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1. Introduction 

Heme is ferrous protoporphyrin-IX that is the prosthetic group of hemoproteins, such as 

hemoglobin, myoglobin and cytochromes that are of vital importance. In contrast, “free 

heme”, a protein-unbound heme, that is either just synthesized but yet not incorporated into 

hemoproteins, or that is released from hemoprotein under oxidative conditions, is highly 

toxic, since it catalyzes the production of reactive oxygen species (ROS). Thus, heme 

proteins and free heme have an important relationship with oxidative stress. 

In order to cope with this problem, the body is equipped with various defense mechanism(s) 

against an excessive amount of “free heme” concentrations. Heme oxygenase (HO) is one of 

the key players in the defense mechanism, and plays a fundamental role against the free-

heme mediated oxidative process. The rate-limiting enzyme in heme catabolism, heme 

oxygenase-1 (HO-1), is induced by not only its substrate heme but also oxidative stress 

resulting from I/R injury. Heme oxygenase-1 induction leads to increased heme breakdown, 

resulting in the production of iron, carbon monoxide (CO), and biliverdin IXα, which is 

subsequently reduced to bilirubin IXα by biliverdin reductase. 

Recently, large numbers of reports including ours have emerged suggesting heme 

proteins, HO, and its substrates such as CO, biliverdin IXα, and bilirubin IXα play 

important roles in pathophysiology and therapeutic implications. Here we summurize 

these evidences to clarify the relationship among heme proteins, HO-1, and oxidative 

stress. 

1.1 Synthesis and degradation of heme protein 1  

Heme is the prosthetic group of all heme proteins such as hemoglobin, myoglobin, 

cytochrome, catalase, peroxidases, nitric oxide synthase, prostaglandin synthase, and certain 

transcription factors. Heme is an essential molecule in all aerobic cells and plays a crucial 

role in physiological, pharmacological, and toxicological reactions, as well as cell 

differentiation and other functions. However, free heme, namely protein-unbound heme, 

can be toxic to cells because it results in the production of reactive oxygen species and 
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causes cell damage (Kumar and Bandyopadhyay, 2005). To guard against this toxicity, heme 

levels are tightly controlled between heme biosynthesis and catabolism (Sassa, 2006). 

1.1.1 Heme synthesis 

The initial biosynthesis of one molecule of heme requires eight molecules of glycine and 

eight molecules of succinyl CoA to produce 5-aminolevulinic acid (ALA) (Sun et al., 2002) 

by 5-aminolevulinic acid synthase (ALAS) in mitochondria. There are two forms of ALAS, a 

non-tissue-specific ALAS (ALAS1) and an erythroid cell-specific ALAS (ALAS2) (Bishop et 

al., 1990). In the liver, heme represses the synthesis of ALAS1 mRNA at both transcriptional 

and translational levels (Hamilton et al., 1991) and inhibits its transfer from the cytosol into 

mitochondria (Ades and Harpe, 1981). In erythroid cells, heme does not inhibit ALAS2 

synthesis (Sassa and Nagai, 1996) and ALAS2 activity (Ponka, 1997). 

Following synthesis, mitochondrial ALA is transported to the cytosol, where ALA 

dehydratase (ALAD) dimerizes two molecules of ALA to produce the pyrrole ring 

compound porphobilinogen (PBG). The next step in the pathway involves the head-to-tail 

condensation of four moleclues of PBG to produce the linear tetrapyrrole intermediate 

hydroxymethylbilane (HMB). The enzyme for this condensation is porphobilinogen 

deaminase (PBG deaminase), also called hydroxymethylbilane synthase or 

uroporphyrinogen I synthase. Uroporphyrinogen-III synthase catalyses HMB to 

uroporphyrinogen III. In the absence of uroporphyrinogen-III synthase, HMB may non-

enzymatically close to form uroporphyrinogen I, which cannot convert to heme. 

In the next step, the acetate substituents of uroporphyrinogen III or I are all decarboxylated 

by the uroporphyrinogen decarboxylase in the cytosol. The resultant products are known as 

coproporphyrinogens, with coproporphyrinogen III being the important normal 

intermediate in heme synthesis. 

Coproporphophyrinogen III is transported into mitochondria and is catalyzed to 

protoporphyrinogen IX by coproporphyrinogen oxidase. Protoporphyrinogen oxidase 

oxidizes protoporphyrinogen IX to protoporphyrin IX by the removal of six hydrogen 

atoms. Finally, ferrous iron (Fe2+) is inserted into protoporphyrin IX to form heme in a 

reaction catalysed by ferrochelatase. 

1.1.2 Heme degradation 

Heme degradation starts with the reductive breakdown of the heme into carbon monoxide 

(CO), iron (Fe), and biliverdin in a reaction catalyzed by heme oxygenase (HO) (Tenhunen 

et al., 1968). Heme oxygenase exists in two isoforms, HO-1, which is inducible by heme, its 

substrate, and HO-2, which is constitutive and non-inducible (Shibahara et al., 1985). Heme 

oxygenase-1 is also known as heat shock protein 32 (Keyse and Tyrrell, 1989), as well as an 

acute phase reactant, and it is inducible by stressors including cytokines, heavy metals, 

hypoxia, and oxygen free radicals. This is the only reaction in the body that is known to 

produce CO. Most of the CO is excreted through the lungs, so that the CO content of expired 

air is a direct measure of the activity of heme oxygenase. Biliverdin is subsequently 

converted into bilirubin by an NAD(P)H-requiring cytosolic enzyme, biliverdin reductase 
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(Tenhunen et al., 1969). Bilirubin is conjugated with glucronic acid to form a more soluble 

bilirubin glucuronide, which is excreted in bile. 

 

Fig. 1. Heme Metabolic Pathway 

1.1.3 The regulatory effects of free heme 

Free heme at low concentrations plays a beneficial regulatory role on various cellular 

functions. A heme concentration greater than 1 µM can be toxic to almost all cells because it 

catalyzes the production of reactive oxygen species (Halliwell and Gutteridge, 1990). At 

submicrosomal concentrations, heme is involved in regulator gene expression or repression 

of heme metabolism.  

Heme concentrations of less than 10-13 M induce the synthesis of ALAS1. Repression of 

ALAS1 synthesis in the liver takes place at free heme concentrations of 0.1-0.3 µM, leading 

to decreased heme synthesis, and at 0.4-1.0 µM, HO-1 is induced in cultured chick embryo 

liver cells (Granick et al., 1975). In 1996, Igarashi reported two novel transcription factors, 

Bach1 and Bach2, as heterodimerization partners of MafK (Oyake et al., 1996). In the early 

2000s, it was reported that the mammalian transcription factor Bach1, a repressor of HO-1 

gene activation (Sun et al., 2002), binds with an equimolar amount of hemin (Ogawa et al., 

2001). Inhibition by free heme of the DNA binding activity of Bach1 occurred at around 

0.03 µM, and at 1 µM, it almost completely inhibited the DNA-binding activity of Bach1 in 

vitro (Ogawa et al., 2001). In heme oxygenase deficiency, hemin applied at 50 µM to the 

patient’s plasma resulted in increased free radical generation, which was abnormal and 

caused varied tissue damage (Poss and Tonegawa, 1997). The products of heme 

degradation, CO, iron Fe, and biliverdin, contribute to cellular protection in various 

situations (Sassa, 2006). Bilirubin is considered a potentially important anti-oxidant and 

cytoprotector of physiological significance (Stocker et al., 1987) (Gopinathan et al., 1994) 

(Hopkins et al., 1996). Thus, heme levels are tightly controlled between heme biosynthesis 

and catabolism. 

www.intechopen.com



 
Oxidative Stress – Molecular Mechanisms and Biological Effects 

 

112 

 

Fig. 2. The regulatory effects of free heme 

2. Heme proteins as oxidants 

While heme is required as the prosthetic group for heme proteins such as hemoglobin, 

myoglobin, and cytochrome P 450, etc., which are necessary for cellular viability, an excess 

amount of free heme is highly toxic to cells due to its pro-oxidant activity, driven by the 

divalent Fe atom contained within its protoporphyrin IX ring, which can promote the 

production of free radicals via Fenton chemistry (Sassa, 2006). Free heme is also highly 

lipophilic and readily intercalates into the lipid bilayer of adjacent cells, and it results in 

oxidative damage of the cytoskeleton. Furthermore, free heme that is released from 

methemoglobin can catalyze the oxidation of low density lipoprotein, which in turn induces 

lipid peroxide formation and results in endothelial cytolysis (Jeney et al., 2002). 

2.1 Exacerbation of oxidative tissue injury by free heme 

We have demonstrated that free heme released from heme protein plays a critical role in the 
development of oxidative tissue injuries by accelerating the production of reactive oxygen 
species (ROS) in various experimental models of oxidative tissue injuries (Takahashi et al., 
2007). For instance, ROS generated by reperfusion of the kidney has been implicated in the 
pathogenesis of ischemic renal injury. Thus, we determined the level of microsomal heme and 
the gene expression of ALAS1 in the kidney following ischemia/reperfusion in rats (Shimizu 
et al., 2000). We found that, prior to HO-1 induction, there was a rapid and significant increase 
in microsomal heme concentration, which was followed by the inhibition of ALAS1 gene 
expression. These findings indicate that free heme concentration in the kidney increases 
rapidly following ischemia/reperfusion. We also found that inhibition of HO activity by tin-
mesoporphyrin, a specific competitive inhibitor of HO activity, resulted in a marked increase 
in microsomal heme content and in the aggravation of ischemic renal injury (Shimizu et al., 
2000). Thus, an enhanced and sustained increase in intracellular free heme concentration 
derived from cytochrome P450, a major heme protein in the kidney, may likely exacerbate the 
oxidative tissue injury in the kidney caused by renal ischemia/reperfusion. 

2.1.2 Activation of the innate immune response by free heme 

Recent studies also indicate that free heme is involved in the activation of innate immunity, 
which can lead to oxidative tissue injury. Exposure of endothelial cells to hemin, an oxidized 
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form of heme that is available as a chemical, stimulates the expression of adhesion 
molecules such as ICAM-1, VCAM-1, and E-selectin (Wagner et al., 1997). Hemin also 
induces neutrophil migration in vivo and in vitro, triggers the oxidative burst, promotes 
cytoskeleton reorganization, and activates interleukin-8 expression in human neutrophils 

(Graca-Souza et al., 2002). Heme also induce TNF-α secretion by mouse peritoneal 
macrophages in a manner dependent on MyD88, toll-like receptor (TLR) 4, and CD14, 
although heme signaling through TLR4 depends on an interaction distinct from that 
established between TLR4 and LPS (Figueiredo et al., 2007). Moreover, free heme induces 
apoptotic cell death in response to pro-inflammatory agonists, as demonstrated for tumor 
necrosis factor (Seixas et al., 2009). Severe sepsis can develop from excessive systemic 
inflammatory responses to microbial infection, leading to oxidative tissue injury that 
ultimately results in death. Very recently, the circulating free heme released from 
hemoglobin during infection has been shown to contribute to the pathogenesis of severe 
sepsis (Larsen et al., 2010). Heme administration after low-grade polymicrobial infection 
induced by cecal ligation and puncture in mice promoted tissue damage and severe sepsis. 
Development of lethal forms of severe sepsis after high-grade infection was associated with 
the increase in plasma free heme concentration derived from cell-free hemoglobin and the 
decrease in serum concentrations of the heme sequestering protein hemopexin (HPX), 
whereas HPX administration after high-grade infection prevented tissue damage and lethal 
outcomes. Moreover, fatal septic shock in patients was associated with reduced serum HPX 
concentrations, suggesting that targeting free heme by HPX might be used therapeutically to 
prevent lethal outcomes associated with severe sepsis.  

2.2 Role of HO-1 in oxidative tissue injury (liver disease and sepsis) 

Oxidative stresses such as inflammation, as well as ischemia and reperfusion (I/R), injure 

several tissues. It has been suggested that HO-1 plays a cytoprotective role against oxidative 

stresses. The cytoprotective role of HO-1 influences both acute and chronic illnesses. In this 

chapter, we evaluate the role of HO-1 in protection against oxidative stresses at acute 

illnesses, mainly liver disease and sepsis. 

2.2.1 Animal studies 

In animal models, several reports have demonstrated the protective effect of HO-1. In the 

carbon tetrachloride-induced hepatotoxicity model, HO-1 expression is increased both at 

transcriptional and protein levels in hepatocytes. Inhibition of HO activity by tin-

mesoporphyrin (Sn-MP) results in sustained liver injury, as revealed by marked increases in 

serum alanine transaminase (ALT), hepatic malondialdehyde formation, tumor necrosis 

factor-alpha (TNF-ǂ) mRNA, inducible nitric oxide synthase (iNOS) mRNA, and DNA-

binding activity of nuclear factor-kappaB (NF-κB), as well as inflammatory changes of 

hepatocytes (Nakahira et al., 2003). In contrast, induction of HO-1 by recombinant human 

interleukin-11 (rhIL-11) leads to reduced liver injury. (Kawakami et al., 2006) In the I/R liver 

injury model, rats pretreated with a HO-1 inducer showed greater increases in HO-1 

transcriptional and protein expressions, less elevated serum ALT levels, and less increased 

serum TNF-α and iNOS protein and mRNA expressions than those treated with a HO-1 

inhibitor. These results indicated that HO-1 overexpression protected liver against I/R 

injury by modulating oxidative stress and proinflammatory mediators (Yun et al., 2010). In 
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sepsis models, lipopolysacchalide (LPS) treatment increases HO-1 at transcriptional and 

protein levels and decreases nonspecific delta-aminolevulinate synthase (ALAS-1), which 

are the rate-limiting enzymes of heme catabolism and biosynthesis, gene expression in the 

duodenum and the jejunum. Inhibition of HO activity by Sn-MP produces significant tissue 

injury (Fujii et al., 2003). LPS also induces hepatic injury as revealed by increases in serum 

ALT and aspartate transaminase (AST) activities, TNF-ǂ mRNA, iNOS mRNA, and DNA-

binding activity of NF-κB, and extensive hepatocyte necrosis. However, induction of HO-1 

by rhIL-11 ameliorated the LPS-induced hepatic injury and decreased LPS-induced 

mortality (Maeshima et al., 2004) In an animal model, the cytoprotective effects of HO-1 

against oxidative stress were also shown in other organs (Maeshima et al., 2005, Barreiro et 

al., 2002, Shimizu et al., 2000, Poole et al., 2005, Yu et al., 2009). 

2.2.2 Human studies 

In humans, there are some reports indicating the protective effect of HO-1. Patients with 
acute liver failure show increased HO-1 and decreased ALAS-1. These may indicate an 
increase in free heme concentration, resulting in altered heme metabolism and liver function 
(Fujii et al., 2004). In liver transplantation, which induces oxidative stress through I/R, a 
donor HO-1 genotype that modulates HO-1 induction levels is associated with outcomes, 
such as serum ALT and AST levels and early graft survival. This result suggests that HO-1 
mediates graft survival after liver transplantation (Buis et al., 2002). In sepsis and septic 
shock, patients who fulfilled the criteria for severe sepsis or septic shock showed high HO-1 
gene expression, and there was a positive correlation between survival and increased HO-1 
concentration (Takaki et al., 2010). Patients who fulfilled the criteria for severe systemic 
inflammatory response syndrome and had a serum C-reactive protein level >10 mg/dL 
showed high HO-1 expression and serum TNF-ǂ levels. (Mohri et al., 2006) These results 
indicate the relationship between inflammation and HO-1. A patient with HO-1 deficiency 
showed growth retardation, anemia, leukocytosis, thrombocytosis, coagulation 
abnormalities, elevated serum levels of haptoglobin, ferritin, and heme, a low serum 
bilirubin concentration, and hyperlipidemia; the patient died in childhood (Kawashima et 
al., 2002) This case directly shows the importance of HO-1 in homeostasis. 

In summary, similar results in animal models and humans have shown the cytoprotective 

effect of HO-1 against oxidative stresses. The complete mechanisms related to the 

cytoprotective effect of HO-1 against oxidative stresses are still unknown, but several 

mechanisms may be involved. The major mechanism may be the removal of free heme. In 

oxidative stress, free heme is increased with the breakdown of hemoproteins such as 

hemoglobin, myoglobin, or cytochrome P450. Free heme induces the production of reactive 

oxygen species and low-density lipoprotein oxidation, which injures endothelial cells (Sassa, 

2006). Another major mechanism may be the anti-oxidative effect of carbon monoxide and 

biliverdin, which are produced in heme catabolism. The detailed mechanisms related to the 

anti-oxidative effects of carbon monoxide and biliverdin are described in other chapters. 

One of the other possible mechanisms is the decrease of cytotoxic cytokines. HO-1 may 

affect many pathways and cytokines. For example, HO-1 inhibits macrophage activation, 

which triggers the inflammatory response in response to stress. In the liver, Kupffer cells, 

which are liver macrophages, play an important role for these reactions, such as production 

of TNF-ǂ and IL-6. HO-1 inhibits the production of these cytokines by Kupffer cells and 

www.intechopen.com



 
Heme Proteins, Heme Oxygenase-1 and Oxidative Stress 

 

115 

ameliorates liver damage (Babu et al., 2007, Zhong et al., 2010, Devey et al., 2009). In 

addition to macrophage activation, there may also be many other mechanisms, such as 

inactivation of the p38 mitogen-activated protein kinase pathway, which leads to a 

preventive effect by diminishing neutrophil infiltration. (Carchman et al., 2011, Lin et al., 

2010). 

 In conclusion, even though the detailed mechanisms are unknown, HO-1 is one of the 
essential enzymes acting against oxidative stress, and its cytoprotective effect operates in 
many organs and probably affects patients' outcomes. More investigations into the detailed 
role and mechanisms of HO-1 are needed. 

2.3 Bilirubin as an antioxidant 

Bilirubin has been recognized as a marker of liver injury, specifically biliary obstruction. It is 
also well known that biliverdin is one of the metabolites catalyzed by heme oxygenase from 
heme proteins, and it is catalyzed by biliverdin reductase to bilirubin. An increased serum 
bilirubin concentration is seen as a sign of dysfunction in the hepato-billiary system or in 
heme protein metabolism. Free unconjugated bilirubin (UCB) can easily enter cells by 
passive diffusion and cause toxicity. UCB binds to discrete brain areas, such as the basal 
ganglia (kernicterus), and produces a wide array of neurological deficits collectively known 
as bilirubin encephalopathy (Shapiro, 2003). However, in 1987, it was noted that bilirubin 
has strong antioxidant potential in vitro (Stocker et al.,1987). In this study, bilirubin under 
2% oxygen in liposomes had a stronger antioxidant potential than ǂ-tocopherol known to 
date as the most potent protector against lipid peroxidation. This result showed that 
endogenous bile pigment production activated by elevated HO activity could confer 
antioxidative protection to cells and tissues. In another study, the potent physiologic 
antioxidant actions of bilirubin were reported to involve a redox cycle between bilirubin and 
biliverdin (Baranano et al., 2002). When bilirubin acted as an antioxidant, it was itself 
oxidized to biliverdin and then recycled by biliverdin reductase back to bilirubin. 

2.3.1 The antioxidant and cytoprotective effects of bilirubin in animal studies 

In several animal models, the antioxidant potential and cytoprotective effect of bilirubin 
were also reported. In an I/R heart injury model, HO-1 and bilirubin showed a protective 
effect with respect to postischemic myocardial performance and reduced infarct size and 
mitochondrial dysfunction (Clark et al., 2000). In experimental small intestinal I/R injury, 
bilirubin had a dose-dependent protective effect by preventing lipid peroxidation (Ceran et 
al., 2001). In this study, bilirubin infusion reduced the severity of postischemic intestinal 
injury and increased tissue malondialdehyde (MDA) levels. Malondialdehyde is a product 
of lipid peroxidation. Moreover, exogenous bilirubin infusion provided tissue protection in 
other models of hepatic (Kato et al., 2003) and renal (Adin et al., 2005) I/R injury. In an 
OVA-induced asthma model, the application of bilirubin inhibited airway inflammation and 
lung leukocyte influx (Keshavan et al., 2005). Bilirubin also inhibited vascular cell adhesion 
molecule 1 (VCAM-1)-mediated transendothelial lymphocyte migration in vitro. The authors 
suggested that bilirubin inhibited the cellular production of ROS in responce to VCAM-1 
stimulation as an antioxidant. Furthermore, rats rendered hyperbilirubinemic by infusion of 
bilirubin were relatively resistant to bleomycin-induced lung injury (Wang et al., 2002). 
Intravenous infusion of bilirubin reduced lung fibrotic lesions and local infiltrations of 
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inflammatory cells in histologic studies, as well as reduced levels of transforming growth 
factor-ǃ (TGF-ǃ) in the bronchoalveolar lavage fluid. 

2.3.2 The relationship between serum bilirubin levels and the risk of general diseases 

In several studies, mild to moderately elevated serum bilirubin levels were effective in the 
prevention of general diseases related to oxidative stress in humans (Ryter et al., 2007). For 
example, some clinical studies have indicated correlations between the serum bilirubin level 
and the risk of cardiovascular disease. For coronary artery disease (CAD), the relationship 
between serum bilirubin levels and the risk was investigated (Schwertner et al., 1994). In 
their study, the total bilirubin level was inversely related to the incidence of CAD 
independently. In the Framingham offspring study (large scale cohort study, n=5124), the 
relationship between serum bilirubin and myocardial infarction, coronary death, and any 
cardiovascular event was assessed (Djousse et al., 2001). Participants were divided into five 
groups by serum bilirubin level and compared. It was found that higher serum total 
bilirubin levels were associated with a lower risk of cardiovascular disease in men. 
Moreover, middle-aged patients with Gilbert syndrome (with serum bilirubin levels in the 
range of 20-70 μmol/l) had a lower incidence of ischemic heart disease (IHD) than healthy 
patients (Vitek et al., 2002). In this study, the authors referred to the total antioxidant 
potential of UCB. They concluded that the beneficial effect of UCB on the prevention of IHD 
might be important, in addition to HDL cholesterol. 

The serum bilirubin level was shown to be associated with respiratory disease (Temme et 
al., 2001, Horsfall et al., 2011). In two studies, the relationship between serum bilirubin level 
and respiratory disease was examined. They reported that the serum bilirubin level was 
inversely correlated with the incidence of respiratory disease (lung cancer, chronic 
obstructive pulmonary disease) and all-cause mortality. 

In conclusion, bilirubin has a strong antioxidant potential and cytoprotective effect in vitro 
and in vivo. The antioxidant potential of bilirubin involves a redox cycle between bilirubin 
and biliverdin. An elevated serum bilirubin level is associated with the incidence and the 
mortality of several diseases induced by oxidative stress. However, hyperbilirubinemia 
causes brain damage in infants and neonates. Thus, further investigations of the 
antioxidative and cytoprotective mechanisms of bilirubin are needed. 

2.4 Carbon monoxide as an indicator of oxidative stress 

Carbon monoxide (CO) is also one of the metabolites of heme proteins. It is well known that 
CO is a toxic gas and is used as an indicator of air pollution. Recent studies suggest that CO 
inhalation in very low concentration would be a therapeutic option in experimental models 
of sepsis, transplantation, and ischemia/reperfusion. Currently, CO concentration can be 
measured using two methods: CO-hemoglobin using a blood gas analyzer, and exhaled CO 
using a gas sampler. These new measurements will provide us important new information 
about patient status and underlying mechanisms of disease.  

2.4.1 Increased CO concentration in exhaled air of critically ill patients 

Zegdi et al. (2000) focused their attention on the exhaled CO concentration of critically ill 
patients, and they measured CO concentrations using an infrared CO analyzer with a 
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sensitivity of 0.1 ppm (CO 2000, Seres, La Duranne, France). Carbon monoxide was detected 
in exhaled breath at a higher concentration than in inspired gas, and exhaled CO was 
constant at the fixed ventilator settings in hemodynamically stable patients. They suggested 
that the exhaled CO concentration reflects endogenous CO production and might be useful 
for assessing the condition of critically ill patients. Coincident with their report, Sharte and 
colleagues measured exhaled CO concentrations in 30 critically ill patients who underwent 
mechanical ventilation and compared their results to those of 6 healthy non-smoking 
controls without a recent history of respiratory infections who breathed spontaneously via a 
mouthpiece connected to a ventilator (Sharte et al., 2000). Critically ill patients showed 
significantly higher CO concentrations in exhaled air compared to healthy controls. 
Although they did not find correlations between CO concentrations in exhaled air and 
carboxyhemoglobin levels in arterial and central venous blood, this might be attributable to 
technical artifacts in the measurement of carboxyhemoglobin concentrations using an older 
version of the blood gas analyzer, which has a lower sensitivity. Taken together, they 
concluded that the increased CO concentration in exhaled air in critically ill patients 
suggests an induction of inducible HO-1 and might reflect the severity of illness. Since CO is 
one of the metabolites of heme catabolism, we also examined CO concentrations in exhaled 
air, carboxyhemoglobin concentrations in arterial blood, and serum levels of bilirubin, 
another metabolite of heme breakdown, in 29 critically ill patients with signs of systemic 
inflammation who were all being mechanically ventilated (Morimatsu et al., 2006). Exhaled 
CO concentrations were also measured in eight healthy volunteers as controls. Exhaled CO 
concentration was measured using the CO analyzer (CARBOLYZER mBA-2000; TAIYO 
Instruments, Osaka, Japan). The median exhaled CO concentration was significantly higher 
in critically ill patients than in controls. Of note, there was a significant correlation between 
CO and carboxyhemblobin, and between CO and total bilirubin levels. We also compared 
exhaled CO concentrations between survivors and nonsurvivors. Interestingly, survivors 
tended to have higher exhaled CO concentrations than nonsurvivors, but the difference was 
not significant because of the limited sample size, suggesting that the poorer outcome of 
nonsurvivors may be due to their limited capacity to produce CO or induce HO-1. 
Collectively, our findings suggest that there may be an increase in heme breakdown in 
critically ill patients, probably due to systemic oxidative stress. 

2.4.2 Increased CO concentration in exhaled air in patients with systemic 
inflammation/sepsis 

Schober et al. (2009) measured end-tidal CO concentrations and arterial CO-Hb 

concentrations in 20 patients undergoing cardiac surgery with cardiopulmonary bypass 

(CPB). They measured these indices during surgery at two time points (1 hour after 

induction and 1 hour after CPB). They compared pre- and post-CPB values and found that 

both the end-tidal CO and the arterial CO-Hb concentrations were higher post-CPB than 

pre-CPB. These results indicated that systemic inflammation induced by CPB resulted in 

oxidative stress and increased CO production. This is likely explained by specific influences 

of CPB on processes involved in heme degradation, such as HO-1 induction and/or 

hemolysis. In addition, Zegdi et al. (2002) measured the exhaled CO concentrations in 24 

patients with severe sepsis or septic shock who were admitted to a medical intensive care 

unit and compared them to those of 5 critically ill controls. All patients were mechanically 

ventilated. They demonstrated for the first time that exhaled CO concentrations were 
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greater in the septic patients than in the control group. When endogenous CO production 

was specifically calculated as the lung CO excretion rate at a steady state in these patients, 

significantly higher endogenous CO production was found in patients with severe sepsis 

during the first three days of treatment than in the control group, although endogenous CO 

production in the sepsis group decreased over time with treatment. Interestingly, survivors 

of sepsis had a significantly higher endogenous CO production on day 1 compared to non-

survivors. 

We summarized recent evidence concerning the increased exhaled CO concentrations and 
its significance in critically ill patients with systemic inflammation. The exhaled CO 
concentration could reflect endogenous HO activity and might be a useful parameter of 
oxidative stress. Further studies are clearly needed to elucidate whether increased 
endogenous CO production may predict patients’ morbidity and mortality. However, 
techniques for monitoring CO are continuously being refined, and these techniques may 
eventually find their way into clinicians’ offices. 

3. Conclusion 

In this chapeter, we showed recent evidence concerning the role of free heme in the 
oxidative tissue injury, and HO-1 induction as a major protective response against the free 
heme-mediated oxidative tissue injuries, especially focusing on acute liver injuries and 
septic organ damages. Preinduction of HO-1 by pharmacological modality has been shown 
to confer significant protection on cells, tissues and organs in these acute inflammatory 
disorders. We also described a novel non-invasive technology for the measurement of 
exhaled CO concentrations which reflect endogenous HO activity and might be a useful 
parameter of disease severity. In addition to the protective role of HO-1, both bile pigments 
and CO, the two heme metabolites by HO reaction, play critical tissue-protective roles 
agaisnt oxidative tissue injuries. Although the application of HO-1 and its metabolites to 
clinical field might be promising, further studies should clarify pending issues such as 
interspecies, or inter-cell type differences in ho-1 gene expression, and a cause-effect 
relationship between HO-1 expression and morbidity and mortality of patients. 
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