its task but the output buffer is already full) or underflow (the apparatus 
starts working without any item to fetch from the input buffer). Those restrictions point out 
the idea that it is necessary to alternate b1-a2 and b2-a3, respectively. This means that the start 
of operation for an apparatus (event ax+1) will only be allowed when its input buffer is 
loaded (event bx), as shown in Figure 5.  

0

b x

1

ax+1  

Fig. 5. Automaton for the control specifications 
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The synchronous composition of the plants with the specifications will result in the target 
language (Ramadge & Wonham, 1989). The calculation of the minimally restrictive and 
nonblocking supervisor is based on an iterative process which identifies and eliminates bad 
states in the automata that models the target language. 

The monolithic supervisor found with the usage of Grail (Reiser et al., 2006) has 18 states 
and 32 state transitions. 

The supervisor can be reduced for a later comparison with the state machine. This 
procedure is done to simplify the supervisor size and also the number of transitions (Su & 
Wonham, 2004). An algorithm for supervisor reduction is used to obtain fewer states and 
transitions than the original supervisor (Sivolella, 2005).  

Figure 6 shows the automata which represents the reduced supervisor. The disabled events 
for each state are represented by red dashes. 

 

a2,a3

a1,a3

a3

a1,a3

a2

a1,a2

a2

a1

a1

a2

a1,a2

 

Fig. 6. Reduced supervisor and disabled events for the manufacturing system 
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Notice that the reduced supervisor has 12 states and 20 state transitions. The supervisor 
reduction algorithm creates self-loop transitions. However, these transitions are not relevant 
because they do not cause a state change.  

Transitions among the states can occur either by controllable events (ax) or by uncontrollable 

events (bx). In case the designer intends to implement the code in the controller based on this 

model, he will have to decide on the kind of event to give priority. Furthermore, it is not 

trivial to visualize what are the active apparatus and what events modelled as 

uncontrollable are expected to occur at a certain state of the supervisor. 

5. Algorithm to obtain the state machine with outputs 

The state machine obtained with the proposed algorithm consists of a Mealy machine 

(Mealy, 1955). In a Mealy machine, a transition can have one or more output actions (set one 

or more controllable events) and any output action can be used in more than one transition. 

The output actions are not associated with the states, which are passive. Thus, the actions 

can be associated with more than one state. 

A simple example of a Mealy machine is shown in Figure 7. Transitions and actions are 

separated by dashes. It is a machine with two states where, when in State 1, Transition 1 makes 

the machine to go from State 1 to State 2 and takes Action 1. When in State 2, Transition 1 plus 

Transition 2 makes the machine go from State 2 to State 1 and Action 2 is taken.  

State 1

Transition 1 / Action 1

State 2

Transition 1, Transition 2 / Action 2  

Fig. 7. Example of a Mealy machine 

In this proposal, the transition between two states is performed by means of one or more 

uncontrollable events in the system. For each transition, an output action may be 

generated. 

The algorithm proposed to create the state machine works in an iterative process, looping 

through the input data to obtain the states, transitions and actions that compose a finite state 

machine. As soon as all the input data is processed, the state machine is completed. The 

algorithm is shown in Figure 8. 

Input data for the algorithm is the information about the plant, the supervisor and the list of 

disabled events. Output data are the states, transitions and actions which compose the state 

machine.  
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In the transformation process from the supervisor to the state machine, the output actions 
correspond to the controllable events in SCT while the transitions among the states 
correspond to the uncontrollable events. 

The initialization considers the initial states of the input data. These data compose the 
starting point of the state machine representing the condition where the physical process has 
not started. 

The next step is to create a states queue. The queue is required to store the states that are 
being obtained iteratively to be treated after the treatment of a current state has finished. 
The queue consists of a First In, First Out (FIFO) structure. A while loop is suggested to treat 
all the states available until the states queue becomes empty. 

 

Fig. 8. Algorithm to obtain the state machine 

For each state, a transition queue is created as well. A “for loop” is suggested to treat all the 
valid transitions for that specific state until all the transitions available in the queue are 
processed. 

In order to create the list of valid transitions for a certain state in the state machine, it is first 
necessary to divide the plant and the supervisor in two parts according to the controllability 
of the events and their transitions. Thus Gu and Su will have the list of automata state 
transitions due to uncontrollable events. The same happens for the controllable part. 
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The data reading sequence begins at the uncontrollable part (Gu and Su). After that, the 
algorithm evaluates the disabled events for the actual state of the supervisor. This will 
define if the controllable part of the system (Gc and Sc) can evolve or not. 

In other words, the resulting state machine gives priority to the occurrence of uncontrollable 
events, waiting to receive some response from the physical system to make a decision about 
what controllable events to disable. 

The valid transitions for a certain state are the uncontrollable events that create state 
evolutions from the current active states in the uncontrollable part of the plant and 
supervisor. The combination of more than one uncontrollable event is also considered as a 
transition. 

After the uncontrollable part is processed, the controllable part is processed. The controllable 
disabled events are evaluated according to the current state the supervisor is in. While the 
disabled events are forbidden to occur, the remaining ones may originate the actions. 

The valid actions for a certain state are the controllable events that are not disabled at the 
supervisor state and cause states evolution in the controllable part of the plant and the 
supervisor. 

When an action occurs, the algorithm checks if the controllable part of the supervisor has 

evolved. If so, then the disabled events for the destination state are evaluated in order to verify 

if another action may occur. This step assures that all the actions possible to occur for the same 

transition are processed. It means that more than one action can occur for the same transition. 

If Sc has not evolved, then a new state is created. This state is compared with the other 
states and if it already exists, it is ignored. Otherwise, it is added to the states queue to be 
treated later. 

For each transition due to the uncontrollable events, Gu and Su obtained from the SCT 

evolve. The same happens for the controllable part in the occurrence of an action. 

This methodology is consistent with the Mealy machine approach, where the outputs 

(actions) depend on the current state and valid inputs (transitions). 

After the procedure for creating a transition and corresponding actions is finished, the 

algorithm will treat the remaining transitions available in the transitions queue. When all 

the transitions in the queue are treated, the algorithm will evaluate the next state available in 

the states queue. These iterative processes are performed until the states queue is empty. 

This means that the finite state machine has been completed. 

The state machine for the manufacturing system with the proposed algorithm is shown in 

Figure 9, composed of 8 states and 22 state transitions.  

The states are named according to the apparatus that are operating at a certain point in time 

and the buffers that are full. The transitions are represented by the uncontrollable events, 

and the taken actions, if any, are separated from the transitions by a slash (/). The disabled 

events are represented by red dashes. Notice that in this model the transitions may occur 

due to more than one uncontrollable event, and the actions, if any, may be due to more than 

one controllable event. 
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A1

/a1

A1

A2

b1 /

a1 & a2 A2

Buf 1

b1

A1

A3

b2 / a3 b1 & b3 /  

a1 & a2

b3

b1 /

a1 & a2

b2 & b3 / 

a3

b3

A1

A2

A3

A1

A3

Buf 2
b2

A3

Buf 1,2

b1 & b2b1

b3/a3

A2

A3

Buf 1

b1

b1 & b3

b1 & b2 & b3 / 

a1 & a2 & a3

b3

b2 & b3 / 

a1 & a2 & a3

b2

b3 /

a1 & a2 & a3

b2 /

a1 & a2 & a3

b1 & b3/

a1 & a2 & a3

b1 & b2 /

a1 & a2 & a3

a2,a3

a3 a1,a3

a2

a1

a2

a1,a2

1 2

3

4

5

6
7

8

0

 

Fig. 9. Mealy state machine 

6. State machine simplification 

When the state machine model considers the treatment of more than one uncontrollable 
event, this may result in the disadvantage of an exponential growth of transitions, 
depending on the number of plants modelled and how many may be enabled at the same 
time. The number of transitions created for a certain state is on the order of 2 1

n  , where n 
represents the number of uncontrollable events present in the model and possible to occur 
for that state. Therefore, for larger and more complex systems, the code size would be 
affected significantly to satisfy that condition, being a convincing reason for not using such a 
methodology. An alternative solution for that is to consider a reduced state machine where 
the state transitions are represented only by transitions that result in actions. Transitions 
that do not result in actions are represented by self-loops inside their current state. For 
example, for state 2 of the state machine represented in Figure 9, transition b1 could be 
represented as a self-loop. Although the state machine evolves to state 3, there is no action 
taken during this transition. 

Although they do not result in actions, these transitions are important to represent the plant 

dynamics and cannot be simply disregarded during the implementation process. The 

controller program must capture their occurrence and store it in some internal variable to be 

used in the decision-making process when other transitions occur. The algorithm presented 

in Figure 10 describes the process to reduce a monolithic Mealy machine.  
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Fig. 10. Algorithm to reduce the state machine 

It is important to emphasize that such a procedure to reduce the Mealy machine does not 
necessarily result in a minimal state machine. 

Figure 11 shows the reduced state machine for the manufacturing system. This state 
machine contains only four states and seven transitions. The transitions illustrated by solid 
lines represent the occurrence of an action, regardless of whether the transition occurred 
from one state to another. The transitions illustrated by self-loops in dashed lines inside a 
current state represent that, although a transition has occurred, an action is not fired. 

A1
A1

A2

b1

A1

A3
b3

A1

A2

A3

b1 ^ b2 ^ b3 ^

(b1 & b2) ^ (b1 & b3)

a3

a2

1 2

3

4

b1 /

a1 & a2

b2 / a3 b1 & b3 /  

a1 & a2

b1 /

a1 & a2

b2 & b3 / 

a3
b1 & b2 /

a1 & a2 & a3

b1 & b2 & b3 / 

a1 & a2 & a3

a2,a3

/a1

0

 

Fig. 11. Reduced Mealy state machine 
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Consider for instance state 2 of the reduced state machine. If transition b2 occurs, the state 

machine evolves to state 3. In the case that transition b1 occurs, the model illustrates that 

situation as a self-loop represented by dashed lines, which means that the practical 

implementation in the controller must guarantee the proper storage of this information in 

some internal variable. 

When event b2 occurs with transition b1 already enabled, transition b1 & b2 will be activated, 

so that the state machine evolves to state 4 and actions a1, a2 and a3 are taken.  

The disabled actions shall be represented in the corresponding states to illustrate the control 

actions forbidden to occur. The states which became unreachable if compared to the original 

state machine are eliminated by this reduced model. 

Transitions due to more than one uncontrollable event and action due to more than one 

controllable event are still represented in this model. That is relevant information which 

helps the designer when he intends to implement the control system, so that the program 

allows several events to be executed inside the same scan cycle of the synchronous 

controller. 

In addition, a new logic operator appears in this model. The operator “^” represents an 

exclusive or condition. In order to understand its function, consider state 4 of the reduced 

state machine, for example. If any of the transitions listed in the self-loop with dashed lines 

occur, namely, b1 ^ b2 ^ b3 ^ (b1 & b2) ^ (b1 & b3), none of the actions will be taken and those 

transitions will remain enabled. Actions will be taken only when the transitions b2 & b3 or b1 

& b2 & b3 become valid. The operator “^” appears only for the states with a self-loop 

represented by dashed lines. 

7. Issues with Implementing supervisors in synchronous controllers 

According to (Fabian & Hellgren, 1998), “the supervisor implementation is basically a 

matter of making the Programmable Logic Controller (PLC) behave as a state machine”. 

However, that is not a simple task. Certain issues appear during the implementation process 

in synchronous controllers, such as PLCs and computers. Those problems exist regardless of 

the model used to represent the supervisors, by means of automata, Petri nets or colored 

Petri nets (Basile & Chiacchio, 2007). Such problems are explored in the structure presented 

here and a solution is presented where possible, in accordance with the Ladder language 

definition described by the IEC-61131-3 (1993) standard. 

7.1 Causality 

The SCT considers that all events are generated spontaneously by the plant and that the 

supervisor tracks the sequence of events generated by the plant and also acts to disable the 

controllable events in order to avoid any infringement of the control specifications. 

However, in most practical applications, the controllable events are not generated 

spontaneously by the physical plant, but only the feedback due to sent commands. So, the 

question “who generates what?” must be answered (Fabian & Hellgren, 1998), or in other 

words, who is responsible for the generation of certain kind of events, the supervisor or the 

plant? (Vieira, 2007). 
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The supervision scheme proposed by the SCT was already illustrated in Figure 2-a. In this 

structure, the plant is the responsible for events generation, both controllable and 

uncontrollable, while the supervisor is just an observer and disables a set of controllable 

events to satisfy control requirements. 

However, in most practical applications, the events modelled as controllable correspond to 

commands that, indeed, shall be generated by the PLC and sent to the actuators, because 

they do not occur spontaneously. The plant generates only the uncontrollable events, as a 

feedback to the stimulus sent by the PLC through the controllable events. Figure 2-b 

describes the control structure usually employed in practice (Malik, 2002). 

In this chapter, the causality problem is solved by representing the model using state 

machines with outputs instead of automata. Therefore, when this transformation is 

performed, the SCT changes to a model with inputs and outputs, as suggested by Malik 

(2002). The signals originated by the sensors correspond to the uncontrollable events while 

the signals generated by the actuators correspond to the controllable events. 

7.2 Event detection 

The synchronous nature of PLCs may create issues during the detection of uncontrollable 

events as described below. 

7.2.1 Signals and events 

Some implementation problems are due to the lack of an easy way to translate supervisors 

based on discrete event systems, which are symbolic, asynchronous and occur in discrete 

instants of time in a synchronous universe and are based on signals such as those from the 

PLC (Fabian & Hellgren, 1998). In order to avoid a discrepancy between the theory and 

practice, a signal cannot generate more than one uncontrollable event during an operational 

cycle of the PLC (Basile & Chiacchio, 2007). 

7.2.2 Avalanche effect 

The PLC signals may assume boolean values and are sampled periodically. Thus, in order to 

implement supervisors according to the SCT in PLCs, the events are associated with changes 

in the PLC input signals, which may cause what is called the avalanche effect. This effect 

occurs when a value change in an input signal is registered as an uncontrollable event and 

makes the software jump to an arbitrary number of states during the same scan cycle of the 

PLC. This may occur specifically if a certain uncontrollable event is used to trigger several 

state transitions in a list, creating behavior similar to an avalanche. 

Figure 12 shows an example of the avalanche effect for a conventional supervisor 

implementation in PLC. The supervisor transitions from state 0 to state 2 with the 

occurrence of event b1. It should transition from state 1 to state 2 only with the occurrence 

of a new event b1, or transition from state 1 to state 3 with the occurrence of an event b2. 

However, the implementation proposed on the right side of Figure 12 does not restrict 

that event b1 permits the transition from state 1 to state 2 in the same scan cycle of the 

PLC. So, the avalanche effect introduces a transition directly from state 0 to state 2, so 
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that, even if event b2 happened, it would not have any effect on the controller dynamics. 

This is clearly unsatisfactory. 

 

Fig. 12. Example of the Avalanche Effect 

In order to solve this problem, Vieira (2007) proposes a procedure where a variable is 

associated with all the transitions available for the supervisor. That variable is activated 

every time a new state transition occurs, being deactivated at the end of the section of source 

code where the supervisor structure is implemented. Every state transition includes the 

negation of this variable as a condition. Such a solution solves the problem, but has the 

disadvantage of allowing the occurrence of only one uncontrollable event inside the same 

PLC scan cycle. 

The solution proposed in this chapter consists of the deactivation of the variable 

corresponding to the event which occurred as soon as a state transition due to that event 

happens. In this way, the supervisor deactivates that specific event which occurred, 

allowing transitions due to other events available in the model still to happen. During a scan 

cycle, if events related to asynchronous specifications occur, they will be treated in this same 

cycle. Such a proposal solves the avalanche effect problem and permits several 

uncontrollable events to be treated inside the same PLC scan cycle. Moreover, the constraint 

that more than one event is treated in the same scan cycle results in another problem called 

loss of information (Vieira, 2007). Such a problem occurs in situations where several events 

happen and only one is treated per scan cycle. Then, the information related to the 

occurrence of the remaining events is lost. That issue does not occur in the methodology 

proposed here due to the possibility of treating all other events which occurred in the same 

scan cycle. This is possible because there is not just one general variable which is activated 

when a state transition occurs, but a specific treatment for each event, where the other 

events remain enabled to fire transitions. 

7.2.3 Inability to recognize the order of events 

This simultaneity problem was covered first by Fabian & Hellgren (1998) considering the 
implementation of supervisors in PLCs. When two or more input signals change their values 
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between two input readings, those changes will be stored as a simultaneous change of 
uncontrollable events, so that it is not possible to identify which one occurred first, because 
the PLC performs a synchronous reading of its inputs. 

It is noticeable that signal changes may be simultaneous or not, but the events will always 

be stored as simultaneous during the reading. That problem is called simultaneity (Fabian & 

Hellgren, 1998). Thus, in order to avoid implementation problems, the supervisor shall have 

a control action which does not depend on the different interleaving of the uncontrollable 

events. Fabian & Hellgren (1998) define such a property as interleave insensitivity of 

uncontrollable events. These authors proposed an algorithm to detect if a supervisor is 

interleaving insensitive. If not, the order in which the uncontrollable events occur cannot be 

recognized if the controller utilized is synchronous.  

8. Code generation for PLCs 

The scan cycle of a program in the PLC follows the sequence: input read, control logic 

execution and output write. That synchronous behavior of the PLC forces the outputs to be 

updated only at the end of the scan cycle. Due to that, the activation of the actuators requires 

a specific treatment. Looking at the state machine's structure, it may happen that as soon as 

it finishes the operation, an apparatus may be requested to start a new operation cycle inside 

the same scan cycle in which the previous operation had just been finished. If this happens 

during a scan cycle, that variable would assume a low logic level (end of operation) and 

return to a high logic level (start of operation). However, as the PLC writes the values stored 

in its internal memory to the physical outputs only when its execution cycle is finished, it 

does not recognize the process of operation end/start, so that its physical output will be 

kept active all the time during the scan cycle. In order to avoid that, variables are added to 

represent the evolving of the plants and guarantee the proper synchronism during the 

system dynamics. Those variables are called Plant i, with i varying from 1 to n, where n is 

the number of plants modelled in the global system. That variable is enabled every time an 

apparatus finishes its operation. This procedure guarantees that the apparatus is not 

requested to start operating again inside the same scan cycle when its operation end is 

detected. It will be turned on again only in the next scan cycle. 

As in the state machine model, for the implementation, the variables bi represent the 

uncontrollable events (transitions) while variables ai (actions) represent the controllable 

events. 

The Ladder code can be split into five blocks, called by a main organizational block in the 

following order: initialization, inputs, transitions/actions, disabling and outputs. They 

implement the reduced state machine shown in Figure 11. 

8.1 Initialization 

The initialization starts the state machine and puts it into its initial state, and enables the 

controllable event a1 in order to start the process, as shown in Figure 13. Other variables, 

such as the ones responsible for uncontrollable events bi and the evolution of plants Plant i, 

are disabled. 
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Fig. 13. Initialization 

8.2 Inputs 

The variables responsible for transitions bi will be activated in the controller only when an 
edge rise occurs (from logic level 0 to 1) in the corresponding inputs. Therefore, a pulse 
detector is required for each input in order to signal the corresponding event, as shown in 
Figure 14. The variables related to the uncontrollable events are activated in this block. 
During the program execution, if they result in some action, they will be disabled. If they 
result only in self-loops where no action is taken, as represented by dashed lines in the state 
machine, these variables remain active until the moment that some transition which results 
in an action occurs later. 

 

Fig. 14. Inputs 

8.3 Transitions/actions 

The requirement for a transition to occur is that the state machine must be in a certain state 
and one or more uncontrollable events that result in some action happens. If these 
requirements are satisfied, then the next state is activated and the current one is deactivated. 
The uncontrollable events responsible for the transition are deactivated to avoid occurrence 
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of the avalanche effect (Fabian & Hellgren, 1998). When an uncontrollable event happens for 
a certain plant, the variable corresponding to that plant, Plant i, is activated in order to avoid 
that the action corresponding to the start of the operation for that apparatus occurs during 
the same scan cycle, being treated only in the next scan cycle. This is due to the specific 
treatment required for the actions, as described previously. The actions, if any, will be 
activated to allow the corresponding plant to evolve in the same scan cycle or only in the 
next scan cycle if forbidden to evolve in the current cycle. Figure 15 shows this block for the 
manufacturing system. Verify the representation of the reduced state machine shown in 
Figure 11 in order to compare the theoretical model with the practical one. Consider for 
instance that the state machine is in state 3. Here, two transitions are possible: due to both 
events b1 and b3 or only due to event b1. The transition b1 & b3 (due to events b1 and b3) 
must always appear first in the Ladder diagram due to this problem of simultaneity 
(Fabian & Hellgren, 1998). This is because in the case that events b1 and b3 occur and the 
transition only due to event b1 is implemented first, the latter will be executed in the 
program and the variable b1 will be deactivated. In this way, the transition due to events b1 
and b3 will never happen in practice. 

Consider now that the state machine is in state 4 and the transition b1 & b2 & b3 occurs. The 
state machine remains in the same state and, as all the apparatus finish their operation, no 
action will be taken in the current scan cycle. However, as the actions a1, a2 and a3 are 
activated, in the next scan cycle all the apparatus will be turned on again. Thus, such a 
methodology guarantees that it is necessary to wait only one scan cycle for the enabled 
actions to be taken. 
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Fig. 15. Transitions/Actions 
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8.4 Disabling 

This block is responsible for disabling the control actions in the machine states. This 
means that if the state machine reaches a certain state, the actions related to this state are 
forbidden to occur, being disabled. Figure 16 shows the disabling block for the 
manufacturing system. The first two rungs on the Ladder code represent the states where 
the corresponding control actions are disabled. Furthermore, the disabling may occur if 
some uncontrollable event is signalled but it does not allow an action to be taken 
(represented by a self-loop with dashed lines in the reduced state machine), so that the 
start of operation in the corresponding plant is forbidden. In the Ladder diagram, it is 
enough to disable the action related to a certain Plant i when the uncontrollable event bi 
occurs. In other words, when b1 occurs, it is enough to disable Plant 1. When b2 occurs, it is 
enough to disable Plant 2, and so on.  This is because although the event bi occurred, it did 
not effectively generate a transition in the state machine, and therefore, the plant was not 
disabled, as shown in the remaining rungs of the Ladder diagram. 

  

Fig. 16. Disabling 

8.5 Outputs 

A physical output is activated only if the action related to a controllable event is taken and 
its corresponding variable, Plant i, is not enabled, as shown in Figure 17. If such situation 
occurs, the coil Qi which represents the physical output of the PLC will be energized. Yet, at 
the end of the program, the variables Plant i will be disabled in order to return to the initial 
condition before starting a new scan cycle. 

Besides being a simplified implementation model, this solution has the advantage of not 
restricting more than one uncontrollable event to be treated in the same PLC scan cycle. 

In order to have a better understanding of the logic implementation of this supervisory 
control, consider first that the start of operation is given by the action a1. After a few PLC 
scan cycles, the apparatus A1 finishes its operation and the transition due to the 
uncontrollable event b1 is generated. According to the reduced state machine, the actions a2 
and a1 are enabled to occur and the state machine transitions to state 2. However, as Plant 1 
finished its operation, only the physical output Q2 is activated in the same scan cycle. The 
physical output Q1 will be activated only in the next scan cycle. Next, the state machine will 
behave differently depending on which apparatus finishes its operation first. If apparatus 
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A2 finishes its operation, then transition b2 will be generated, action a3 will be taken and the 
state machine transitions to state 3. If apparatus A1 finishes its operation, then transition b1 
will be generated resulting in a self-loop with dashed lines inside state 2, because no action is 
taken. If the PLC identifies the changes in the input signals corresponding to the end of 
operation in both apparatus A1 and A2 (transitions b1 and b2, respectively), then actions a1, 
a2 and a3 will be taken and the state machine transitions to state 4. Similarly, the remaining 
transitions and actions follow the same dynamics, as illustrated in the reduced state 
machine model presented in Figure 11. 

  

Fig. 17. Outputs 

9. Conclusion 

The proposed methodology presents a new model to represent supervisors for Discrete Event 

Systems (DES). The Supervisory Control Theory (SCT) is a convenient methodology to obtain 

supervisors from simpler models, where automata are useful to represent plants and control 

specifications so that, starting from simpler models, supervisors may be represented by state 

machines. In general, the approach based on state machines consists of a model rich in 

information. It is appropriate to emphasize the importance of the modelling process for the 

supervisors, because if some control specification changes or a new subsystem is added to the 

plant, it is necessary to remake the synthesis for the state machine. 

The proposed algorithm to transform the automata which represents a supervisor in a 
state machine allows a reduction in the number of states in the model. That reduced 
approach can be used as a reference to implement the control system in a data processing 
unit.  It is necessary only to take into account the implementation aspects related to the 
controller used, based on the constructive aspects of its hardware. In this chapter, 
solutions were described to avoid the problems usually found when implementing 
supervisors in synchronous controllers, using a PLC as a target with the source code 
implemented in the Ladder language.  

The example of a manufacturing system demonstrates some aspects related to the 
optimization in the code size generated resulting in an economy in the non-volatile memory 
usage and the possibility of treating several events inside the same scan cycle of the 
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controller. For large systems, this approach results in an improvement of the temporal 
dynamics of the control when several input signal changes and several actions shall be taken 
in the same scan cycle, ensuring synchronism and minimizing problems due to 
communication delays. 
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