
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

14

Modelling and Implementation of
Supervisory Control Systems Using

State Machines with Outputs

Moacyr Carlos Possan Junior1,2 and André Bittencourt Leal2
1Whirlpool Latin America

2Santa Catarina State University – UDESC
Brazil

1. Introduction

The growth of the complexity of automated systems in industry has occurred extensively in
recent years due to the production demand increase, quality improvements and flexibility to
restructure the manufacturing systems in order to satisfy new procedures. Nevertheless, the
evolution of control devices and their functionalities, such as processor speed, memory and
network communication has advanced in parallel with the factories' requirements. Although
the evolution of automation in industrial processes is a fact, there is still a scarcity of formal
methods for analysis, project and implementation of control systems for Discrete Event
Systems (DES) in order to reduce the development time, reduce human resources
investment, and satisfy the operational requirements for certain systems in an effective way.
Furthermore, the occurrence of programming bugs resulting in errors due to interruption in
the process and losses due to poorly designed software is obviously unacceptable nowadays
in this market that has a just-in-time mindset and is strongly focused on profits.

Usually, the projects for supervisory control systems are based on the knowledge of the
system's practitioner, according to his experience in programming. The usage of formal
methods is sparse, such that the reuse of documentation and source code as well as the
dissemination of the knowledge generated are both impaired. Moreover, the automation
of manufacturing systems has brought an increase in the complexity of control systems, so
that to elaborate and implement robust and reliable control logic is not a trivial task. In
order to minimize the risks due to programming errors and to permit a formal method for
modelling DES, Ramadge & Wonham (1989) introduced the Supervisory Control Theory
(SCT), which guarantees optimal control logic (nonblocking and minimally restrictive) for
these systems.

A Discrete Event System (DES) consists of a system with discrete states that are driven by
events. In other words, its state evolution depends on the occurrence of discrete
asynchronous events over time (Cassandras & Lafortune, 2008). Discrete Event Systems are
quite common in the industry nowadays and the events may be classified as uncontrollable
and controllable. Examples of controllable events are the start and end of an operation and
examples of uncontrollable events are the activation and deactivation of a presence sensor.

www.intechopen.com

Manufacturing System

286

The Supervisory Control Theory (SCT) is already widespread in the academic environment,
using the automata theory as a base to model the control systems. However, such a theory is
not common in the industrial environment. Therefore the resolution of supervisory control
problems has been done without the usage of a formal procedure.

The SCT allows the solution of control problems in a systematic manner. This technique

guarantees that the resulting supervisor will satisfy the specifications imposed by the

designer, avoiding general control issues, such as blocking. Besides, due to its heuristic

nature, the SCT facilitates the code writing changes before implementation in a controller, in

case there is some inclusion/exclusion of devices or changes in the system layout.

Although the SCT provides an automatic method to synthesize control systems for DES,

when analysing the monolithic supervisor obtained from the SCT, it is difficult to visualize

the process dynamics in an easy way as the system complexity grows. That occurs due to

the large number of states and no distinction about what kind of event, uncontrollable or

controllable, has priority to occur when the supervisor is in a certain state. Furthermore, the

implementation of this supervisor in a controller will require considerable non-volatile

memory, neither being an elegant solution nor justifying the adoption of a formal method.

PLC (Programmable Logic Controller) implementation of DES supervisory control was

discussed in many works, as in (Ariñez et al., 1993; Lauzon, 1995; Leduc & Wonham, 1995;

Leduc, 1996; Lauzon et al. 1997; Fabian & Hellgren, 1998; Dietrich et al., 2002; Hellgren et al.,

2002; Liu & Darabi, 2002; Music & Matko, 2002; Queiroz & Cury, 2002; Chandra et al., 2003;

Hasdemir et al., 2004; Manesis & Akantziotis, 2005; Vieira et al., 2006, Noorbakhsh &

Afzalian 2007; Hasdemir et al., 2008; Silva et al., 2008; Leal et al., 2009; Uzam et al., 2009;

Moura & Guedes, 2010).

In brief, other works presented methodologies using extended automata with variables in an

attempt to minimize the exponential growth of states resulting from the automata

composition, such as (Chen & Lin, 2000; Yang & Gohari, 2005; Gaudin & Deussen, 2007;

Skoldstam et al., 2008), amongst others.

This chapter intends to propose a formal methodology to model control systems for

industrial plants through extended automata called Mealy state machines (Mealy, 1955) and

subsequent implementation in Programmable Logic Controllers (PLCs) using the Ladder

language. An algorithm proposed by Possan (2009), which explores the benefits of SCT to

design a supervisor, is used to convert the automaton which represents the supervisor to a

finite state machine with outputs. Another algorithm is then used to reduce the state

machine to have a simplified structure implemented in a PLC. The simplified state machine

representation is a different way of viewing a DES, resulting in a systematic way to

implement the source code in a controller with reduced memory usage. The code

implementation takes into consideration some common issues found in synchronous

controllers, such as PLCs.

A Mealy state machine is a finite state machine with outputs, composed of an oriented

graph where the nodes are called states and arcs are called transitions. It is a powerful

model to represent the behavior of processes in general.

The chapter is structured as follows: Section 2 introduces the proposed methodology;
Section 3 covers the monolithic approach defined by the SCT; Section 4 shows a system to be

www.intechopen.com

Modelling and Implementation of Supervisory
Control Systems Using State Machines with Outputs

287

used as example to illustrate the modelling and implementation; Section 5 presents in detail
the transformation algorithm to obtain a Mealy state machine; Section 6 relates to the state
machine simplification procedure; Section 7 presents common issues found during
supervisor implementation in synchronous controllers while Section 8 describes how to
implement the simplified state machine in PLC using the Ladder language. Finally, Section 9
covers the conclusion.

2. Methodology for the control system design

Figure 1 shows an overview of the proposed methodology. It starts with the supervisor
synthesis. The synthesis is done based on the SCT and a monolithic supervisor is obtained.
The supervisor is then used as input for the transformation algorithm to obtain the state
machine. The machine is then simplified to have a reduced number of state transitions. The
simplified machine, on the other hand, represents a model to generate the code for a
controller (PLC, microcontroller or any other data processing unit). This chapter is focused
on the state machine implementation using the Ladder language for PLCs.

Supervisor Synthesis

Using the SCT

Plant Model Specifications

Algorithm to Obtain the

State Machine

State Machine Simplification

Code Generation for PLCs

Fig. 1. Proposed methodology

The synthesis of the supervisor and the obtaining and simplification of the state machine
will be described in the next three sections.

3. Supervisor synthesis using the SCT

The monolithic approach for the synthesis of an optimal supervisor (nonblocking and
minimally restrictive) is based on three main steps:

a. obtain a model for the physical system (plant) to be controlled;
b. obtain a model which represents the specifications to be respected; and
c. synthesize a nonblocking and optimal control logic.

www.intechopen.com

Manufacturing System

288

The plant model is built through the synchronous composition (Cassandras & Lafortune,
2008) of all the existing subsystem models in the system. The same procedure is done to
build the specification model. The plant and the target language, obtained through the
synchronous composition of the plant with the specification, will be used as input to obtain
the monolithic supervisor. This procedure can be done using the computational tool named
Grail for Supervisory Control (Reiser et al., 2006).

In the SCT, the plant is assumed to spontaneously generate events. The supervisor observes
the string of events generated by the plant and might prevent the plant from generating a
subset of the controllable events, thus disabling them. However, the supervisor has no
means of forcing the plant to generate an event, as shown in Figure 2-a.

In practice, the modelled behavior of the plant does not correspond exactly to the real
behavior due to the assumption that controllable events are not generated by the plant, as
presumed by the SCT. This is because in most real systems, the events modelled as
controllable correspond to commands that actually must be generated by the control system.
These commands must be sent by the controller to the actuators because they would not
occur spontaneously. Thus, the implementation is performed according to the structure
proposed by Queiroz & Cury (2000) to keep such coherence. Figure 2-b shows the
representation for real systems, where the electric signals coming from the sensors
(responses from the plant) correspond to the observed (uncontrollable) events while the
electric signals sent to the actuators (actions in the plant) correspond to the disabled
(controllable) events.

Supervisor

Plant

Observed

Events

Disabled

Events

Control Unit

Process to be

Controlled

Electric signals

from the sensors

Electric signals to

the actuators

Fig. 2. Monolithic approach: (a) Ramadge-Wonham Framework, (b) Similar representation
for a real system

4. A motivation example

In this section, a manufacturing system is used to demonstrate the proposed methodology.
This system is composed of three apparatus and two intermediary buffers with a capacity of
one which are available between the apparatus, as illustrated in Figure 3.

www.intechopen.com

Modelling and Implementation of Supervisory
Control Systems Using State Machines with Outputs

289

The apparatus are represented by Ai, where i = 1, 2, 3 and the buffers are represented by Bj,
where j = 1, 2.

Fig. 3. Manufacturing system

The controllable events that correspond to the start of the apparatus' operation are
represented by ax, while the uncontrollable events that correspond to the end of operation
are represented by bx, where x = 1, 2, 3.

The plant and specifications are modelled using automata and the controllable events are
represented with a dash. The behavior of each apparatus (or subsystem) can be modelled by
the automaton shown in Figure 4. Notice that state 0 is double circled. This is a marked state
that represents a completed task.

0 1

ax

bx

Fig. 4. Automaton for the apparatus Ax

When modelling this plant, only the apparatus were taken into consideration. The buffers
were considered only in the in the control specification model.

The specifications for this system are restrictions of coordination to avoid overflow (the
apparatus finishes its task but the output buffer is already full) or underflow (the apparatus
starts working without any item to fetch from the input buffer). Those restrictions point out
the idea that it is necessary to alternate b1-a2 and b2-a3, respectively. This means that the start
of operation for an apparatus (event ax+1) will only be allowed when its input buffer is
loaded (event bx), as shown in Figure 5.

0

b x

1

ax+1

Fig. 5. Automaton for the control specifications

www.intechopen.com

Manufacturing System

290

The synchronous composition of the plants with the specifications will result in the target
language (Ramadge & Wonham, 1989). The calculation of the minimally restrictive and
nonblocking supervisor is based on an iterative process which identifies and eliminates bad
states in the automata that models the target language.

The monolithic supervisor found with the usage of Grail (Reiser et al., 2006) has 18 states
and 32 state transitions.

The supervisor can be reduced for a later comparison with the state machine. This
procedure is done to simplify the supervisor size and also the number of transitions (Su &
Wonham, 2004). An algorithm for supervisor reduction is used to obtain fewer states and
transitions than the original supervisor (Sivolella, 2005).

Figure 6 shows the automata which represents the reduced supervisor. The disabled events
for each state are represented by red dashes.

a2,a3

a1,a3

a3

a1,a3

a2

a1,a2

a2

a1

a1

a2

a1,a2

Fig. 6. Reduced supervisor and disabled events for the manufacturing system

www.intechopen.com

Modelling and Implementation of Supervisory
Control Systems Using State Machines with Outputs

291

Notice that the reduced supervisor has 12 states and 20 state transitions. The supervisor
reduction algorithm creates self-loop transitions. However, these transitions are not relevant
because they do not cause a state change.

Transitions among the states can occur either by controllable events (ax) or by uncontrollable

events (bx). In case the designer intends to implement the code in the controller based on this

model, he will have to decide on the kind of event to give priority. Furthermore, it is not

trivial to visualize what are the active apparatus and what events modelled as

uncontrollable are expected to occur at a certain state of the supervisor.

5. Algorithm to obtain the state machine with outputs

The state machine obtained with the proposed algorithm consists of a Mealy machine

(Mealy, 1955). In a Mealy machine, a transition can have one or more output actions (set one

or more controllable events) and any output action can be used in more than one transition.

The output actions are not associated with the states, which are passive. Thus, the actions

can be associated with more than one state.

A simple example of a Mealy machine is shown in Figure 7. Transitions and actions are

separated by dashes. It is a machine with two states where, when in State 1, Transition 1 makes

the machine to go from State 1 to State 2 and takes Action 1. When in State 2, Transition 1 plus

Transition 2 makes the machine go from State 2 to State 1 and Action 2 is taken.

State 1

Transition 1 / Action 1

State 2

Transition 1, Transition 2 / Action 2

Fig. 7. Example of a Mealy machine

In this proposal, the transition between two states is performed by means of one or more

uncontrollable events in the system. For each transition, an output action may be

generated.

The algorithm proposed to create the state machine works in an iterative process, looping

through the input data to obtain the states, transitions and actions that compose a finite state

machine. As soon as all the input data is processed, the state machine is completed. The

algorithm is shown in Figure 8.

Input data for the algorithm is the information about the plant, the supervisor and the list of

disabled events. Output data are the states, transitions and actions which compose the state

machine.

www.intechopen.com

Manufacturing System

292

In the transformation process from the supervisor to the state machine, the output actions
correspond to the controllable events in SCT while the transitions among the states
correspond to the uncontrollable events.

The initialization considers the initial states of the input data. These data compose the
starting point of the state machine representing the condition where the physical process has
not started.

The next step is to create a states queue. The queue is required to store the states that are
being obtained iteratively to be treated after the treatment of a current state has finished.
The queue consists of a First In, First Out (FIFO) structure. A while loop is suggested to treat
all the states available until the states queue becomes empty.

Fig. 8. Algorithm to obtain the state machine

For each state, a transition queue is created as well. A “for loop” is suggested to treat all the
valid transitions for that specific state until all the transitions available in the queue are
processed.

In order to create the list of valid transitions for a certain state in the state machine, it is first
necessary to divide the plant and the supervisor in two parts according to the controllability
of the events and their transitions. Thus Gu and Su will have the list of automata state
transitions due to uncontrollable events. The same happens for the controllable part.

www.intechopen.com

Modelling and Implementation of Supervisory
Control Systems Using State Machines with Outputs

293

The data reading sequence begins at the uncontrollable part (Gu and Su). After that, the
algorithm evaluates the disabled events for the actual state of the supervisor. This will
define if the controllable part of the system (Gc and Sc) can evolve or not.

In other words, the resulting state machine gives priority to the occurrence of uncontrollable
events, waiting to receive some response from the physical system to make a decision about
what controllable events to disable.

The valid transitions for a certain state are the uncontrollable events that create state
evolutions from the current active states in the uncontrollable part of the plant and
supervisor. The combination of more than one uncontrollable event is also considered as a
transition.

After the uncontrollable part is processed, the controllable part is processed. The controllable
disabled events are evaluated according to the current state the supervisor is in. While the
disabled events are forbidden to occur, the remaining ones may originate the actions.

The valid actions for a certain state are the controllable events that are not disabled at the
supervisor state and cause states evolution in the controllable part of the plant and the
supervisor.

When an action occurs, the algorithm checks if the controllable part of the supervisor has

evolved. If so, then the disabled events for the destination state are evaluated in order to verify

if another action may occur. This step assures that all the actions possible to occur for the same

transition are processed. It means that more than one action can occur for the same transition.

If Sc has not evolved, then a new state is created. This state is compared with the other
states and if it already exists, it is ignored. Otherwise, it is added to the states queue to be
treated later.

For each transition due to the uncontrollable events, Gu and Su obtained from the SCT

evolve. The same happens for the controllable part in the occurrence of an action.

This methodology is consistent with the Mealy machine approach, where the outputs

(actions) depend on the current state and valid inputs (transitions).

After the procedure for creating a transition and corresponding actions is finished, the

algorithm will treat the remaining transitions available in the transitions queue. When all

the transitions in the queue are treated, the algorithm will evaluate the next state available in

the states queue. These iterative processes are performed until the states queue is empty.

This means that the finite state machine has been completed.

The state machine for the manufacturing system with the proposed algorithm is shown in

Figure 9, composed of 8 states and 22 state transitions.

The states are named according to the apparatus that are operating at a certain point in time

and the buffers that are full. The transitions are represented by the uncontrollable events,

and the taken actions, if any, are separated from the transitions by a slash (/). The disabled

events are represented by red dashes. Notice that in this model the transitions may occur

due to more than one uncontrollable event, and the actions, if any, may be due to more than

one controllable event.

www.intechopen.com

Manufacturing System

294

A1

/a1

A1

A2

b1 /

a1 & a2 A2

Buf 1

b1

A1

A3

b2 / a3 b1 & b3 /

a1 & a2

b3

b1 /

a1 & a2

b2 & b3 /

a3

b3

A1

A2

A3

A1

A3

Buf 2
b2

A3

Buf 1,2

b1 & b2b1

b3/a3

A2

A3

Buf 1

b1

b1 & b3

b1 & b2 & b3 /

a1 & a2 & a3

b3

b2 & b3 /

a1 & a2 & a3

b2

b3 /

a1 & a2 & a3

b2 /

a1 & a2 & a3

b1 & b3/

a1 & a2 & a3

b1 & b2 /

a1 & a2 & a3

a2,a3

a3 a1,a3

a2

a1

a2

a1,a2

1 2

3

4

5

6
7

8

0

Fig. 9. Mealy state machine

6. State machine simplification

When the state machine model considers the treatment of more than one uncontrollable
event, this may result in the disadvantage of an exponential growth of transitions,
depending on the number of plants modelled and how many may be enabled at the same
time. The number of transitions created for a certain state is on the order of 2 1

n  , where n
represents the number of uncontrollable events present in the model and possible to occur
for that state. Therefore, for larger and more complex systems, the code size would be
affected significantly to satisfy that condition, being a convincing reason for not using such a
methodology. An alternative solution for that is to consider a reduced state machine where
the state transitions are represented only by transitions that result in actions. Transitions
that do not result in actions are represented by self-loops inside their current state. For
example, for state 2 of the state machine represented in Figure 9, transition b1 could be
represented as a self-loop. Although the state machine evolves to state 3, there is no action
taken during this transition.

Although they do not result in actions, these transitions are important to represent the plant

dynamics and cannot be simply disregarded during the implementation process. The

controller program must capture their occurrence and store it in some internal variable to be

used in the decision-making process when other transitions occur. The algorithm presented

in Figure 10 describes the process to reduce a monolithic Mealy machine.

www.intechopen.com

Modelling and Implementation of Supervisory
Control Systems Using State Machines with Outputs

295

Fig. 10. Algorithm to reduce the state machine

It is important to emphasize that such a procedure to reduce the Mealy machine does not
necessarily result in a minimal state machine.

Figure 11 shows the reduced state machine for the manufacturing system. This state
machine contains only four states and seven transitions. The transitions illustrated by solid
lines represent the occurrence of an action, regardless of whether the transition occurred
from one state to another. The transitions illustrated by self-loops in dashed lines inside a
current state represent that, although a transition has occurred, an action is not fired.

A1
A1

A2

b1

A1

A3
b3

A1

A2

A3

b1 ^ b2 ^ b3 ^

(b1 & b2) ^ (b1 & b3)

a3

a2

1 2

3

4

b1 /

a1 & a2

b2 / a3 b1 & b3 /

a1 & a2

b1 /

a1 & a2

b2 & b3 /

a3
b1 & b2 /

a1 & a2 & a3

b1 & b2 & b3 /

a1 & a2 & a3

a2,a3

/a1

0

Fig. 11. Reduced Mealy state machine

www.intechopen.com

Manufacturing System

296

Consider for instance state 2 of the reduced state machine. If transition b2 occurs, the state

machine evolves to state 3. In the case that transition b1 occurs, the model illustrates that

situation as a self-loop represented by dashed lines, which means that the practical

implementation in the controller must guarantee the proper storage of this information in

some internal variable.

When event b2 occurs with transition b1 already enabled, transition b1 & b2 will be activated,

so that the state machine evolves to state 4 and actions a1, a2 and a3 are taken.

The disabled actions shall be represented in the corresponding states to illustrate the control

actions forbidden to occur. The states which became unreachable if compared to the original

state machine are eliminated by this reduced model.

Transitions due to more than one uncontrollable event and action due to more than one

controllable event are still represented in this model. That is relevant information which

helps the designer when he intends to implement the control system, so that the program

allows several events to be executed inside the same scan cycle of the synchronous

controller.

In addition, a new logic operator appears in this model. The operator “^” represents an

exclusive or condition. In order to understand its function, consider state 4 of the reduced

state machine, for example. If any of the transitions listed in the self-loop with dashed lines

occur, namely, b1 ^ b2 ^ b3 ^ (b1 & b2) ^ (b1 & b3), none of the actions will be taken and those

transitions will remain enabled. Actions will be taken only when the transitions b2 & b3 or b1

& b2 & b3 become valid. The operator “^” appears only for the states with a self-loop

represented by dashed lines.

7. Issues with Implementing supervisors in synchronous controllers

According to (Fabian & Hellgren, 1998), “the supervisor implementation is basically a

matter of making the Programmable Logic Controller (PLC) behave as a state machine”.

However, that is not a simple task. Certain issues appear during the implementation process

in synchronous controllers, such as PLCs and computers. Those problems exist regardless of

the model used to represent the supervisors, by means of automata, Petri nets or colored

Petri nets (Basile & Chiacchio, 2007). Such problems are explored in the structure presented

here and a solution is presented where possible, in accordance with the Ladder language

definition described by the IEC-61131-3 (1993) standard.

7.1 Causality

The SCT considers that all events are generated spontaneously by the plant and that the

supervisor tracks the sequence of events generated by the plant and also acts to disable the

controllable events in order to avoid any infringement of the control specifications.

However, in most practical applications, the controllable events are not generated

spontaneously by the physical plant, but only the feedback due to sent commands. So, the

question “who generates what?” must be answered (Fabian & Hellgren, 1998), or in other

words, who is responsible for the generation of certain kind of events, the supervisor or the

plant? (Vieira, 2007).

www.intechopen.com

Modelling and Implementation of Supervisory
Control Systems Using State Machines with Outputs

297

The supervision scheme proposed by the SCT was already illustrated in Figure 2-a. In this

structure, the plant is the responsible for events generation, both controllable and

uncontrollable, while the supervisor is just an observer and disables a set of controllable

events to satisfy control requirements.

However, in most practical applications, the events modelled as controllable correspond to

commands that, indeed, shall be generated by the PLC and sent to the actuators, because

they do not occur spontaneously. The plant generates only the uncontrollable events, as a

feedback to the stimulus sent by the PLC through the controllable events. Figure 2-b

describes the control structure usually employed in practice (Malik, 2002).

In this chapter, the causality problem is solved by representing the model using state

machines with outputs instead of automata. Therefore, when this transformation is

performed, the SCT changes to a model with inputs and outputs, as suggested by Malik

(2002). The signals originated by the sensors correspond to the uncontrollable events while

the signals generated by the actuators correspond to the controllable events.

7.2 Event detection

The synchronous nature of PLCs may create issues during the detection of uncontrollable

events as described below.

7.2.1 Signals and events

Some implementation problems are due to the lack of an easy way to translate supervisors

based on discrete event systems, which are symbolic, asynchronous and occur in discrete

instants of time in a synchronous universe and are based on signals such as those from the

PLC (Fabian & Hellgren, 1998). In order to avoid a discrepancy between the theory and

practice, a signal cannot generate more than one uncontrollable event during an operational

cycle of the PLC (Basile & Chiacchio, 2007).

7.2.2 Avalanche effect

The PLC signals may assume boolean values and are sampled periodically. Thus, in order to

implement supervisors according to the SCT in PLCs, the events are associated with changes

in the PLC input signals, which may cause what is called the avalanche effect. This effect

occurs when a value change in an input signal is registered as an uncontrollable event and

makes the software jump to an arbitrary number of states during the same scan cycle of the

PLC. This may occur specifically if a certain uncontrollable event is used to trigger several

state transitions in a list, creating behavior similar to an avalanche.

Figure 12 shows an example of the avalanche effect for a conventional supervisor

implementation in PLC. The supervisor transitions from state 0 to state 2 with the

occurrence of event b1. It should transition from state 1 to state 2 only with the occurrence

of a new event b1, or transition from state 1 to state 3 with the occurrence of an event b2.

However, the implementation proposed on the right side of Figure 12 does not restrict

that event b1 permits the transition from state 1 to state 2 in the same scan cycle of the

PLC. So, the avalanche effect introduces a transition directly from state 0 to state 2, so

www.intechopen.com

Manufacturing System

298

that, even if event b2 happened, it would not have any effect on the controller dynamics.

This is clearly unsatisfactory.

Fig. 12. Example of the Avalanche Effect

In order to solve this problem, Vieira (2007) proposes a procedure where a variable is

associated with all the transitions available for the supervisor. That variable is activated

every time a new state transition occurs, being deactivated at the end of the section of source

code where the supervisor structure is implemented. Every state transition includes the

negation of this variable as a condition. Such a solution solves the problem, but has the

disadvantage of allowing the occurrence of only one uncontrollable event inside the same

PLC scan cycle.

The solution proposed in this chapter consists of the deactivation of the variable

corresponding to the event which occurred as soon as a state transition due to that event

happens. In this way, the supervisor deactivates that specific event which occurred,

allowing transitions due to other events available in the model still to happen. During a scan

cycle, if events related to asynchronous specifications occur, they will be treated in this same

cycle. Such a proposal solves the avalanche effect problem and permits several

uncontrollable events to be treated inside the same PLC scan cycle. Moreover, the constraint

that more than one event is treated in the same scan cycle results in another problem called

loss of information (Vieira, 2007). Such a problem occurs in situations where several events

happen and only one is treated per scan cycle. Then, the information related to the

occurrence of the remaining events is lost. That issue does not occur in the methodology

proposed here due to the possibility of treating all other events which occurred in the same

scan cycle. This is possible because there is not just one general variable which is activated

when a state transition occurs, but a specific treatment for each event, where the other

events remain enabled to fire transitions.

7.2.3 Inability to recognize the order of events

This simultaneity problem was covered first by Fabian & Hellgren (1998) considering the
implementation of supervisors in PLCs. When two or more input signals change their values

www.intechopen.com

Modelling and Implementation of Supervisory
Control Systems Using State Machines with Outputs

299

between two input readings, those changes will be stored as a simultaneous change of
uncontrollable events, so that it is not possible to identify which one occurred first, because
the PLC performs a synchronous reading of its inputs.

It is noticeable that signal changes may be simultaneous or not, but the events will always

be stored as simultaneous during the reading. That problem is called simultaneity (Fabian &

Hellgren, 1998). Thus, in order to avoid implementation problems, the supervisor shall have

a control action which does not depend on the different interleaving of the uncontrollable

events. Fabian & Hellgren (1998) define such a property as interleave insensitivity of

uncontrollable events. These authors proposed an algorithm to detect if a supervisor is

interleaving insensitive. If not, the order in which the uncontrollable events occur cannot be

recognized if the controller utilized is synchronous.

8. Code generation for PLCs

The scan cycle of a program in the PLC follows the sequence: input read, control logic

execution and output write. That synchronous behavior of the PLC forces the outputs to be

updated only at the end of the scan cycle. Due to that, the activation of the actuators requires

a specific treatment. Looking at the state machine's structure, it may happen that as soon as

it finishes the operation, an apparatus may be requested to start a new operation cycle inside

the same scan cycle in which the previous operation had just been finished. If this happens

during a scan cycle, that variable would assume a low logic level (end of operation) and

return to a high logic level (start of operation). However, as the PLC writes the values stored

in its internal memory to the physical outputs only when its execution cycle is finished, it

does not recognize the process of operation end/start, so that its physical output will be

kept active all the time during the scan cycle. In order to avoid that, variables are added to

represent the evolving of the plants and guarantee the proper synchronism during the

system dynamics. Those variables are called Plant i, with i varying from 1 to n, where n is

the number of plants modelled in the global system. That variable is enabled every time an

apparatus finishes its operation. This procedure guarantees that the apparatus is not

requested to start operating again inside the same scan cycle when its operation end is

detected. It will be turned on again only in the next scan cycle.

As in the state machine model, for the implementation, the variables bi represent the

uncontrollable events (transitions) while variables ai (actions) represent the controllable

events.

The Ladder code can be split into five blocks, called by a main organizational block in the

following order: initialization, inputs, transitions/actions, disabling and outputs. They

implement the reduced state machine shown in Figure 11.

8.1 Initialization

The initialization starts the state machine and puts it into its initial state, and enables the

controllable event a1 in order to start the process, as shown in Figure 13. Other variables,

such as the ones responsible for uncontrollable events bi and the evolution of plants Plant i,

are disabled.

www.intechopen.com

Manufacturing System

300

Start

P S

State 1

S

a1

R

b1

R

b2

R

b3

R

Plant 1

R

Plant 2

R

Plant 3

Fig. 13. Initialization

8.2 Inputs

The variables responsible for transitions bi will be activated in the controller only when an
edge rise occurs (from logic level 0 to 1) in the corresponding inputs. Therefore, a pulse
detector is required for each input in order to signal the corresponding event, as shown in
Figure 14. The variables related to the uncontrollable events are activated in this block.
During the program execution, if they result in some action, they will be disabled. If they
result only in self-loops where no action is taken, as represented by dashed lines in the state
machine, these variables remain active until the moment that some transition which results
in an action occurs later.

Fig. 14. Inputs

8.3 Transitions/actions

The requirement for a transition to occur is that the state machine must be in a certain state
and one or more uncontrollable events that result in some action happens. If these
requirements are satisfied, then the next state is activated and the current one is deactivated.
The uncontrollable events responsible for the transition are deactivated to avoid occurrence

www.intechopen.com

Modelling and Implementation of Supervisory
Control Systems Using State Machines with Outputs

301

of the avalanche effect (Fabian & Hellgren, 1998). When an uncontrollable event happens for
a certain plant, the variable corresponding to that plant, Plant i, is activated in order to avoid
that the action corresponding to the start of the operation for that apparatus occurs during
the same scan cycle, being treated only in the next scan cycle. This is due to the specific
treatment required for the actions, as described previously. The actions, if any, will be
activated to allow the corresponding plant to evolve in the same scan cycle or only in the
next scan cycle if forbidden to evolve in the current cycle. Figure 15 shows this block for the
manufacturing system. Verify the representation of the reduced state machine shown in
Figure 11 in order to compare the theoretical model with the practical one. Consider for
instance that the state machine is in state 3. Here, two transitions are possible: due to both
events b1 and b3 or only due to event b1. The transition b1 & b3 (due to events b1 and b3)
must always appear first in the Ladder diagram due to this problem of simultaneity
(Fabian & Hellgren, 1998). This is because in the case that events b1 and b3 occur and the
transition only due to event b1 is implemented first, the latter will be executed in the
program and the variable b1 will be deactivated. In this way, the transition due to events b1
and b3 will never happen in practice.

Consider now that the state machine is in state 4 and the transition b1 & b2 & b3 occurs. The
state machine remains in the same state and, as all the apparatus finish their operation, no
action will be taken in the current scan cycle. However, as the actions a1, a2 and a3 are
activated, in the next scan cycle all the apparatus will be turned on again. Thus, such a
methodology guarantees that it is necessary to wait only one scan cycle for the enabled
actions to be taken.

State 1

S

State 2b1

R

State 1

R

b1

S

Plant 1

State 2

S

State 4b1

R

State 2

R

b1

R

b2

b2

S

Plant 1

S

Plant 2

S

a1

S

a2

S

a1

S

a2

S

a3

State 3

S

State 2

R

State 3

R

b1

R

b3

b1 b3

S

Plant 1

S

Plant 3

S

a1

S

a2

State 3

S

State 4

R

State 3

R

b1

S

Plant 1

b1

S

a1

S

a2

State 4

R

b1

R

b2

b1 b2

R

b3

S

Plant 1

b3

S

Plant 2

S

Plant 3

S

a1

S

a2

S

a3

State 4

S

State 3

R

State 4

R

b2

R

b3

b2 b3

S

Plant 2

S

Plant 3

S

a3

State 2

S

State 3b2

R

State 2

R

b2

S

Plant 2

S

a3

Fig. 15. Transitions/Actions

www.intechopen.com

Manufacturing System

302

8.4 Disabling

This block is responsible for disabling the control actions in the machine states. This
means that if the state machine reaches a certain state, the actions related to this state are
forbidden to occur, being disabled. Figure 16 shows the disabling block for the
manufacturing system. The first two rungs on the Ladder code represent the states where
the corresponding control actions are disabled. Furthermore, the disabling may occur if
some uncontrollable event is signalled but it does not allow an action to be taken
(represented by a self-loop with dashed lines in the reduced state machine), so that the
start of operation in the corresponding plant is forbidden. In the Ladder diagram, it is
enough to disable the action related to a certain Plant i when the uncontrollable event bi
occurs. In other words, when b1 occurs, it is enough to disable Plant 1. When b2 occurs, it is
enough to disable Plant 2, and so on. This is because although the event bi occurred, it did
not effectively generate a transition in the state machine, and therefore, the plant was not
disabled, as shown in the remaining rungs of the Ladder diagram.

Fig. 16. Disabling

8.5 Outputs

A physical output is activated only if the action related to a controllable event is taken and
its corresponding variable, Plant i, is not enabled, as shown in Figure 17. If such situation
occurs, the coil Qi which represents the physical output of the PLC will be energized. Yet, at
the end of the program, the variables Plant i will be disabled in order to return to the initial
condition before starting a new scan cycle.

Besides being a simplified implementation model, this solution has the advantage of not
restricting more than one uncontrollable event to be treated in the same PLC scan cycle.

In order to have a better understanding of the logic implementation of this supervisory
control, consider first that the start of operation is given by the action a1. After a few PLC
scan cycles, the apparatus A1 finishes its operation and the transition due to the
uncontrollable event b1 is generated. According to the reduced state machine, the actions a2
and a1 are enabled to occur and the state machine transitions to state 2. However, as Plant 1
finished its operation, only the physical output Q2 is activated in the same scan cycle. The
physical output Q1 will be activated only in the next scan cycle. Next, the state machine will
behave differently depending on which apparatus finishes its operation first. If apparatus

www.intechopen.com

Modelling and Implementation of Supervisory
Control Systems Using State Machines with Outputs

303

A2 finishes its operation, then transition b2 will be generated, action a3 will be taken and the
state machine transitions to state 3. If apparatus A1 finishes its operation, then transition b1
will be generated resulting in a self-loop with dashed lines inside state 2, because no action is
taken. If the PLC identifies the changes in the input signals corresponding to the end of
operation in both apparatus A1 and A2 (transitions b1 and b2, respectively), then actions a1,
a2 and a3 will be taken and the state machine transitions to state 4. Similarly, the remaining
transitions and actions follow the same dynamics, as illustrated in the reduced state
machine model presented in Figure 11.

Fig. 17. Outputs

9. Conclusion

The proposed methodology presents a new model to represent supervisors for Discrete Event

Systems (DES). The Supervisory Control Theory (SCT) is a convenient methodology to obtain

supervisors from simpler models, where automata are useful to represent plants and control

specifications so that, starting from simpler models, supervisors may be represented by state

machines. In general, the approach based on state machines consists of a model rich in

information. It is appropriate to emphasize the importance of the modelling process for the

supervisors, because if some control specification changes or a new subsystem is added to the

plant, it is necessary to remake the synthesis for the state machine.

The proposed algorithm to transform the automata which represents a supervisor in a
state machine allows a reduction in the number of states in the model. That reduced
approach can be used as a reference to implement the control system in a data processing
unit. It is necessary only to take into account the implementation aspects related to the
controller used, based on the constructive aspects of its hardware. In this chapter,
solutions were described to avoid the problems usually found when implementing
supervisors in synchronous controllers, using a PLC as a target with the source code
implemented in the Ladder language.

The example of a manufacturing system demonstrates some aspects related to the
optimization in the code size generated resulting in an economy in the non-volatile memory
usage and the possibility of treating several events inside the same scan cycle of the

www.intechopen.com

Manufacturing System

304

controller. For large systems, this approach results in an improvement of the temporal
dynamics of the control when several input signal changes and several actions shall be taken
in the same scan cycle, ensuring synchronism and minimizing problems due to
communication delays.

10. Acknowledgment

The authors thank the financial support provided by CNPq and FAPESC, and also thank
Whirlpool Latin America and the UDESC for their support in the realization of this work.

11. References

Ariñez, J.F.; Benhabib, B.; Smith, K.C. & Brandin, B.A. (1993). Design of a PLC-Based
Supervisory-Control System for a Manufacturing Workcell, Proceedings of the
Canadian High Technology Show and Conference, Toronto, 1993.

Basile, F. & Chiacchio, P. (2007). On the Implementation of Supervised Control of Discrete
Event Systems. In: IEEE International Transactions on Control Systems Technology, Vol.
15, No. 4, pp. 725 – 739, ISSN: 1063-6536

Cassandras, C.G. & Lafortune, S. (2008). Introduction to Discrete Event Systems. 2nd Ed.
Springer Science, ISBN-13:978-0-387-33332-8, New York, USA.

Chandra, V.; Huang, Z. & Kumar, R. (2003). Automated Control Synthesis for an Assembly
Line Using Discrete Event System Control Theory. IEEE Transactions on Systems,
Man, and Cybernetics—Part C: Applications and Reviews, Vol. 33, No. 2, (May 2003),
pp. 284-289, ISSN 1094-6977.

Chen, Y. L. & Lin, F. (2000). Modeling of Discrete Event Systems using Finite State Machines
with Parameters. In: IEEE International Conference of Control Applications, Anchorage,
Alaska, USA.

Fabian, M. & Hellgren, A. (1998). A PLC-based implementation of supervisory control for
discrete systems. In: Proceedings of the 37th IEEE Conference on Decision and Control,
Vol. 3, pp. 3305-3310.

Gaudin, B. & Deussen, P.H. (2007). Supervisory Control on Concurrent Discrete Event
Systems with Variables. In: Proceedings of the IEEE American Control Conference, pp.
4274-4279, ISSN: 0743-1619, New York, NY, USA.

Harel, D. (1987). Statecharts: A Visual Formalism for Complex Systems. Science of Computer
Programming, Vol. 8, No. 3 (June 1987), pp. 231-274.

Hasdemir T., Kurtulan, S., & Gören, L. (2004). Implementation of local modular supervisory
control for a pneumatic system using PLC. In: Proceedings of the 7th International
Workshop on Discrete Event Systems (WODES’04), pp. 27-31, Reims, France.

Hasdemir, T.; Kurtulan, S.; & Gören, L. (2008). An Implementation Methodology for
Supervisory Control Theory. International Journal of Advanced Manufacturing
Technology, Vol. 36, No. 3, (March 2008), pp. 373-385. ISSN 0268-3768.

IEC-61131-3 (1993). International Electrotechnical Commission. Programmable Logic
Controllers – Part 3: Programming Languages.

Lauzon, S. C. (1995). An implementation methodology for the supervisory control of flexible-
manufacturing workcells, M.A. Sc. Thesis, Mechanical Engineering Dept. University
of Toronto, Canada.

www.intechopen.com

Modelling and Implementation of Supervisory
Control Systems Using State Machines with Outputs

305

Lauzon, S. C.; Mills, J. K.; & Benhabib, B. (1997). An Implementation Methodology for the
Supervisory Control of Flexible Manufacturing Workcells, Journal of Manufacturing
Systems, Vol. 16, No. 2, pp. 91-101.

Leal, A. B.; Cruz, D.L.L.; Hounsell, M.S. (2009). Supervisory Control Implementation into
Programmable Logic Controllers. In: Proc. of the 14th IEEE International Conference
on Emerging Technologies and Factory Automation, pp. 899-905, Mallorca, 2009.

Leduc, R. J. (1996). PLC Implementation of a DES supervisor for a manufacturing testbeb: an
implementation perspective, M.A.Sc. Thesis, Dept. of Electrical and Computer
Engineering, Univ. of Toronto, Canada.

Leduc, R. J. & Wonham W. M. (1995). PLC implementation of a DES supervisor for a
manufacturing testbed. In: Proceedings of 33rd Annual Allerton Conference on
Communication, Control and Computing, pp. 519-528, University of Illinois.

Liu, J. & Darabi, H. (2002). Ladder logic implementation of Ramadge-Wonham supervisory
controller, Proceedings of the 6th International Workshop on Discrete Event System
(WODES’02), pp. 383-389. ISBN: 0-7695-1683-1. Zaragoza, Spain, October 2002.

Malik, P. (2002). Generating Controllers from Discrete-Event Models. In : Proceedings of the
Modelling and Verifying Parallel Processes Movep 02. pp. 337-342, Nantes, France.

Manesis, S. & Akantziotis, K. (2005). Automated synthesis of ladder automation circuits
based on state-diagrams. Advances in Engineering Software, 36, pp .225–233.

Mealy, G.H. (1955). A Method to Synthesizing Sequential Circuits. Bell Systems Technical
Journal. pp. 1045-1079.

Moura, R. & Guedes, L.A. (2010). Control and Plant Modeling for Manufacturing Systems
using Basic Statecharts. In: Programmable Logic Controller, Guedes, L.A. (Ed), pp. 33-
50, INTECH, ISBN 978-953-7619-63-3, Croatia.

Music, G. & Matko, D. (2002). Discrete event control theory applied to PLC Programming,
Automatica, Vol 43, 1-2, pp. 21-28.

Noorbakhsh, M. & Afzalian, A. (2007). Implementation of supervisory control of DES using
PLC. In: Proc. 15th Iranian Conference on Electrical Engineering (ICEE), Tehran, Iran.

Possan, M.C.P. (2009). Modelling and Implementation of Supervisory Control Systems Based on
State Machines with Outputs (in Portuguese). Thesis (Master Degree), Santa Catarina
State University, Joinville, Brazil.

Queiroz, M.H. & Cury, J.E.R. (2000). Modular supervisory control of large scale discrete-
event systems. Discrete Event Systems: Analysis and Control. Kluwer Academic
Publishers (Proc. WODES 2000), Ghent, Belgium, pp. 1-6).

Queiroz, M. H. de & Cury, J. E. R. (2002). Synthesis and implementation of local modular
supervisory control for a manufacturing cell, Proc. of the 6th Int. Workshop on
Discrete Event Systems WODES, pp. 1-6. ISBN: 0-7695-1683-1. Zaragoza, Spain,
October 2002.

Ramadge, P.J. & Wonham, W.M. (1989). The control of discrete event systems. In: Proceedings
of IEEE, Special Issue on Discrete Event Dynamics Systems, Vol. 77, No. 1, pp. 81-98.

Reiser, C.; Da Cunha, A.E.C. & Cury, J.E.R. (2006). The Environment Grail for Supervisory
Control of Discrete Event Systems. In: Proceedings of the 8th International Workshop on
Discrete Event Systems, Michigan, USA, pp. 1-6.

Silva, D. B.; Santos, E. A. P.; Vieira, A. D. & Paula, M. A. B. (2008). Application of the
supervisory control theory in the project of a robot-centered, variable routed

www.intechopen.com

Manufacturing System

306

system controller, Proceedings of the 13th IEEE International Conference on Emerging
Technologies and Factory Automation – ETFA’08, pp. 1-6.

Sivolella, L. F. (2005). Contributions for Supervisors Reduction for Discrete Event Systems (in
Portuguese). Thesis (Master Degree), IME, Rio de Janeiro, Brazil.

Skoldstam, M. & Akesson, K. & Fabian, M. (2008). Supervisor Control Applied to Automata
Extended with Variables - Revised. Technical Report. Chalmers University of
Technology, Gothenburg, Sweden.

Su, R. & Wonham, W. M. (2004). Supervisor reduction for discrete-event systems, Discrete
Event Dynamic Systems, Vol. 14, No. 1, pp. 31-53.

Uzam, M.; Gelen, G.; & Dalci, R. (2009). A new approach for the ladder logic
implementation of Ramadge-Wonham supervisors, Proc. of the 22nd Int. Symp. on
Information., Commun. and Automation Technologies, pp. 1-7. ISBN 978-1-4244-4220-1,
Bosnia 2009.

Vieira, A.D. (2007). Method to Implement the Control of Discrete Event Systems with the
Application of Supervisory Control Theory (in Portuguese). PhD. Thesis, UFSC,
Florianópolis, Brazil.

Vieira, A. D.; Cury, J. E. R. & Queiroz, M. (2006). A Model for PLC Implementation of
Supervisory Control of Discrete Event Systems. Proc. of the IEEE Conf. on Emerging
Technologies and Factory Automation, pp. 225–232. Czech Republic, September 2006.

Yang, Y. & Gohari, P. (2005). Embedded Supervisory Control of Discrete-Event Systems. In:
IEEE International Conference on Automation Science and Engineering, pp. 410-415,
Edmonton, Canada.

www.intechopen.com

Manufacturing System

Edited by Dr. Faieza Abdul Aziz

ISBN 978-953-51-0530-5

Hard cover, 448 pages

Publisher InTech

Published online 16, May, 2012

Published in print edition May, 2012

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

This book attempts to bring together selected recent advances, tools, application and new ideas in

manufacturing systems. Manufacturing system comprise of equipment, products, people, information, control

and support functions for the competitive development to satisfy market needs. It provides a comprehensive

collection of papers on the latest fundamental and applied industrial research. The book will be of great

interest to those involved in manufacturing engineering, systems and management and those involved in

manufacturing research.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Moacyr Carlos Possan Junior and André Bittencourt Leal (2012). Modelling and Implementation of Supervisory

Control Systems Using State Machines with Outputs, Manufacturing System, Dr. Faieza Abdul Aziz (Ed.),

ISBN: 978-953-51-0530-5, InTech, Available from: http://www.intechopen.com/books/manufacturing-

system/modelling-and-implementation-of-supervisory-control-systems-using-state-machines-with-outputs

© 2012 The Author(s). Licensee IntechOpen. This is an open access article

distributed under the terms of the Creative Commons Attribution 3.0

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.

