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Extreme Climatic Events as  
Drivers of Ecosystem Change 

Robert C. Godfree 
CSIRO Plant Industry, Canberra, ACT 

Australia 

1. Introduction 

It is difficult to stand in the cliff dwellings that lie in the shallow caves that line the canyon 

walls of Mesa Verde National Park in south-eastern Colorado and not be amazed. These 

impressive structures were built in the late 12th and early 13th centuries by pre-Columbian 

native American Anasazi people, who, at that time, occupied much of the Four Corners 

region of south-western USA. Some cliff dwellings were of exceptional size, containing over 

150 rooms and lodging 100 or more people, and were supported by the farming of maize on 

the surrounding semi-arid mesa tops (Benson et al. 2007a) which today are covered in forests 

of piñon pine and juniper. Perhaps more interesting, however, is that this phase of 

occupation represented just one stage in the development and decline of Anasazi culture in 

the southwest. Anasazi populations waxed and waned repeatedly over time, and most of 

the even bigger, multi-storey stone houses (great houses) located across the central San Juan 

Basin, for example, were abandoned in the mid 12th century (Benson et al. 2007a,b). 

Construction activity in the wetter, more favourable northern San Juan Basin then increased 

(Lekson & Cameron 1995; Benson et al. 2007a), but by the late 13th century the Mesa Verde 

cliff dwellings, along with other Anasazi population centres in the Four Corners region, had 

also been abandoned for areas closer to the Northern Rio Grande region of New Mexico 

(Ahlstrom et al. 1995).  

What caused these large scale human migrations? The most likely scenario is that Anasazi 

populations, which over time had become increasingly sedentary and dependent on maize 

for provision of dietary needs (Benson et al. 2007b), were primarily responding to movement 

of the climatic niche in which maize could be grown (Petersen 1994). Reconstructed climate 

data suggest that between AD 900 and AD 1300 the south-western United States was 

affected by elevated aridity and protracted drought that exceeded in severity anything that 

has been observed in the centuries since (Cook et al. 2004; Stahle et al. 2007), and particularly 

severe multi-decadal drought, apparently linked to changes in the Pacific Decadal 

Oscillation (MacDonald & Case 2005), occurred during AD 1135-1170 and AD 1276-1297. 

Around this time the central and northern San Juan Basin Anasazi cultures, respectively, 

declined (Benson et al. 2007a), and it is likely that agricultural collapse (Benson et al. 2007a), 

coupled with breakdown in societal structure (Benson et al. 2007b), ultimately led to the 

depopulation of the entire region.  
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This and other historical examples in which drought has played a pivotal role in 
socioeconomic and cultural decline (e.g., Weiss & Bradley 2001; Acuna-Soto et al. 2002, 2005; 
Endfield et al. 2004; Hodell et al. 2005) underscore the capacity for extreme climatic events to 
threaten the very fabric of society. Modern agricultural systems are not immune from 
similar pressures; recently the severe 1997-2009 “Millennium Drought” in south-eastern 
Australia (Whitaker 2006; Bond et al. 2008) caused massive agricultural decline (Pook et al. 
2009), extensive job losses (Mpelasoka et al. 2008), and real declines in household 
consumption, wages, and gross regional product (Horridge et al. 2005). What makes these 
cases of added importance is that the frequency of extreme events is expected to increase 
under anthropogenic climate change (Tebaldi et al. 2006; Planton et al. 2008), and changes in 
precipitation and temperature extremes are already being observed around the world (e.g., 
Collins et al. 2000; Easterling et al. 2000; Goswami et al. 2006). Significant impacts on human 
societies and the natural world are expected if such trends continue (Easterling et al. 2000).  

Recently, there has been a significant increase in research focusing on the impact of extreme 
climatic events, and, more broadly of climate change, on natural and agro-ecosystems (e.g., 
Easterling et al. 2000; Meehl et al. 2000; Walther et al. 2002; Tubiello et al. 2007). Extreme 
events can have severe and often disproportional effects (Gutschick & BissiriRad 2003) on a 
wide range of animal and plant groups (e.g., Dudley et al. 2001; Morecroft et al. 2002; 
Martinho et al. 2007), with population-level changes to extinction rates, range movement, 
behaviour and reproduction observed in a range of different ecosystems (reviewed in 
Easterling et al. 2000; Parmesan et al. 2000). However, such examples raise further questions, 
to which we at present only have a rudimentary and fragmented understanding. For 
example, which ecosystems are most sensitive to extreme climatic events, and to what type 
of events? How extreme, and over what timeframes, do climatic conditions have to be to 
cause significant mortality among plant species? Over what timeframes can community-
level compositional change occur? Most importantly, can we predict the nature and 
magnitude of change in plant communities that are affected by different kinds of extreme 
events? These questions are more than just academic: the ecosystem services that plant 
communities provide underpin both human societies and biodiversity alike. 

The objectives of this chapter are twofold. First, by drawing on a range of case studies, I assess 
the conditions under which extreme climatic events are likely to rapidly alter the structure and 
composition of natural plant communities. I focus specifically on the impacts of extreme 
drought and heatwaves, since both are expected to increase in severity in coming decades as 
climate change alters the probability distribution of temperature- and precipitation-related 
climatic variables (Meehl et al. 2000; Hennessy et al. 2008; Planton et al. 2008); the impacts of 
other extreme events are discussed elsewhere (see Easterling et al. 2000; Parmesan et al. 2000; 
Holmgrem et al. 2006). I then test some of these ideas by reporting the results of a field study 
which compares the demographic responses of three semi-arid Australian grassland species to 
drought, with a specific focus on using a better understanding of the specific roles of habitat 
heterogeneity, species characteristics, and drought severity to predict the likely impact of 
extreme events on plant communities under climate change.  

2. Characterisation of extreme events 

It is widely understood that ecological stresses often reflect statistical extremes rather than 
climatic means or variances (Gaines & Denny 1993), and the responses of individuals and 
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populations to stressful abiotic conditions is, in many cases, non-linear and sensitive to 
discrete thresholds (Easterling et al. 2000; Beniston & Stephenson 2004). As such, accurate 
quantification of the likelihood and intensity of extreme climatic events is essential. 
Unfortunately, this task is made difficult by the fact that no single definition of what 
constitutes an extreme event actually exists, and the impacts of unusual climatic situations 
on ecosystems have not traditionally been studied in a systematic manner (Gutschick & 
BassiriRad 2003; Smith 2011). As noted by Beniston & Stephenson (2004), extremes can be 
defined in terms of rarity, intensity or impact, although individually these definitions may 
fail to capture the critical features of climatic variability that impact on plant and animal 
populations. Smith (2011) suggests that an extreme climatic event should be defined as a 
rare or unusual climatic period that alters ecosystem structure and/or function well outside 
what is considered normal variability, and many of the studies discussed below inherently 
use this concept, despite the fact that the rarity of the climatic conditions being studied is 
often not formally described.  

From a quantitative standpoint, a range of approaches are used to characterise extreme 
events. The Intergovernmental Panel on Climate Change (IPCC 2011) defines a climate 
extreme as “the occurrence of a value of a weather or climate variable above (or below) a 
threshold value near the upper (or lower) ends of the range of observed values of the 
variable” (p. 2). Indices derived using this approach usually quantify the duration or 
frequency of events which exceed a specific temperature or precipitation threshold, for 
example total number of frost days, growing season length, heat wave duration, and 
number of consecutive dry days (e.g., Tebaldi et al. 2006). Another commonly-used method 
is to define extreme events as those occurring within a certain percentile range (often the 5th, 
10th, 90th or 95th percentiles) of a climatological distribution within a given timeframe (see 
Bell et al. 2004). Hennessey et al. (2008) define exceptional droughts as those of one year in 
duration and occurring, on average, once every 20 years (i.e., a 5% probability of occurring 
within a given year; Katz et al. 2005).  

The standard statistical approach for quantifying climatic variation is to fit a probabilistic 
model to a given climatic data set and then to evaluate the likelihood (and severity) of 
specific climatic events based on the associated probability density function. In recent years 
a cohesive statistical theory of extreme events has emerged (Coles 2001). These techniques, 
and their application to ecological problems, have been discussed in detail elsewhere; 
readers are directed to Katz & Brown (1992), Gaines & Denny (1993), Katz et al. (2005), and 
Resnick (2007) for details. The basic statistical approach can be visualised in Fig. 1; for 
further discussion see Meehl et al. (2000) and IPCC (2011). Consider a normally-distributed 
climatic variable, such as temperature (Fig. 1a). For this probability density function (PDF), 
the top 5% of values, which may be classified as extreme, lie 1.65 standard deviation (σ) 
units above the mean (PDF I; Fig. 1a). A shift in climate alters the frequency and severity of 
extreme events, with the magnitude of change depending on the location and shape of the 
new distribution (Fig. 1b). In PDF II (Fig. 1b), the distribution undergoes only a mean shift 
with variability (σ; the standard deviation) remaining constant, this results in an increase in 
the frequency of climatic events of a given magnitude (from 5% in PDF I to 26% in PDF II). 
Similarly, the incidence of extreme events at the other end of the distribution declines. A 
change in the shape of the distribution (increase in σ in PDF III, Fig. 1b) results in a further 
increase in the frequency of extreme events (PDF III, Fig. 1b), indeed more than an 
equivalent change in the mean (Katz & Brown 1992; Meehl et al. 2000). 
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Fig. 1. Frequency of extreme events for a given hypothetical climatic variable showing 
variation in probability related to change in shape and location of the probability density 
function (PDF). a) normal distribution (PDF I; µ = 0, σ = 1) with the 5% most extreme events 
occurring 1.65 or more standard deviation units from the mean (vertical dashed line). b) 
Increase in frequency of extreme events following increases in the climatic mean (PDF II; µ = 
1, σ = 1) and standard deviation (PDF III; µ = 1, σ = 1.5). c) Generalised extreme value (GEV) 
distribution with location parameter (μ) = 0, scale parameter (σ) = 1, and shape parameter (ξ) = 
0.1 (PDF IV) showing the larger tail that characterises the GEV PDF, with the 5% most extreme 
events lying above the vertical dashed line. An increase in the parameter σ to 1.5 (PDF V) 
increases the spread of the distribution and the probability of extreme events that lie in the 
upper tail. The shape of the GEV function is determined by ξ (see Katz et al. 2005 for details). 
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While some climatic variables can be approximately normally distributed, many others have 
heavy tails with significant skew towards large values (Gaines & Denny 1993; Gutschick & 
BassiriRad 2003). For example, precipitation-related variables tend to be non-normal, and 
are often modelled using gamma (Watterson & Dix 2003) or lognormal (Cho et al. 2004) 
distributions. Model selection is critical, since the objective is to adequately characterise the 
distributional tails. One family of distributions widely used for modelling extreme values, 
especially maxima, is the generalised extreme value (GEV) probability density function, 
which produces light-, heavy- and bounded-tailed distributions (Katz et al. 2005). A typical 
heavy-tailed (Fréchet) GEV distribution is shown in Fig. 1c (PDF IV). Shifts in location (µ), 
scale (σ) and shape (ξ) parameters that define the GEV distribution all impact on the 
frequency and severity of extreme events (Fig. 1c, PDF V). 

3. Extreme climatic events as ecosystem drivers: The evidence 

3.1 Demographic change and plant mortality 

Probably the most important mechanism by which extreme climatic events (ECEs) can drive 

rapid ecosystem change is by causing extensive mortality in dominant or keystone plant 

species. The loss of such species can result in rapid, cascading compositional change in plant 

communities, in turn affecting the population viability of faunal and floral community 

associates (Gitlin et. al. 2006) and the ecosystem services that they provide (Walker et al. 

1999; Kremen 2005). Unfortunately, ECEs are difficult to study within a pre-planned 

experimental and statistical framework (Buckland et al. 1997), and so little or no information 

exists on the responsiveness of most plant communities to ECEs of varying severity. 

However, a range of studies provide insight into the dramatic and persistent impacts of 

prolonged abiotic stress on plant community composition and structure.  

The classic studies of Albertson and Weaver (1944, 1945) on prairie and woodland 

ecosystems in North America were among the first, and most comprehensive, to document 

the impacts of protracted, multi-year drought on plant communities. During the 1930-1940 

“dustbowl” years, much of the central US experienced record- or near-record low rainfall, 

high temperatures, high evaporation, and declining soil moisture. In the most extreme years 

(e.g., 1934, 1936, 1939), rainfall was up to 40% below normal, summer maximum 

temperatures were 3-6°C above normal, evaporation exceeded that of non-drought years by 

up to 33%, and the water table fell by one metre or more (Albertson & Weaver 1945). This 

drought was one of the three most extreme to affect North America since 1900 (Cook et al. 

2004), although not as severe as previous megadrought periods that occurred in the 12th to 

16th centuries (Woodhouse & Overpeck 1998; Stahle et al. 2007).  

The most striking effect of this drought was the high level of mortality that occurred in 
virtually all plant species across the landscape. Mortality of dominant and subordinate tree 
species (e.g., Ulmus americana, Populus sargentii, Celtis occidentalis, Salix spp.) exceeded 50% 
across a broad range of topoedaphic habitats with distinctly different hydrological regimes, 
most notably in dry ravines and along intermittent creeks (Albertson & Weaver 1945). In 
prairie communities perennial grasses such as Andropogon scoparius, Koeleria cristata and Poa 
pratensis suffered up to 80-90% mortality, while subordinate grasses and forbs were almost 
eliminated (Albertson & Weaver 1944). The catastrophic loss of groundcover resulted in 
intense wind erosion, with dust accumulating to depths of 2 feet (60 cm) in sheltered 
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locations (Albertson & Weaver 1945). This dust exacerbated the severity of water stress 
experienced by plants during the drought by preventing rain infiltration into the soil, 
effectively blocking moisture from reaching the rhizosphere (Albertson & Weaver 1945). 
Insect attack also increased the impact of drought on tree populations (Albertson & Weaver 
1945; Mattson & Haack 1987).  

Other studies report similar effects during prolonged periods of exceptionally severe 

drought. Record dry conditions experienced during 2006-2007 at a semi-arid grassland site 

in south-eastern Australia resulted in 90% or higher mortality of the dominant grass species 

Austrostipa aristiglumis (Godfree et al. 2011). Here, the most acute period of rainfall 

deficiency occurred during the middle of a decade-long drought. Similarly, Edwards & 

Krockenberger (2006) reported 64% mortality among seedlings of rainforest species during 

the 2002 ENSO event in north-eastern Australia, during which rainfall at their study site was 

only 36% of average. On a much larger spatial scale, mortality of piñon pine (Pinus edulis) in 

western North America varied between 40% and >90% in response to drought during 2000-

2003 (Breshears et al. 2005). The severity of this drought, which was among the three driest 

in the past century, was exacerbated by high temperatures (Breshears et al. 2005).  

Similar levels of drought-induced mortality have been observed in Canadian aspen forests 

(Hogg et al. 2008), beech forests (Peterken & Mountford 1996), and in forests globally (for 

review see Allen et al. 2010). Indeed, forest mortality in response to drought and heatwaves 

is so common that Allen et al. (2010) concluded that no forest biome is invulnerable to 

climate change, even in systems that are not thought to be water-limited. However, while 

droughts do not have to be of unprecedented or record severity to cause significant 

mortality in plant communities, it is also clear that not all droughts result in high levels of 

plant mortality (e.g., Condit et al. 1995; Fensham and Holman 1999; references in Allen et al. 

2010); and not all generate detrimental, lasting effects on plant populations (e.g., Morecroft 

et al. 2002; Yurkonis & Meiners 2006).  

Briefly, other extreme climatic events can also have strong, direct impacts on ecosystems by 
inducing injury or mortality in plants. High temperatures, especially those exceeding 55°C, 
when Rubisco activity, electron transport and overall photochemical performance becomes 
impaired (Kappen 1981; Musil et al. 2009) are known to be detrimental to plants. Simulated 
heatwaves in which temperatures approach or exceed these temperatures have been shown 
to result in canopy decline and mortality of succulent plant species (Musil et al. 2005); in this 
study mortality in heated treatments ranged from 33-74% compared with 7-38% in controls 
that experienced 5.5°C cooler daytime temperatures. Such extremes are probably most likely 
to occur in arid and semi-arid systems where lower-canopy species lack cover, and may in 
part explain the loss of low-stature mesophyllic grasses and forbs following death of 
overstorey plants in drought-affected grasslands and woodlands (Albertson and Weaver 1944, 
1945). Studies conducted in tundra environments have also resulted in physiological 
impairment and mortality in cold-adapted species (Marchand et al. 2006); numerous examples 
exist in other systems (e.g., Van Peer et al. 2001; Groom et al. 2004, Larcher et al. 2010). 

3.2 Community composition and structure 

During drought, a range of physiological, demographic and environmental factors interact 
to determine the impact of extreme water deficiencies on specific plant individuals and 
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species. McDowell et al. (2008) recently reviewed these mechanisms; briefly, the key drivers 
of plant mortality under moisture stress are thought to be carbon starvation, the activity of 
biotic agents, and hydraulic failure, with the relevance of each depending on the intensity 
and duration of stress. Plants adopt a range of mechanisms to tolerate or resist drought, 
with intraspecific and interspecific variation found in water use efficiency (Farquhar et al. 
1989), dormancy (Oram 1983), dehydrin expression (Volaire et al. 2001), extraction of 
water at low soil water potential (Volaire and Lelièvre 2001), senescence of aerial tissue 
(Volaire et al. 1998; Bolger et al. 2005), root structure (Van Splunder et al. 1996) and 
resource allocation (Aronson et al. 1993) to name a few. Indeed, most species use different 
physiological and anatomical mechanisms to protect tissue during periods of moisture 
stress (Scott 2000).  

Plant survival also depends strongly on spatial heterogeneity in the landscape. Variation in 
soil moisture occurs at a range of spatial scales (Buckland et al. 1997; Gitlin et al. 2006; 
Dobrowski 2011; Godfree et al. 2011), and because plant mortality is non-linearly related to 
soil moisture content, microscale variation in water availability can critically influence plant 
survival under extreme drought (Godfree et al. 2011). At larger spatial scales, hydrological 
variation and the frequency of soil drought is a key driver of species assortment and 
community composition (Oberbauer & Billings 1981; Buckland et al. 1997; Yurkonis & 
Meiners 2006), a process which reflects variation in the ability of species to recover from 
drought (e.g., Tilman & El Haddi 1992; Stampfli & Zieter 2004) as much, or more, than 
tolerance of drought itself (Gutschick & BassiriRad 2003). 

Given these sources of variation, it is not surprising that plant species tend to show highly 
differential mortality when placed under extreme drought in natural settings. During 
drought in the 1930’s, Albertson and Weaver (1944, 1945) observed that survival among tree 
species in ravine environments ranged from 64% (Celtis occidentalis) to only 30% (Ulmus 
americana), and drought hardy species, such as Juniperus virginiana, had much lower 
mortality (1-37%) than all other co-occurring species, even persisting as monospecific stands 
on the most xeric sites (Albertson & Weaver 1945). In prairie communities, all species were 
affected but some, including Andropogon furcatus, suffered much lower mortality than others 
(e.g., Andropogon scoparius, Stipa spartea) which experienced over 80% mortality. 
Survivorship was linked strongly to depth of the rooting system, since during the drought 
soil water deficiencies gradually moved lower in the soil profile (Albertson & Weaver 1944). 
Interestingly, over the entire drought period the composition of the prairie community was 
in constant flux (Albertson & Weaver 1944). Interspecific variation in mortality has also been 
observed in numerous other studies (Tilman & El Haddi 1992; Condit et al. 1995; Gitlin et al. 
2006), and in response to other climatic stressors (e.g., Stiles 1930; Barua et al. 2003; Henry & 
Molau 2003; Marchand et al. 2006; many others). 

Under extreme, prolonged drought, rapid changes in vegetation composition can be 

persistent or effectively permanent. Perhaps the best documented example occurred during 

extreme drought in the 1950’s, when the ecotone separating Pinus ponderosa forest from 

Pinus edulis-Juniperus monosperma woodland moved by 2 km or more within only five years. 

This change has persisted for at least 40 years (Allen & Breshears 1998). One of the most 

significant persistent changes observed by Albertson & Weaver (1944) was the expansion of 

wheat grass (Agropyron smithii), which was favoured by moist springs and dry summers, at 

the expense of other species such as Andropogon furcatus. Elsewhere, Gitlin et al. (2006) 
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showed that continuation of extreme drought conditions in the southwestern United States 

experienced during 2002 would likely result in significant change to the composition and 

structure of entire plant communities and ecosystems. Similarly, Tilman & El Haddi (1992), 

in a controlled experiment, showed that post-drought recovery of grassland vegetation was 

not accompanied by a significant recovery in species richness, and suggested that post-

drought recruitment limitation may determine the richness of prairie plant communities. 

Here, drought with a return interval of approximately 50 years was sufficient to 

significantly alter local species richness (Tilman & El Haddi 1992). Drought can also alter 

competitive relationships among species, resulting in stratification of plant communities 

along hydrological gradients (Buckland et al. 1997) or promotion of invasion by fast-growing 

annuals (White et al. 2001).  

4. Case study: Change in composition of an Australian semi-arid grassland 
during and following extreme drought 

The case studies above provide overwhelming evidence that extreme climatic events, and 

especially drought, can drive rapid changes in plant community composition by causing 

differential rates of mortality and recovery among plant species. A central remaining 

challenge to ecologists, however, is to understand when, and under what threshold 

conditions, abiotic stress will lead to changes of large magnitude (McDowell et al. 2008), 

knowledge that will be essential if we are to accurately predict the impact of climate 

change on natural vegetation globally. In this section I aim to improve our understanding 

of such processes by drawing conclusions from a study in which I investigate the impact 

of a multi-year period of exceptional drought on a semi-arid Australian grassland 

ecosystem. 

4.1 Background: The “Millenium Drought” in Australia 

Between 1997 and 2009 much of south-eastern Australia was affected by an extremely severe 

and protracted drought known as the “Millennium Drought” (Whitaker 2006; Bond et al. 

2008). During this period, annual rainfall was well below average, especially during autumn 

(March-May), while maximum and minimum temperatures were at or near record highs 

(Murphy & Timbal 2008). Over the past half century mean maximum and minimum 

atmospheric temperatures have increased over most of Australia (Nicholls et al. 2004; 

Nicholls 2006) and extreme temperature events have become more frequent (Collins et al. 

2000). Recent droughts also may have become more severe due to increased evaporation 

associated with warmer temperatures (Nicholls 2004; Cai & Cowan 2008). Severe drought is 

a regular phenomenon in Australia (Ummenhofer et al. 2009), and there is a strong 

suggestion that rising atmospheric greenhouse gas concentrations have played a role in the 

development of rainfall deficiencies and elevated temperatures across southern parts of 

Australia in recent decades (Timbal et al. 2006; Murphy & Timbal 2008). 

The most extreme droughts in Australia impact on regional agriculture, hydrology, 

ecosystem function, and the population dynamics of flora and fauna. The 1997-2009 drought 

was no exception: extreme low rainfall and high temperatures (Cai & Cowan 2008) during 

the drought resulted in the near total loss of surface water and a persistent decline of 
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groundwater (Leblanc et al. 2009), which in turn reduced agricultural productivity 

significantly (Horridge et al. 2005; Pook et al. 2009). Large impacts were observed on aquatic 

flora and fauna (Bond et al. 2008; references therein), with extensive tracts of the key riparian 

tree species Eucalyptus camaldulensis dying in the lower Murray-Darling Basin (Cunningham 

et al. 2009). While Australian ecosystems are commonly perceived to be resilient to drought 

(e.g., Bond et al. 2008), their ability to recover from events of this severity and duration, or 

the increasingly extreme events of the future (Mpelasoka et al. 2008), remains open to 

question (Godfree et al. 2011).  

4.2 Study objectives 

The objective of this study was to improve understanding of the role of extreme climatic 

events as drivers of rapid ecosystem change by comparing the landscape-level responses of 

different plant species to drought across multiple grassland habitats, and investigate 

whether the observed phytosociological changes could be explained by simple predictors 

including statistical quantification of drought severity, topography, and knowledge of the 

broader range distributions and habitat affinities of the study species. I specifically 

addressed the following hypotheses:  

1. prolonged drought of unprecedented severity will result in high mortality across a 
range of grassland plant species; 

2. mortality will be highest in the most xeric sites and mesic low-lying habitats will act as 
refugia during drought;  

3. post-drought recruitment and recovery will be the primary drivers of post-drought 
community composition and structure; and 

4. species with ranges that extend further into drier regions will have higher survival and 
recruitment than species with more mesic distributions. 

Evidence supporting these hypotheses might indicate that at least some basic principles 
could be generally applied to the study of extreme events to improve prediction of their 
impacts on vegetation systems. 

4.3 The study system 

The study was conducted in a high quality remnant semi-arid grassland located 

approximately 30 km to the east of West Wyalong in central NSW (Fig. 2). The choice of a 

semi-arid biome reflects the general view that these ecosystems are highly susceptible to 

shifts in climate (Allen & Breshears 1998; Holmgren et al. 2006). The topography of the 34 

hectare site is mainly flat with extensive treeless plains dissected by a series of small creeks 

that incise up to 2-3 m below the surrounding terrain. While low, this topographic 

heterogeneity does generate a range of habitat types characterised by different floral 

assemblages (illustrated in Fig. 2). Prior to 2006, grasslands dominated by the tussock grass 

Austrostipa aristiglumis (F.Muell.) S.W.L.Jacobs & J.Everett (plains grass) and Panicum 

prolutum F.Muell [= Walwhalleya proluta (F.Muell.) Wills & J.J.Bruhl] (rigid panic) occurred 

on flat and mesic low-lying terraces and gullies, while xeric, sloping terrain was dominated 

by the small perennial shrub Leiocarpa panaetioides (DC.) Paul G. Wilson (woolly buttons). 

Natural grasslands and grassy woodlands dominated by A. aristiglumis and other grassland 
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species once occurred widely across inland NSW (Benson et al. 1997), but unfortunately 

most have been degraded by overgrazing, cultivation, and weed invasion and the remaining 

areas have now been listed as critically endangered under the Environment Protection and 

Biodiversity Act 1999 (Threatened Species Scientific Committee 2008). A. aristiglumis, P. 

prolutum and L. panaetioides all grow on the western slopes and plains regions of NSW, 

Queensland and Victoria, but P. prolutum and L. panaetioides extend further into the drier, 

semi-arid zone than A. aristiglumis, and L. panaetioides occurs in arid habitats in far western 

NSW (Fig. 3).  

 
 
 
 

 
 
 

 

Fig. 2. Location and characteristics of the semi-arid grassland study site in south-central 
NSW, Australia. The location of the site is shown in the inset as a red star. The main habitat 
types along with the study species Leiocarpa panaetioides, Austrostipa aristiglumis and Panicum 
spp. (mainly P. prolutum with some P. decompositum) are labelled on the photograph taken 
looking north-east near the centre of the study site. The terrace habitat lies around 2 m in 
elevation below the Austrostipa flat.  
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Fig. 3. Approximate distribution of the three study species in Australia. Dots represent 
locations where herbarium records exist for each species (some incorrect records or those 
representing adventive occurrences have been removed). Data derived from Australia’s 
Virtual Herbarium, Council of Heads of Australasian Herbaria Inc. 
(http://chah.gov.au/avh/public_query.jsp) 
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4.4 Climatic conditions during 2006-2007 

Like most of south-eastern Australia, the study site was affected by chronic drought between 
2001 and 2009, with particularly severe conditions occurring during 2006 and 2007. At 
Wyalong Post Office (S 33.93°, E 147.24°), the nearest high quality meteorological station to the 
study site, only 181 mm of rain fell in 2006 – easily the driest year since at least 1900 and 62% 
below the 1900 to 2009 average of 474 mm (Fig. 4a). Rainfall was also low during 2007 (356  

 

Fig. 4. a) Total annual rainfall at Wyalong Post Office, NSW, Australia, 1900-2009. The 
extreme drought years of 2006 and 2002 are indicated, along with the timeframe of the 
“Millenium Drought”, a protracted period of rainfall deficiencies experienced across much 
of south-eastern Australia. b) Total annual rainfall fit with gamma distribution (┙ = 12.50, ┚ 
= 38.08). Annual rainfall data were obtained from the Australian Bureau of Meteorology’s 
Patched Point Dataset (available at http://www.longpaddock.qld.gov.au/silo/). 
Approximately 87% of data were station data with the remaining being interpolated daily 
observations (mainly pre-1950). 
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mm) and 2008 (350 mm), and collectively over the period 2001-2009, annual rainfall 

averaged only 362 mm, 24% below the long term average (Fig. 4a). Temperatures during this 

period were also at or near record levels (see below), which exacerbated drought severity 

(see Nicholls 2004). 

4.5 Field surveys 

The exceptionally dry conditions of 2006 and 2007 presented an ideal opportunity to 

quantify the responses of A. aristiglumis, P. prolutum and L. panaetioides to acute water 

deficiencies in different habitat types across the study site. For each species, I quantified 

rates of population mortality and recruitment across six different topoedaphic habitat types 

(for detailed description of habitat types see Godfree et al. 2011; Fig. 2) based on surveys 

conducted in three representative transects which spanned the study site. I estimated 

mortality rates based on counts of dead and live adult plants, and recruitment rates based 

on counts of juvenile plants that had established in 2007. Further details (for A. aristiglumis), 

along with soil water data documenting the severity of the drought, are provided in Godfree 

et al. (2011).  

Survey data were used to estimate pre-drought population densities of each species in each 

habitat type (based on adult plant density), while the post-drought population density was 

determined based on total counts of surviving adult and juvenile plants. Species survival 

rates were determined based on estimated pre- and post-drought adult plant densities, and 

adult plant replacement rates were calculated as the number of recruits per number of dead 

plants recorded at the time of the survey. The areal contribution of each habitat type to the 

total site area was determined based on the total intercepted length (m) of each habitat 

across all three transects. 

4.6 Demographic change in response to drought 

Prior to the major mortality event that occurred in late 2006, A. aristiglumis dominated the 

more mesic and flat habitats at the study site, while P. prolutum was most abundant in the 

Panicum flats habitat (Fig. 5a). In drier habitats (south- and north-facing slopes) both grasses 

had much lower densities, being largely replaced by the more xerophytic shrub L. 

panaetioides (Fig. 5a). By late 2007, however, the population density of A. aristiglumis and P. 

prolutum had changed considerably (Fig. 5b), reflecting drought-induced mortality followed 

by a major recruitment event in autumn and winter 2007.  

During the most extreme phase of the drought mortality of A. aristiglumis and P. prolutum 

occurred in all habitats, with populations in the more xeric, sloping habitats suffering losses 

of 90% or more (Fig. 6a). P. prolutum suffered >65% mortality in all habitats and was 

eliminated from north-facing slopes (the most xeric habitat), while A. aristiglumis survival 

exceeded 30% only in the most mesic terrace environments (Fig. 6a). In contrast, L. 

panaetioides survival was at least 70% in all but one habitat (north-facing slopes) and no 

plants died in the terrace and gully habitats (although density was low to start with). Mean 

site survival, averaged across habitat types, was 21% for A. aristiglumis, 17% for P. prolutum, 

but 79% for L. panaetioides.  
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Fig. 5. Demographic changes observed across the study site July 2006-December 2007. a) 
Estimated pre-drought population density (July 2006). b) Post-drought population density 
(December 2007). c) Percentage change in density July 2006 to December 2007. T = terrace, G 
= gully, PF = Panicum flat, AF = Austrostipa flat, SFS = south-facing slope, NFS = north-
facing slope. Habitat types are arranged from most mesic (terraces) to most xeric (north-
facing slopes). np = species not present in the habitat type; n/a = not applicable.  
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Fig. 6. Survival and recovery of plant populations observed across the study site July 2006-
December 2007. a) Survival rate of adult plants present in July 2006. b) Rate of replacement 
of dead adult plants by recruits. The dotted line indicates the replacement rate (1) where 
numbers of new recruits exactly equals that of dead adult plants. T = terrace, G = gully, PF = 
Panicum flat, AF = Austrostipa flat, SFS = south-facing slope, NFS = north-facing slope. 
Habitat types are arranged from most mesic (terraces) to most xeric (north-facing slopes). np 
= species not present in the habitat type; n/a = not applicable.  
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Spatially, each of the habitats accounted for a different proportion of the area of the study 
site, and the impact of the drought on the total population size of each species reflected both 
mortality rate and the spatial extent of each habitat in which it occurred. For A. aristiglumis, 
only 16% of all plants at the site survived the drought, since high mortality (96%) was 
observed in the extensive Austrostipa flats habitat. P. prolutum survival was highest (34%) in 
habitats where its original density was also highest (2.0 m-2), and so overall survival (27%) 
exceeded that of A. aristiglumis. The relatively high total survivorship of L. panaetioides (73%) 
also strongly reflected generally high survivorship across habitat types. 

Following rain in autumn 2007, significant recruitment of A. aristiglumis and P. prolutum, but 
not L. panaetioides, occurred across the study site. Recruits exceeded the number of drought-
killed plants in gullies and terraces (A. aristiglumis) and gullies, terraces, Austrostipa flats and 
south-facing slopes (P. prolutum). Recruitment was minimal in L. panaetioides, and in no 
habitats did recruits fully replace plants that succumbed to the drought (i.e., adult plant 
replacement rate < 1; Fig. 6b). These differences in mortality and recruitment over the 2006-
2007 study period resulted in a significant spatial redistribution of plant species across the 
study site, and a landscape-level change in community composition. By late 2007, A. 
aristiglumis was predominantly restricted to terrace and gully habitats, where post-drought 
populations were actually larger than pre-drought populations (Fig. 5b), and was virtually 
absent from xeric habitats (Fig. 5b). P. prolutum, in contrast, increased in abundance in most 
habitats, and became co-dominant with A. aristiglumis in Austrostipa flat and south-facing 
slopes habitats, and increased its dominance in the Panicum flats habitat (Fig. 5b). L. 
panaetioides declined in all habitats, but maintained dominance on the most xeric north-
facing slope environments (Fig. 5c). In reality, however, the decline of all species in this 
habitat (Fig. 5c) left it essentially bare (Fig. 2), a condition which has been largely maintained 
for at least 3 years since (R. Godfree, personal observation).  

4.7 Implications for predicting the impacts of extreme events 

The results of this work, and those published previously (Godfree et al. 2011), support the 
hypothesis that extreme climatic events can significantly reconfigure landscape-scale 
vegetation mosaics within relatively short timeframes via direct mortality of established 
plants. While other studies have reported very high plant mortality during extreme drought 
(e.g., Albertson and Weaver 1944, 1945; Allen & Breshears 1998; Breshears et al. 2005; Gitlin 
et al. 2006; Edwards & Krockenberger 2006), the >90% mortality rates observed in this study 
in two community dominant species do appear to be unusually high. Perhaps this 
ultimately reflects the magnitude of rainfall deficiencies observed at the study site – 2006 
was the driest year in at least a century, and, surprisingly, 20% drier than the next driest 
year (2002). Heavy mortality can have a range of important demographic and genetic 
consequences for the long-term fitness of plant populations and species, and if the frequency 
of events such as the one described here increase under projected climatic change (Meehl et 
al. 2000; Hennessy et al. 2008; Planton et al. 2008), the consequences for the conservation of 
native vegetation are likely to be significant.  

As a result of the 2006-2007 drought, populations of two of the three study species (A. 

aristiglumis and L. panaetioides) shifted lower in the landscape, with the dominance of A. 

aristiglumis declining in all but the most mesic terraces and gully environments. Consistent 

with hypothesis 2, all three species suffered the greatest mortality in the more xeric 
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environments, and at the height of the drought, live plants were restricted almost entirely to 

mesic refugial habitats (with the exception of L. panaetioides, which although completely 

defoliated, did survive in modest numbers in drier areas). Interestingly, however, there was 

also some evidence that pre-drought habitat suitability was not a good predictor of drought 

survival or post-drought recruitment. For example, Austrostipa and Leiocarpa both declined 

most in the habitats in which their pre-drought populations were most dense (Figs. 5a, 6a), 

and recruitment of P. prolutum was poorer in the Panicum flats habitat than in most other 

habitats. In the case of A. aristiglumis and P. prolutum it is possible that terrace habitats were 

actually more suitable for these species (the plants present, although of lower density, were 

much larger than in drier habitats). This did not seem to apply to L. panaetioides - plants were 

large and abundant on the most xeric sites. Perhaps L. panaetioides is competitively excluded 

from mesic habitats by A. aristiglumis and P. prolutum and drought alters this competitive 

hierarchy, a pattern that has been observed elsewhere (White et al. 2001). Regardless, mesic 

refugia, albeit small in spatial scale (Godfree et al. 2011) clearly play a key role in ensuring 

survival of a range of species in a given plant community during extreme drought, 

including those that are adapted to drier conditions.  

The pattern of change among species observed at the study site did not support the 

hypothesis that post-drought recruitment and recovery are the primary drivers of post-

drought community composition for all species, the demographic responses of which were 

highly idiosyncratic. The final distribution of P. prolutum mainly reflected strong post-

drought recruitment across multiple habitats, but A. aristiglumis was most abundant in 

terrace habitats due to significant post drought recruitment and high mortality. Leiocarpa 

density depended almost solely on high drought survivorship, and the final composition of 

the vegetation found in the more xeric habitats primarily reflected the drought hardy nature 

of this species. The presence of such complex patterns is perhaps not surprising given the 

diversity of strategies displayed by plants for ensuring survival through drought and other 

abiotic stresses (e.g., Barrett 1998; Mal & Lovett-Doust 2005; McDowell et al. 2008) but it does 

indicate that post-drought community composition jointly reflects the processes of mortality 

and recovery in heterogeneous environments. 

Finally, from a practical point of view, the species-level responses observed here do partly 
support the hypothesis that population behaviour in response to drought can be predicted 
by their broad climatic envelopes (see McDowell et al. 2008; references therein). Drought 
survival of A. aristiglumis was much lower than that of the more arid-adapted (see Fig. 3) L. 
panaetioides in all habitats, with differences in survivorship between the two species being 
greatest in the more xeric, sloping habitat types (Fig. 6a). Differences between A. aristiglumis 
and P. prolutum were not as clear, since survival of A. aristiglumis was actually higher than 
that of P. prolutum in three habitats (terraces, gullies and north-facing slopes; Fig. 6a), which 
does not appear to be consistent with the fact that P. prolutum is capable of surviving in 
much drier regions than A. aristiglumis (Fig. 3). On the other hand, P. prolutum populations 
did perform better overall than A. aristiglumis, mainly as a result of a higher rate of post-
drought recruitment from the seedbank (Fig. 6b). Perhaps the presence of a large persistent 
seedbank, rather than high drought survivorship, explains why P. prolutum grows in areas 
that are considerably drier than A. aristiglumis can tolerate (e.g., far western NSW and 
Queensland; Fig. 3). Such traits are known to be linked to population fitness and 
reproductive assurance in arid environments (Auld et al. 1995; Facelli et al. 2005). 
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4.8 Drought severity and species responses  

This study has shown that extreme drought drives changes to ecosystem structure and 
composition by impacting on mortality and recruitment of plant populations, and that these 
processes may be broadly predictable given an understanding of drought severity and 
community composition. But this observation begs the questions: how extreme do droughts 
need to be to result in changes of this magnitude, and how much might drought severity 
increase under anthropogenic global warming?  

Let us return to the study system at hand. As mentioned, drought conditions at the study site 
during 2006, when only 181 mm of rain fell, can reasonably be described as being of 
unprecedented severity with respect to the 1900-2009 instrumental record (Fig. 4a). Based on 
historical annual rainfall data for Wyalong, NSW, fit with a gamma probability distribution 
(Fig. 4b), an annual rainfall of 181 mm has a predicted return interval of 453 years, and 
although care needs to be taken when such low probabilities are involved, it is obviously an 
exceptionally rare occurrence indeed. As noted previously, the mortality rates observed in this 
study are consistent with the impacts of exceptional drought observed in other systems. But an 
event like 2006 is highly unusual, and somewhat less extreme events are much more likely to 
occur, even under climate change. Unfortunately, we have little evidence beyond anecdotal 
sources whether less severe droughts have had similar effects on this grassland vegetation.  

In 2002, when 225 mm of rain fell at Wyalong (the second driest year on record, return interval 
= 84 years) I observed mortality of around 50% of A. aristiglumis at a nearby grassland site, but 
mortality was lower in wetter, low-lying sites. This might, however, reflect the fact that 2006 
occurred after many years of drought, in contrast to 2002. During 2002-2009 significant tree 
death occurred in central NSW, including around the study area, but similar events have been 
observed previously in NSW, for example during the 1896-1902 drought (McKeon et al. 2004). 
We simply do not understand the exact conditions that resulted in the observed changes at the 
study site, beyond the fact that many weeks of dry weather occurred during spring and 
summer at the end of a very dry year in the middle of a decade-long drought. Perhaps we can 
at best speculate that substantial mortality of natural, minimally disturbed grassland in the 
study region is most likely to occur when extremely dry years (roughly 250 mm, around 50% 
of average; return interval 40 years) occur during an extended period of below-average 
rainfall. There might have been as many as 3 to 5 instances of such conditions over the past 110 
years (Fig. 4a). However, it may require extremely rare events, like 2006, to generate the high 
levels of mortality observed in this study.  

A further complication is that the actual level of water stress experienced by a plant population 
is a function of evapotranspirational demand relative to water availability. The extremely dry 
conditions experienced in central NSW during the Millenium Drought were exacerbated by 
high temperatures (Cai & Cowan 2008), which suggests that consideration of rainfall 
deficiencies alone would underestimate the severity of the drought. Data from Wagga Wagga 
AMO (S 35.16°, E 147.46°; Fig. 7), the nearest station with suitable observations for estimating 
potential evapotranspiration (ETo), show the severity of 2006 in terms of low rainfall (Fig. 7a), 
high ETo (Fig. 7b), and very low atmospheric water balance (AWB; calculated here as annual 
rainfall – ETo). Indeed, the AWB was considerably lower in 2006 than any year since at least 
1970 (Fig. 7c). Given that 2006 was drier at Wyalong than at Wagga Wagga compared with 
other years, these data support the contention that moisture stress experienced at the study site 
during 2006 was the most extreme in many decades, if not the last century. 
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Fig. 7. Climatic conditions experienced at Wagga Wagga, NSW. a) Total annual rainfall (R) 
1970-2009. b) Estimated total annual potential evapotranspiration (ETo). c) Annual 
atmospheric water balance (AWB), determined as AWB = R - ETo.  Based on these data, 
AWB during 2006 was the lowest since at least 1970.  
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4.9 Predictions under climate change 

We may conclude this study by making some very rough guesses as to the possible impacts 
of drought on grassland vegetation at the study site under climate change. First, we can 
estimate changes in drought severity at the study site based on the projections of global 
circulation models (here I use 50th percentile, medium emissions projections; see 
www.climatechangeinaustralia.gov.au). Current estimates for changes in precipitation in the 
study region by the year 2070, relative to the 1980-1990 baseline period, are for declines of 0%, 
3.5%, 15%, and 15% for summer, autumn, winter and spring respectively, with changes in ETo 
of 6%, 10%, 14%, and 3%. Historically, mean annual AWB at Wagga Wagga (1970-2009) is -720 
mm (Fig. 7c). If we use the extremely simple approach of modifying the observed 1970-2009 
data according to these projections, we obtain a 2070 estimate for annual AWB of -860 mm, a 
19% increase. Under the current climate regime (1970-2009) a year like 2006 (AWB = -1229 
mm) has a return interval of 62 years, but by 2070, the return interval becomes 19 years. This 
suggests that, if a similar condition holds at Wyalong, the frequency of years in which 
significant mortality might occur in native plant communities could increase by around three-
fold, possibly resulting in persistent shifts in vegetation composition similar to those observed 
in this study. However, given the low mortality of the three study species in terrace habitats 
even under the conditions experienced during 2006, their long-term persistence at the study 
site, albeit in a possibly restricted manner, seems virtually certain.  

A final line of evidence supports this prediction. Nyngan, NSW, which lies approximately 
450 km north of Wyalong, is an approximate 2070 climate analogue for the study site. All 
three study species occur at, or near Nyngan (although A. aristiglumis is restricted to very 
mesic riverine habitats), and P. prolutum and L. panaetioides occur much further west in drier 
areas. As mentioned, however, it is exceedingly difficult to make accurate predictions of this 
kind, and to account for mitigating factors such as atmospheric CO2 enrichment (Koch et al. 
2004), population-level evolution for drought tolerance, competition (White et al. 2001) or 
many other potentially important factors (see Godfree et al. 2011) that are known to affect 
the response of plant species to drought.  

5. Conclusions 

Understanding the role of extreme climatic events as drivers of contemporary and future 
vegetation change is one of the greatest challenges that ecologists face today. Extreme events 
are difficult to study, and the responses of plants, species and communities to abiotic stress 
are contingent on a broad array of physiological, demographic and landscape-scale process 
that are often nonlinear in nature. In this paper I have provided evidence that extreme 
climatic events, and especially drought, have the capacity to rapidly alter the structure and 
composition of plant communities, with the magnitude of change roughly reflecting the 
statistical severity of the conditions. The majority of droughts that cause the highest rates of 
mortality among extant plant populations seem to be exceptionally rare events, occurring 
only on multi-decadal or century timescales, although quantifying the exact relationship 
between drought severity and plant mortality clearly needs further research.  

The results of surveys conducted in a semi-arid grassland site in Australia suggest that 
changes in community structure and composition following drought reflect the processes of 
both mortality and post-drought recruitment and recovery, and that the demographic 
responses of species to extreme water stress are highly idiosyncratic. Nonetheless, drought 
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performance of individual species does appear to be at least partly predictable based on the 
nature of their climatic envelopes. The data also suggest that, if drought is severe enough, 
topoedaphic refugia are crucial for the survival of a broad suite of species, not just those that 
favour mesic habitats. Finally, quantification of the statistical distribution of rainfall and 
atmospheric water balance in the semi-arid study region suggests that relatively modest 
changes in rainfall and evaporation could lead to large changes in the frequency and 
severity of extreme drought in coming centuries.  

Much remains to be understood about the mechanisms and conditions under which extreme 
climatic events act as drivers of vegetation mortality, and the specific characteristics of 
populations, species and communities that predispose them to rapid abiotically-driven 
change. The overall objective of ecology is to develop theory that usefully predicts 
phenomena in nature, and working towards development of a theory that improves our 
understanding of the relationship between extreme climatic events and vegetation change is 
certain to be a fruitful area of ongoing ecological research. 

6. Acknowledgments 

I would like to thank Brendan Lepschi for assistance with data collection and acquisition of 
herbarium records. 

7. References 

Acuna-Soto R, Stahle DW, Cleaveland MK and Therrell MD (2002) Megadrought and 

megadeath in 16th Century Mexico. Revista Biomédica 13: 289-292. 

Acuna-Soto R., Stahle D. W., Therrell M. D., Gomez Chavez S. and Cleaveland M. K. (2005) 

Drought, epidemic disease, and the fall of the classic period cultures in 

Mesoamerica (AD 750-950). Hemorrhagic fevers as a cause of massive population 

loss. Medical Hypotheses 65: 405-409. 

Ahlstrom RVN, Van West CR, and Dean JS (1995) Environmental and chronological factors 

in the Mesa Verde-Northern Rio Grande Migration. Journal of Anthropological 

Archaeology 14: 125-142. 

Albertson FW and Weaver JE (1944) Nature and degree of recovery of grassland from the 

great drought of 1933 to 1940. Ecological Monographs 14: 393-479. 

Albertson FW and Weaver JE (1945) Injury and death or recovery of trees in prairie climate. 

Ecological Monographs 15: 393-433. 

Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Kitzberger 

T, Rigling A, Breshears DD, Hogg EH, Gonzalez P, Fensham R, Zhang Z, Castro J, 

Demidova N, Lim J-H, Allard G, Running SW, Semerci A and Cobb N (2010) A 

global overview of drought and heat-induced tree mortality reveals emerging 

climate change risks for forests. Forest Ecology and Management 259: 660-684. 

Allen CD and Breshears DD (1998) Drought-induced shift of a forest-woodland ecotone: 

Rapid landscape response to climatic variation. Proceedings of the National Academy 

of Sciences of the USA 95: 14839-14842. 

www.intechopen.com



 
Diversity of Ecosystems 

 

360 

Aronson J., Kigel J. and Shmida A. (1993) Reproductive allocation strategies in desert and 

Mediterranean populations of annual plants grown with and without water stress. 

Oecologia 93: 336-342. 

Auld TD (1995) Soil seedbank patterns of four trees and shrubs from arid Australia. Journal 

of Arid Environments 29: 33-45. 

Barrett SCH (1998) The evolution of mating strategies in flowering plants. Trends in Plant 

Science 3: 335-341.  

Barua D, Downs CA and Heckathorn SA (2003) Variation in chloroplast small heat-shock 

protein function is a major determinant of variation in thermotolerance of 

photosynthetic electron transport among ecotypes of Chenopodium album. Functional 

Plant Biology 30: 1071-1079. 

Bell JL, Sloan LC and Snyder MA (2004) Regional changes in extreme climatic events: a 

future climate scenario. Journal of Climate 17: 81-87. 

Beniston M and Stephenson DB (2004) Extreme climatic events and their evolution under 

changing climatic conditions. Global and Planetary Change 44: 1-9. 

Benson JS, Ashby EM and Porteners MF (1997) The native grasslands of the Riverine Plain, 

New South Wales. Cunninghamia 5: 1-48. 

Benson L, Petersen K and Stein J (2007a) Anasazi (pre-Columbian native-American) 

migrations during the middle-12th and late-13th centuries – were they drought 

induced? Climatic Change 83: 187-213. 

Benson LV, Berry MS, Jolie EA, Spangler JD, Stahle DW and Hattori EM (2007b) Possible 

impacts of early-11th-, middle 12th-, and late-13th-century droughts on western 

Native Americans and the Mississippian Cahokians. Quaternary Science Reviews 26: 

336-350. 

Bolger TP, Rivelli AR and Garden DL (2005) Drought resistance of native and introduced 

perennial grasses of south-eastern Australia. Australian Journal of Agricultural 

Research 56: 1261-1267. 

Bond NR, Lake PS and Arthington AH (2008) The impacts of drought on freshwater 

ecosystems: and Australian perspective. Hydrobiologia 600: 3-16. 

Breshears DD, Cobb NS, Rich PM, Price KP, Allen CD, Balice RG, Romme WH, Kastens JH, 

Floyd ML, Belnap J, Anderson JJ, Myers OB and Meyer CW (2005) Regional 

vegetation die-off in response to global-change-type drought. Proceedings of the 

National Academy of Sciences of the USA 102: 15144-15148. 

Buckland SM, Grime JP, Hodgson JG and Thompson K (1997) A comparison of plant 

responses to the extreme drought of 1995 in northern England. Journal of Ecology 85: 

875-882. 

Cai W and Cowan T (2008) Evidence of impacts from rising temperatures on inflows to 

the Murray-Darling Basin. Geophysical Research Letters 35, L07701, 

doi:10.1029/2008GL033390. 

Cho H-K, Bowman KP and North GR (2004) A comparison of gamma and lognormal 

distributions for characterising satellite rain rates from the Tropical Rainfall 

Measuring Mission. Journal of Applied Meteorology 43: 1586-1597. 

Coles S (2001) An introduction to statistical modelling of extreme values. Springer, London, 

UK. 208p. 

www.intechopen.com



 
Extreme Climatic Events as Drivers of Ecosystem Change 

 

361 

Collins DA, Della-Marta PM, Plummer N and Trewin BC (2000) Trends in annual 

frequencies of extreme temperature events in Australia. Australia Meteorological 

Magazine 49: 277-292. 

Condit R, Hubbell SP and Foster RB (1995) Mortality rates of 205 neotropical tree and shrub 

species and the impact of a severe drought. Ecological Monographs 65: 419-439. 

Cook ER, Woodhouse CA, Eakin CM, Meko DM and Stahle DW (2004) Long-term aridity 

changes in the Western United States. Science 306: 1015-1018. 

Cunningham SC, Mac Nally R, Read J, Baker PJ, White M, Thompson JR and Griffioen P 

(2009) A robust technique for mapping vegetation condition across a major river 

system. Ecosystems 12: 207-219. 

Dobrowski SZ (2011) A climatic basis for microrefugia: the influence of terrain on climate. 

Global Change Biology 17: 1022-1035.  

Dudley JP, Criag GC, Gibson DStC, Haynes G and Klimowicz J (2001) Drought mortality of 

bush elephants in Hwange National Park, Zimbabwe. African Journal of Ecology 39: 

187-194. 

Easterling DR, Meehl GA, Parmesan C, Changnon SA, Karl TR and Mearns LO (2000) 

Climate extremes: observations, modeling, and impacts. Science 289: 2068-2074. 

Edwards W and Krockenberger A (2006) Seedling mortality due to drought and fire 

associated with the 2002 El Niño event in a tropical rain forest in north-east 

Queensland, Australia. Biotropica 38: 16-26. 

Endfield GH, Fernández Tejedo I and O’Hara Sl (2004) Drought and disputes, deluge and 

dearth: climatic variability and human response in colonial Oaxaca, Mexico. Journal 

of Historical Geography 30: 249-276. 

Facelli JM, Chesson P and Barnes N (2005) Differences in seed biology of annual plants in 

arid lands: a key ingredient of the storage effect. Ecology 86: 2998-3006. 

Farquhar GD, Ehleringer JR and Hubick KT (1989) Carbon isotope discrimination and 

photosynthesis. Annual Reviews of Ecology and Systematics 40: 503-537. 

Fensham RJ and Holman JE (1999) Temporal and spatial patterns in drought-related tree 

dieback in Australian savanna. Journal of Applied Ecology 36: 1035-1050. 

Gaines SD and Denny MW (1993) The largest, smallest, highest, lowest, longest, and 

shortest: extremes in ecology. Ecology 74: 1677-1692. 

Gitlin AR, Sthultz CM, Bowker MA, Stumpf S, Paxton KL, Kennedy K, Muñoz A, Bailey JK 

and Whitham TG (2006) Mortality gradients within and among dominant plant 

populations as barometers of ecosystem change during extreme drought. 

Conservation Biology 20: 1477-1486. 

Godfree R, Lepschi B, Reside A, Bolger T, Robertson B, Marshall D and Carnegie M (2011) 

Multiscale topoedaphic heterogeneity increases resilience and resistance of a 

dominant grassland species to extreme drought and climate change. Global Change 

Biology 17: 943-958. 

Goswami BN, Venugopal V, Sengupta D, Madhusoodanan MS and Xavier PK (2006) 

Increasing trend of extreme rain events over India in a warming environment. 

Science 314: 1442-1445. 

www.intechopen.com



 
Diversity of Ecosystems 

 

362 

Groom PK, Lamont BB, Leighton S, Leighton P and Burrows C (2004) Heat damage in 

schlerophylls is influenced by their leaf properties and plant environment. 

Ecoscience 11: 94-101. 

Gutschick VP and BassiriRad H (2003) Extreme events as shaping physiology, ecology, and 

evolution of plants: toward a unified definition and evaluation of their 

consequences. New Phytologist 160: 21-42. 

Hennessy K, Fawcett R, Kirono D, Mpelasoka F, Jones D, Bathols J, Whetton P, Stafford 

Smith M, Howden M, Mitchell C and Plummer N (2008) An assessment of the 

impact of climate change on the nature and frequency of exceptional climatic 

events. Commonwealth of Australia; available online at www.daff.gov.au. 

Henry GHR and Molau U (2003) Tundra plants and climate change: the International 

Tundra Experiment (ITEX). Global Change Biology 3: 1-9. 

Hodell DA, Brenner M and Curtis JH (2005) Terminal Classic drought in the northern Maya 

lowlands inferred from multiple sediment cores in Lake Chichancanab (Mexico). 

Quaternary Science Reviews 24: 1413-1427. 

Hogg EH, Brandt JP and Michaelian M (2008) Impacts of a regional drought on the 

productivity, dieback and biomass of western Canadian aspen forests. Canadian 

Journal of Forest Research 38: 1373-1384. 

Holmgren M, Stapp P, Dickman CR, Gracia C, Graham S, Gutiérrez JR, Hice C, Jaksic F, Kelt 

DA, Letnic M, Lima M, López BC, Meserve PL, Milstead WB, Polis GA, Previtali 

MA, Richter M, Sabaté S and Squeo FA (2006) Extreme climatic events shape arid 

and semiarid ecosystems. Frontiers in Ecology and the Environment 4: 87-95. 

Horridge M, Madden J and Wittwer G (2005) The impact of the 2002-2003 drought on 

Australia. Journal of Policy Modeling 27: 285-308. 

IPCC (2011) Summary for policymakers. In: Intergovernmental Panel on Climate Change 

Special Report on Managing the Risks of Extreme Events and Disasters to Advance 

Climate Change Adaptation [Field CB, Barros V, Stocker TF, Qin D, Dokken D, Ebi 

KL, Mastrandea MD, Mach KJ, Plattner G-K, Allen S, Tignor M and Midgley (eds.)]. 

Cambridge University Press, Cambridge, United Kingdom and New York, NY, 

USA.  

Kappen L (1981) Ecological significance of resistance to high temperature.  Pages 439-474 in: 

OL Lange, PS Nobel, CB Osmond & H Ziegler (eds.) Physiological Plant Ecology I: 

Response to the Physical Environment. Encyclopedia of Plant Physiology, New 

Series, Vol. 12A. Springer-Verlag, New York.  

Katz RW and Brown BG (1992) Extreme events in a changing climate: variability is more 

important than averages. Climatic Change 21: 298-302. 

Katz RW, Brush GS and Parlange MB (2005) Statistics of extremes: modeling ecological 

disturbances. Ecology 86: 1124-1134. 

Koch PL, Diffenbaugh NS and Hoppe KA (2004) The effects of late Quaternary climate and 

pCO2 change on C4 plant abundance in the south-central United States. 

Palaeogeography, Palaeoclimatology, Palaeoecology 207: 331-357.  

Kremen C (2005) Managing ecosystem services: what do we need to known about their 

ecology? Ecology Letters 8: 468-479. 

www.intechopen.com



 
Extreme Climatic Events as Drivers of Ecosystem Change 

 

363 

Larcher W, Kainmüller C and Wagner J (2010) Survival of high mountain plants under 

extreme temperatures. Flora 205: 3-18. 

Leblanc MJ, Tregoning P, Ramillien G, Tweed SO and Fakes A (2009) Basin-scale, integrated 

observations o the early 21st century multiyear drought in southeast Australia. 

Water Resources Research 45, W04408, doi: 10.1029/2008WR007333, 2009. 

Lekson SH and Cameron CM (1995) The abandonment of Chaco Canyon, the Mesa Verde 

Migrations, and the reorganisation of the Pueblo world. Journal of Anthropological 

Archaeology 14: 184-202. 

Lind PR, Robson BJ and Mitchell BD (2006) The influence of reduced flow during a drought 

on patterns of variation in macroinvertebrate assemblages across a spatial 

hierarchy in two lowland rivers. Freshwater Biology 51: 2282-2295. 

MacDonald GM and Case RA (2005) Variations in the Pacific Decadal Oscillation over the past 

millennium. Geophysical Research Letters 32: L08703, doi:10.1029/2005GL022478. 

Mal TK and Lovett-Doust J (2005) Phenotypic plasticity in vegetative and reproductive traits 

in an invasive weed, Lythrum salicaria (Lythraceae), in response to soil moisture. 

American Journal of Botany 92: 819-825. 

Marchand FL, Verlinden M, Kockelbergh F, Graae BJ, Beyens L and Nijs I (2006) 

Disentangling effects of an experimentally imposed extreme temperature event and 

naturally associated desiccation on Arctic tundra. Functional Ecology 20: 917-928. 

Martinho F, Leitão R, Viegas I, Dolbeth M, Neto JM, Cabral HN and Pardal MA (2007) The 

influence of an extreme drought event in the fish community of a southern Europe 

temperate estuary. Estuarine, Coastal and Shelf Science 75: 537-546. 

Mattson WJ and Haack RA (1987) The role of drought in outbreaks of plant-eating insects. 

Bioscience 37: 110-118. 

McDowell N, Pockman WT, Allen CD, Breshears DD, Cobb N, Kolb T, Plaut J, Sperry J, 

West A, Williams DG and Yepez EA (2008) Mechanisms of plant survival during 

drought: why do some plants survive while others succumb to drought? New 

Phytologist 178: 719-739. 

McKeon GM, Cunningham CM, Hall WB, Henry BK, Owens JS, Stone GS and Wilcox DG 

(2004). Chapter 2: Degradation and recovery episodes in Australia’s rangelands: an 

anthology. Pages 87-172 in Pasture degradation and recovery in Australia’s 

rangelands: learning from history; G McKeon, W Hall, B Henry, G Stone and I 

Watson (eds.). Queensland Department of Natural Resources, Mines and Energy, 

Queensland, Australia. 256p. 

Meehl GA, Karl T, Easterling DR, Changnon S, Pielke Jr R, Changnon D, Evans J, Groisman 

PY, Knutson TR, Kunkel KE, Mearns LO, Parmesan C, Pulwarthy R, Root T, Sylves 

RT, Whetton P and Zwiers F (2000) An introduction to trends in extreme weather 

and climate events: observations, socioeconomic impacts, terrestrial ecological 

impacts, and model projections. Bulletin of the American Meteorological Society 81: 

413-416. 

Morecroft MD, Bealey CE, Howell O, Rennie S and Woiwood IP (2002) Effects of drought on 

contrasting insect and plant species in the UK in the mid-1990s. Global Ecology and 

Biogeography 11: 7-22. 

www.intechopen.com



 
Diversity of Ecosystems 

 

364 

Mpelasoka F, Hennessy K, Jones R and Bates B (2008) Comparison of suitable drought 

indices for climate change impacts assessment over Australia towards resource 

management. International Journal of Climatology 28: 283-1292. 

Murphy BF & Timbal B (2008) A review of recent climate variability and climate change in 

southeastern Australia. International Journal of Climatology 28: 859-879. 

Musil CF, Schmeidel U and Midgley GF (2005) Lethal effects of experimental warming 

approximating a future climate scenario on southern African quartz-field 

succulents: a pilot study. New Phytologist 165: 539-547. 

Musil CF, Van Heerden PDR, Cilliers CD and Schmiedel U (2009) Mild experimental climate 

warming induces metabolic impairment and massive mortalities in southern 

African quartz field succulents. Environmental and Experimental Botany 66: 79-87. 

Nicholls N (2004) The changing nature of Australian droughts. Climatic Change 63: 323-326. 

Nicholls N (2006) Detecting and attributing Australian climate change: a review. Australian 

Meterological Magazine 55: 199-211. 

Nicholls N, Della-Marta P and Collins D (2004) 20th century changes in temperature and 

rainfall in New South Wales. Australian Meteorological Magazine 53: 263-268. 

Oberbauer SF and Billings WD (1981) Drought tolerance and water use by plants along an 

alpine topographic gradient. Oecologia 50: 325-331. 

Oram RN (1983) Ecotypic differentiation for dormancy levels in oversummering buds of 

Phalaris aquatica L. Botanical Gazette 144: 544-551. 

Parmesan C, Root TL and Willig MR (2000) Impacts of extreme weather and climate on 

terrestrial biota. Bulletin of the American Meteorological Society 81: 443-450. 

Peterken GF and Mountford EP (1996) Effects of drought on beech in Lady Park Wood, an 

unmanaged mixed deciduous woodland. Forestry 69: 125-136. 

Petersen KL (1994) A warm and wet little climatic optimum and a cold and dry little ice age 

in the southern Rocky Mountains, U.S.A. Climatic Change 26: 243-269. 

Planton S, Déqué M, Chauvin F and Terray L (2008) Expected impacts of climate change on 

extreme events. Comptes Rendus Geoscience 340: 564-574. 

Pook M, Lisson S, Risbey J, Ummenhofer CC, McIntosh P and Rebbeck M (2009) The 

autumn break for cropping in southeast Australia: trends, synoptic influences and 

impacts on wheat yield. International Journal of Climatology: 29: 2012-2026.  

Resnick SI (2007) Heavy-tail phenomena: probabilistic and statistical modelling. Springer, 

New York, NY. 404p. 

Scott P (2000) Resurrection plants and the secrets of eternal leaf. Annals of Botany 85: 159-166. 

Smith MD (2011) An ecological perspective on extreme climatic events: a synthetic definition 

and framework to guide future research. Journal of Ecology 99: 656-663. 

Stahle DW, Fye FK, Cook ER and Griffin RD (2007) Tree-ring reconstructed megadroughts 

over North America since A.D. 1300. Climatic Change 83: 133-149. 

Stampfli A and Zieter M (2004) Plant regeneration directs changes in grassland composition 

after extreme drought: a 13-year study in southern Switzerland. Journal of Ecology 

92: 568-576. 

Stiles W (1930) On the cause of cold death in plants. Protoplasma 9: 459-468. 

www.intechopen.com



 
Extreme Climatic Events as Drivers of Ecosystem Change 

 

365 

Tebaldi C, Hayhoe K, Arblaster JM and Meehl GA (2006) Going to extremes. An 

intercomparison of model-simulated historical and future changes in extreme 

events. Climatic Change 79: 185-211. 

Threatened Species Scientific Committee (2008) Commonwealth Listing Advice on 

natural grasslands on basalt and fine-textured alluvial plains in northern New 

South Wales and southern Queesland. Available online at  

 http://www.environment.gov.au 

Tilman D & El Haddi A (1992) Drought and biodiversity in grasslands. Oecologia 89: 257-264. 

Timbal B, Arblaster JM and Power S (2006) Attribution of the late-twentieth-century rainfall 

decline in southwest Australia. Journal of Climate 19: 2046-2062. 

Tubiello FN, Soussana J-F and Howden SM (2007) Crop and pasture response to climate 

change. Proceedings of the National Academy of Sciences of the USA 104: 19686-19690. 

Ummenhofer CC, England MH, McIntosh PC, Meyers GA, Pook MJ, Risbey JS, Gupta AS 

and Taschetto AS (2009) What causes southeast Australia’s worst droughts? 

Geophysical Research Letters 36: doi. 10.1029/2008GL036801 

Van Peer L, Nijs I, Bogaert J, Verelst I and Reheul D (2001) Survival, gap formation, and 

recovery dynamics in grassland ecosystems exposed to heat extremes: the role of 

species richness. Ecosystems 4: 797-806. 

Van Splunder I, Voesenek LACJ, Coops H, Devries XJA and Blom CWPM (1996) 

Morphological responses of seedlings of four species of Salicaceae to drought. 

Canadian Journal of Botany 74: 1988-1995. 

Volaire F and Lelièvre F (2001) Drought survival in Dactylis glomerata and Festuca 

arundinaceae under similar rooting conditions. Plant and Soil 229: 225-234. 

Volaire F, Conéjero G and Lelièvre F (2001) Drought survival and dehydration tolerance 

in Dactylis glomerata and Poa bulbosa. Australian Journal of Plant Physiology 28: 743-

754. 

Volaire F, Thomas H and Lelièvre F (1998) Survival and recovery of perennial forage grasses 

under prolonged Mediterranean drought. I. Growth, death, water relations and 

solute content in herbage and stubble. New Phytologist 140: 439-449. 

Walker B, Kinzig A and Langridge J (1999) Plant attribute diversity, resilience, and 

ecosystem function: the nature and significance of dominant and minor species. 

Ecosystems 2: 95-113. 

Walther G-R, Post E, Convey P, Menzel A, Parmesan C, Beebee TJC, Fromentin J-M, Hoegh-

Guldberg O and Bairlein F (2002) Ecological responses to climate change. Nature 

416: 389-395. 

Watterson IG and Dix MR (2003) Simulated changes due to global warming in daily 

precipitation means and extremes and their interpretation using the gamma 

distribution. Journal of Geophysical Research 108: doi:10.1029/2002JD002928. 

Weiss H and Bradley RS (2001) What drives societal collapse? Science 291: 609-610. 

Whitaker R (2006) Australia’s natural disasters. New Holland Publishers (Australia), 

French’s Forest, NSW. 239p. 

White TA, Campbell BD, Kemp PD and Hunt CL (2001) Impacts of extreme climatic events 

on competition during grassland invasions.  Global Change Biology 7: 1-13. 

www.intechopen.com



 
Diversity of Ecosystems 

 

366 

Woodhouse CA and Overpeck JT (1998) 2000 years of drought variability in the central 

United States. Bulletin of the American Meteorological Society 79: 2693-2714. 

Yurkonis K. A. and Meiners S. J. (2006) Drought impacts and recovery are driven by local 

variation in species turnover. Plant Ecology 184: 325-336. 

www.intechopen.com



Diversity of Ecosystems

Edited by Prof. Mahamane Ali

ISBN 978-953-51-0572-5

Hard cover, 484 pages

Publisher InTech

Published online 27, April, 2012

Published in print edition April, 2012

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

The ecosystems present a great diversity worldwide and use various functionalities according to ecologic

regions. In this new context of variability and climatic changes, these ecosystems undergo notable

modifications amplified by domestic uses of which it was subjected to. Indeed the ecosystems render diverse

services to humanity from their composition and structure but the tolerable levels are unknown. The

preservation of these ecosystemic services needs a clear understanding of their complexity. The role of

research is not only to characterise the ecosystems but also to clearly define the tolerable usage levels. Their

characterisation proves to be important not only for the local populations that use it but also for the

conservation of biodiversity. Hence, the measurement, management and protection of ecosystems need

innovative and diverse methods. For all these reasons, the aim of this book is to bring out a general view on

the function of ecosystems, modelling, sampling strategies, invading species, the response of organisms to

modifications, the carbon dynamics, the mathematical models and theories that can be applied in diverse

conditions.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Robert C. Godfree (2012). Extreme Climatic Events as Drivers of Ecosystem Change, Diversity of Ecosystems,

Prof. Mahamane Ali (Ed.), ISBN: 978-953-51-0572-5, InTech, Available from:

http://www.intechopen.com/books/diversity-of-ecosystems/extreme-climatic-events-as-drivers-of-ecosystem-

change



© 2012 The Author(s). Licensee IntechOpen. This is an open access article

distributed under the terms of the Creative Commons Attribution 3.0

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.


