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1. Introduction  

Today, breast cancer is appreciated as a group of molecularly distinct neoplastic disorders. 
Breast tumors are highly heterogeneous in pathology with respect to cell type and tissue 
origin. With the traditional diagnostic tools, patients with the same clinico-pathological 
parameters can have markedly different clinical courses. Individual tumors can frequently 
exhibit heterogeneous patterns of somatic mutations (Bamford et al. 2004, Stephens et al. 
2009, Russnes et al. 2010) gene amplifications and deletions (Russnes et al. 2010), epigenetic 
profiles (Rønneberg et al. 2010), and gene expression portraits (Perou et al. 2000). Efforts to 
significantly impact cancer patient outcomes will require the development of robust 
strategies to subdivide such heterogeneous panels of cancers into biologically and clinically 
homogenous subgroups, for the purposes of personalizing treatment protocols and 
identifying optimal drug targets.  

In this chapter, by reviewing published, as well as unpublished work, we outline the 
application of microarray expression profiling in breast cancer risk assessment; highlight the 
strategies of developing molecular classifiers and integrative strategies to improve risk 
stratification for breast cancer patients. We also discuss the limitations of the “first-
generation” expression profiling as well as further methodologies.  

2. Prognostication and risk prediction in breast cancer 

Breast cancer is indeed a heterogeneous disease with large variation in clinical behavior. 
There exist a variety of prognostic factors associated with patient survival (such as 
susceptibility to metastasize) and some predictive markers (which can aid selection of 
relevant systemic therapy) for management of the breast cancer patient. 

2.1 Clinico-pathological prognostic and predictive markers 

Traditionally, the treatment decision for breast cancer patients is largely based on a number 
of histo-pathological features including tumor size, axillary lymph node status, histological 
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grade, TNM staging (Tumor size, regional lymph Nodes, distant Metastasis) and receptor 
status.  

Tumor size 

The size of a tumor is an established prognosis marker used in the clinic (Koscielny et al. 

1984, Rosen et al. 1989, Carter et al. 1989, Page 1991). Tumors under 2 cm (T1) in diameter 

have a low risk of metastasis; tumors of 2-5 cm (T2) have a high risk of metastasis; tumors 

over 5 cm (T3) have a very high risk of metastasis. Tumor size carries independent 

prognosis value; both the axillary lymph node status and histological grade are related to 

tumor size (Rosen et al. 1989, Carter et al. 1989, Weigelt et al. 2005). 

Axillary lymph node status 

The axillary lymph node status (Carter et al. 1989, Rosen et al. 1989, Page 1991) is another 

established marker that has been used in clinic setting to characterize the risk of developing 

metastatic breast cancer. The presence of cancer cells in the lymph nodes increases the risk 

of metastatic breast cancer. The presence of over four lymph-node metastases is associated 

with very high metastatic risk. 

Histological grade 

Histological grade (Scarff et al. 1968) is a well-known histo-pathological parameter routinely 

used in the clinic to describe the similarity of breast cancer cells to normal breast tissue, and 

classify the cancer into well differentiated (low grade: Histological grade 1), moderately 

differentiated (intermediate grade: Histological grade 2), and poorly differentiated (high 

grade: Histological grade 3), reflecting progressively less normal appearing cells that have a 

worsening prognosis.  

TNM staging 

The TNM classification of malignant tumors (TNM) uses the size of the primary tumor (T), 
its nodal involvement (N), and the presence of distant metastases (M) to classify the 
progression of cancer into stage I to stage IV. Breast cancers classified as stage I are small 
and localized tumors, generally have good prognosis, while stage IV tumors are the most 
advanced and metastatic with poor prognosis. The staging system classifies breast tumors 
into groups with different prognosis profiles. Carcinoma in situ is indicated as stage 0 in the 
TNM classification. The stage of a cancer is one of the most important factors in determining 
prognosis and treatment options. 

Receptor status 

Protein expression of three receptors in breast cancer cells are routinely used in the clinic: 
estrogen receptor (ER), progesterone receptor (PgR) and Human Epidermal growth factor 
Receptor 2 (HER2; also known as HER2/neu, ErbB-2 or ERBB2). When treated with 
tamoxifen, breast cancer patients with tumors that are ER+ and/or PR+ have lower risks of 
mortality after their diagnosis compared to women with ER- and/or PgR-negative disease 
(Fisher et al. 1988). Determination the presence of the estrogen receptor is critical for the 
selection of the patients who could benefit form endocrine treatment (e.g. tamoxifen). 
Immunohistochemical (IHC) analysis is widely used to measure ER and PgR protein 
expression. HER2 is a protein involved in regulation of cellular growth giving higher 
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aggressiveness in breast cancers. HER2+ breast cancer had a worse prognosis (Slamon et al. 
1989, Sotiriou and Pusztai 2009). Cells with none of these receptors are called triple negative. 
This type of breast cancer is clinically characterized as more aggressive and less responsive 
to standard treatment and associated with poorer overall patient survival (Dent et al. 2007, 
Chustecka 2007).  

Some of the above traditional variables are combined into prognostic models (such as 

Adjuvant Online! and Nottingham Prognostic Index) for treatment decision-making about 

adjuvant systemic treatment of patients with early breast cancer.  

Adjuvant Online! model 

Adjuvant! Online (Ravdin et al. 2001) is a computer based model using patient age, 

comorbidity level, ER status, tumor grade, tumor size and number of positive lymph nodes 

to predict breast cancer specific mortality and recurrence risk, as well as the benefit of 

adjuvant therapy for women with early-stage breast cancer. Because Adjuvant! was directly 

derived from mortality data and because details of local therapy (surgery and initial 

radiation) can strongly influence local relapse rates more so than mortality, Adjuvant!'s 

estimates of mortality are more firmly based than those for relapse. Breast cancer outcome 

estimates made by Adjuvant! are for “patients who have unilateral, unicentric, invasive 

adenocarcinoma of the breast, who have undergone definitive primary breast surgery and 

axillary node staging, and who have no evidence of metastatic or known residual disease; 

no evidence of T4 features (extension to skin or chest wall); no evidence of inflammatory 

breast cancer. If they have had breast conserving therapy there should be plans for them to 

receive radiation therapy. They should not yet have received systemic therapy (neoadjuvant 

therapy), or radiation prior to their surgical staging.” (Adjuvant! Breast Cancer Help Files 

http://www.adjuvantonline.com/breastnew.jsp Accessed on December 15, 2011).  

Nottingham Prognostic Index 

The Nottingham prognostic index (NPI) (Haybittle et al. 1982) is used to determine 

prognosis following surgery for breast cancer by integrating the size of the lesion; the 

number of involved lymph nodes; and the grade of the tumor. A prognostic index < 3.4 

implies a good prognosis, in the range of [3.4, 5.4] a moderately good prognosis and > 5.4 a 

poor prognosis. It was established by the long-term follow-up in a dedicated breast unit of 

patients who did not receive adjuvant therapy, had a standard management.  

2.2 Gene expression profiling approaches  

Although the current diagnostic tools are valuable, breast cancer is still one of the most 

frequent cause of cancer death worldwide (Garcia et al. 2007). There is clearly a need for 

improved diagnostic tools that are highly sensitive and specific to stratify patients and 

predict risk of recurrence and therapeutic sensitivities on a continuous scale to aid 

individualized decision making for the treatment. 

Microarrays where expression profiling of thousands of messenger RNA transcripts takes 

place in a single experiment have been evolving in the past decade to become an established 

approach in biological research. Genome-wide expression profiling has led to a better 

stratification of breast cancer and has been useful for outcome prediction.  
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2.2.1 Microarrays 

Microarray technology allows genome-wide interrogation of mRNA expression by 
hybridization of labeled RNA (or cDNA) to complementary sequences that are arrayed on a 
chip. After washing off the excess, the array is processed by a laser scanner to produce an 
image of differential signal intensities. The intensity of each probe can then be linked to the 
RNA abundance of the corresponding gene.  

The basic procedure in an experiment involves the isolation of RNA or messenger RNA 
(mRNA) from appropriate biological samples, reverse transcription of mRNA into 
complementary DNA (cDNA) and hybridization of the fluorescence-labeled cDNA to the 
microarray. After washing off the excess, the array is processed by a laser scanner to 
produce an image of differential signal intensities. Dual-channel microarrays are typically 
hybridized with cDNA prepared from test (e.g. tumor) and reference (e.g. normal). It 
provides a relative measurement level for the corresponding RNA molecule. The one-
channel arrays provide intensity for each probe (or probe set) indicating a relative level of 
hybridization. 

Microarray platforms can be classified with respect to their manufacturing (spotted cDNA 
or oligonucleotide) and hybridization quantification (single or dual-channel). In spotted 
microarrays, the probes are synthesized prior to deposition on the array surface and are 
then spotted onto the chip. A common approach utilizes an array of fine pins or needles 
controlled by a robotic arm that is dipped into wells containing DNA probes and then 
depositing each probe at specific locations on the array surface. In oligonucleotide 
microarrays, the probes are short DNA sequences designed to match parts of the sequence 
of known or predicted gene coding regions. Oligonucleotide arrays are produced by 
chemically synthesizing short oligonucleotide sequences directly onto the array surface. 
Sequences may be longer (60-mer probes such as the Agilent Design) or shorter (25-mer 
probes produced by Affymetrix). Longer probes are more specific to individual target genes, 
and shorter probes may be spotted in higher density across the array and are cheaper to 
manufacture. Other microarray platforms, such as Illumina bead-based platforms (San 
Diego, CA, USA), use microscopic beads, instead of the large solid support. 

In single-channel microarrays, a single mRNA source is hybridized on a chip and 
comparison of RNA levels between samples is made in silico in a post-processing phase of 
the experiment. In dual-channel microarrays, two mRNA sources are used, each labeled 
with different fluors. The second mRNA source is usually either a common reference against 
which all samples in an experiment are compared to, or a sample coming from a tissue 
under an alternative condition (e.g. tumor versus normal). 

2.2.2 Strategies to develop gene-expression prognostic signatures  

In general, strategies to develop a gene-expression prognostic signature from microarray 
data include the so-called “top-down” and “bottom-up” approaches (Sotiriou and Pusztai 
2009). In the first strategy, identification of genes associated with prognosis is carried out in 
a supervised fashion guided by known clinical outcomes without any a priori biologic 
assumption (van 't Veer et al. 2002, Wang et al. 2005), while in the bottom-up discovery 
approach, genes associated with a specific biologic phenotype or a deregulated molecular 
pathway are first identified and then subsequently correlated with the clinical outcome 
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(Chang et al. 2005, Chi et al. 2006). In addition, a candidate-gene approach, utilized in 
development of Oncotype DX® (Paik et al. 2004) is based on data from quantitative reverse-
transcriptase-polymerase chain reaction (Q-RT-PCR); the technique selects genes of interest 
on the basis of existing biologic knowledge which are then combined into a multivariate 
predictive model. 

In high-throughput molecular profiling, the number of genes is typically much larger than 
the number of samples (p>>n), which would run into the phenomenon commonly referred 
to as the curse of dimensionality (Bellman 1961). Feature selection and dimension reduction 
often become key steps in the microarray data analysis. However, feature selection in 
microarray data is a nontrivial task due to high dimensionality, correlation between 
variables (features) and sometimes high level of noise. Below, we outline the common 
strategies used in gene expression data for signature construction, including feature 
selection, unsupervised analysis and supervised learning (Figure 1). See Hastie et al. (2001) 
for a review of statistical learning methods for high-dimensional problems.  

 

Fig. 1. Analytic pipeline for the development of a Gene-Expression Prognostic Signature.  

Feature selection 

Feature selection is different from quality filtering, where the reduction of the number of 
genes are carried out purely based on the quality of the measurement (such as signal-to-
noise ratio, variance) without any information related to the outcome. A commonly used 
strategy for feature selection is to rank the genes (features) by their relevance to the outcome 
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of interest and then apply a cut-off to select the most interesting genes. Choice of model and 
statistical test depends on the characteristics of the outcome measurement, including 
whether it is quantitative (e.g. time to event) or categorical (e.g. tumor versus normal). 
Significance analysis of microarrays or SAM (Tusher et al. 2001) is one of the widest used 
methods in identifying differentially expressed genes in data arising from microarray 
experiments. It is a t-statistics variant that compares group means, adapted to a high-
dimensional setting. Another popular approach is the empirical Bayes methods in the 
context of linear models (Smyth 2004). The empirical Bayes, SAM and other shrinkage 
methods (Smyth et al. 2005) are used to borrow information across genes to make the 
inferences stable when the number of arrays is small.  

While the above filter methods assess the relevance of features, it ignores the effects of the 
selected feature subset on the accuracy of the model. The subset selection strategies assess 
subsets of features according to their relevance for a given model. These methods conduct a 
search for a good subset using the model itself as part of the evaluation function (e.g. 
stepwise regression by optimizing criteria such as AIC, BIC, Mallow’s Cp, etc). Subset 
selection can also be achieved by cross-validation, where the samples are first split into k > 1 
groups (or “folds”) of roughly equal size. Suppose the goodness-of-fit is expressed by a loss 
function (which in the case of a likelihood based method would be minus the log of the 
likelihood). Then, for each model (variable subset) to be assessed, a cross-validation score is 
calculated by fitting the model to all samples except those in the j’th fold (j = 1, 2, …, k), 
computing the loss function on the remaining fold, and adding together all the 
contributions. The model with the smallest cross-validation score is then selected.  

In addition, methods embedded with internal variable selection (e.g. LASSO, PAM and 
decision tree) have also become popular tools for selecting a set of potential gene candidates 
from high-dimensional expression data. More complex model selection procedures such as 
double-loop k-fold cross-validation are sometimes used to determine several model 
parameters simultaneously.  

Unsupervised pattern discovery  

Unsupervised analyses are used to describe how the data are organized and find structures 
in the data. We only observe the features and do not use measurements of the outcome.	
Unsupervised methods such as hierarchical clustering, K-means clustering and self-
organizing maps make it possible to identify groups of patients with similar gene 
expressions or groups of genes with similar expression pattern (co-expression gene cluster). 
The resulting patient groups are subsequently correlated with the clinical outcome as well as 
clinico-pathological parameters to assess the clinical relevance of the input gene markers.  

Hierarchical clustering is an agglomerative approach in which single expression profiles are 
joined to form groups, which are further joined until the process has been carried to 
completion, forming a single hierarchical tree. There are several variations on hierarchical 
clustering that differ in how distances are measured between pairs of observations (distance 
metric) and between clusters (linkage criteria) as they are constructed. Hierarchical 
clustering is often criticized for giving ambiguous results because of sensitivity to data 
perturbation or clustering techniques used. The challenge is to select the algorithms 
appropriately so that the data is sensibly partitioned. Criteria such as the Gap statistic 
(Tibshirani et al. 2001), silhouette (Rousseeuw 1987), and bootstrap resampling (Suzuki and 
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Shimodaira 2004) are used to decide the optimal number, the quality and the reproducibility 
of the clusters, respectively. Often, external information about tumor characteristics (e.g. 
TP53 mutation status, histological subtype, estrogen receptor status, etc) can be useful to 
evaluate to what extent the resulting tumor clusters fit with the existing prior knowledge.  

Another commonly used unsupervised method is principal component analysis (PCA). It is 

a dimension reduction technique that produces linear combinations of the original variables 

to generate principal components (PCs) that are a set of uncorrelated variables. The first PC 

captures the highest variability presented in the data. PCA is useful for reduction of 

dimensionality by focusing on a few top principal components. Outliers can dominate the 

results of a principal components analysis. 

The “unsupervised” approach aims at identifying subgroups of patients with similar gene 

expression pattern. The unsupervised learning process is not guided by any a priori biologic 

knowledge or clinical outcomes. In the “supervised” approach, markers associated with the 

outcome variable are identified. Validation (e.g. on an independent data set or using cross-

validation procedure) is vital in the supervised learning process.  

Supervised learning strategies  

A supervised analysis aims to find a statistical relationship between input data (e.g. gene 

expressions) and output (e.g. response to a treatment or the survival of a patient). 

Supervised learning strategies can be further labeled according to whether outcome 

measurements are quantitative (regression) or qualitative (classification), as well as by 

whether models are designed to describe a current condition or predict future outcome 

based on a set of features (e.g. gene expression). A variety of models are available for 

regression and classification, respectively. Rather than elaborating each of these methods, 

we focus on the regularization approaches as the general remedy for the high-dimensionality 

in gene expression data.  

When the number of explanatory variables genes (p) is large and even exceeds the number 
of individuals n used for training of the model, the fitted model typically performs well on 
the training data, but poorly on new observations. This is commonly referred to as 
overfitting and is a major concern in statistical analysis of high-dimensional data. In 
addition, a high degree of collinearity among the variables is likely to emerge, thereby 
leading to a situation in which the estimated regression coefficients may change 
substantially, even after slight perturbations of the training data. 

In a linear model, dimension reduction techniques and penalized regression are the 

strategies to control and stabilize the variance of the estimates and further achieve better 

prediction rules. The primary goal in the penalized or regularized methods is to shrink the 

regression coefficients vector away from the ordinary least squares solution (in regression 

setting) and achieve improved the predictive performance through a bias-variance trade-off. 

Some widely used regression regularization methods such as ridge regression, partial least 

squares and principle components regression were compared in the studies by Frank and 

Friedman in 1993 (Frank and Friedman 1993) and Lingjærde and Christophersen in 2000 

(Lingjærde and Christophersen 2000) . In Cox-ridge regression, the coefficients are estimated 

by maximization of the L2-penalized partial log-likelihood (using the Newton-Raphson 

procedure): 
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where the first term is the partial log-likelihood and the second term is a penalty term in the 
form of a scaled L2 norm of the model coefficients	 (Verweij and Van Houwelingen 1994). 

Here,  > 0 is a tunable penalty parameter that controls how much weight to put on the 
penalty function. The penalty parameter can be determined by the leave-one-out cross 
validation procedure proposed by Verweij and van Houwelingen (Verweij and Van 
Houwelingen 1993). Similar to ridge yet different, the lasso (Tibshirani 1996) is a penalized 
least squares method that imposes an L1 penalty on the regression coefficients. While ridge 
regression keeps all the predictors in the model, the lasso does both continuous shrinkage 
and automatic variable selection simultaneously. However, lasso is indifferent on the choice 
among a group of covariates that are strongly correlated. The elastic net penalty (Zou and 
Hastie 2005) was introduced as a compromise between ridge and lasso. The elastic-net 
simultaneously does automatic variable selection like the lasso and continuous shrinkage on 
the coefficients of correlated variables like ridge.  

In a comparative study of survival prediction performance using microarray data (Bøvelstad 
et al. 2007), it has been found that Cox-ridge regression often outperforms other common 
regularization techniques for Cox regression, such as principal components regression, 
supervised principal components regression, partial least squares regression and the lasso. 

Other supervised learning techniques, such as ensemble learning strategies (e.g. bagging, 
boosting and random forest) have also been applied to gene expression data analysis. The 
idea is to build a prediction model by combining the strengths of a number of weak learners. 
Refer to Hastie et al. (Hastie et al. 2001) for overview on a comprehensive collection of 
statistical learning methods.  

2.2.3 Established gene signatures  

Some of the established gene signatures with potential clinical usage are reviewed below. 
This review covers Intrinsic subtypes (Perou et al. 2000, Sørlie et al. 2001, Sørlie et al. 2003, 
Parker et al. 2009), MammaPrint® (van 't Veer et al. 2002), Wound-Response (Chang et al. 
2004, Chang et al. 2005), 76-gene (Wang et al. 2005), Genomic Grade Index (Sotiriou et al. 
2006), Oncotype DX® (Paik et al. 2004) and Hypoxia (Chi et al. 2006). For each of the gene 
signatures, we briefly describe the development procedures, the clinical characteristics for 
the targeted cohorts as originally intended (Table 1) and the critical requirements that are 
signature-specific for appropriate usage.  

Expression-based molecular subtypes 

The initial “intrinsic gene set” was found by searching genes that showed little variance 
within tumor samples (i.e., before and after neoadjuvant chemotherapy pairs), but high 
variance across different tumors (Perou et al. 2000). The signature that comprised the 496 
intrinsic genes was further developed by unsupervised classifications that were based on 
clustering algorithms. The intrinsic signature was then used to classify breast tumors into 
five biological subgroups (luminal A, luminal B, HER2-enriched, basal-like, and normal-
like) that show distinct clinical implications (Perou et al. 2000). There exist a couple of 
variants with different numbers of genes in the intrinsic gene set in subsequent publications 
(Sørlie et al. 2001, Sørlie et al. 2003, Hu et al. 2006, Perreard et al. 2006).  
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Signature Predicted phenotype / Endpoint Training Cohort Validation Cohort 

Intrinsic Subtypes Locally advanced BC Consecutive BC  

PAM50 Subtypes Consecutive BC1 Consecutive BC  

 5-year relapse Node– Node– & +  

70gene  5 year distant metastasis  Node–  Node– & +  

76gene  5 year distant metastasis Node– Node– 

GGI HG1- or HG3-like in HG2 ER+  Consecutive BC  

WR Active or Quiescent CSR Representative BC2 Representative BC 

 Population based prognosis  Consecutive BC 

Hypoxia Hypoxic or Non-hypoxic Representative BC Representative BC 

RS 10 year distant metastasis Tamoxifen-treated;  
ER+; Node– 

Tamoxifen-treated;  
ER+; Node– & Node+  

Table 1. Characteristics of the studied gene signatures and their clinically relevant breast 
cancer cohorts.  

The molecular subtypes have profound impact in unveiling heterogeneities in breast 
cancers. The presence of distinct molecular entities suggests the existence of multiple “cells 
of origin”(Prat and Perou 2009). There has been a shift in how the subtypes are defined over 
time, such as including more proliferation-associated genes (Hu et al. 2006, Parker et al. 
2009). This may partially explain the discordance between PAM50 and Intrinsic, with 
respect to LumA and LumB classification. In our study (Zhao et al. Unpublished), we 
compared the subtype classification between Intrinsic (Perou et al. 2000) and PAM50 (Parker 
et al. 2009) on a large breast cancer dataset (van Vliet et al. 2008) (n = 947). Overall, subtype 
assignments of the signatures were moderately correlated (Cohen's kappa, κ = 0.54) (Cohen 
1960). Noticeably, nearly half of the LumA tumors by Intrinsic were assigned as LumB by 
PAM50, while the two signatures appeared to highly agree on classification of basal-like 
subtype tumors. Indeed, basal-like was the most concordant subtype with a Pearson 
correlation of 0.94 between Intrinsic and PAM50, followed by normal-like (0.85), LumA 
(0.68), LumB (0.55) and Her2-enriched (0.42). More specifically, basal-like was the most 
distinctly classified subtype across these two signatures, as only those samples for which the 
correlation to basal-centroid by Intrinsic was slightly larger than the second highest centroid 
correlation showed inconsistent calls by PAM50.  

As previously pointed out (Sørlie et al. 2010), an important issue for the molecular 
subtyping of breast cancers is the need for a clear definition of the molecular subtypes of 
breast cancer and standardized analytical methods to identify them. Until a consistent 
taxonomy is established, it is expected for inconsistent results when comparing assignments 
by various approaches that do not comprise the same entities.  

70-gene signature 

The 70-gene prognosis profile or MammaPrint® (Agendia, Amsterdam, The Netherlands) 

(van 't Veer et al. 2002) has been trained on a cohort of lymph-node-negative patients: 

                                                 
1 Consecutive BC: heterogeneous breast cancer cohort with consecutive clinical parameter distribution as 
reflected in the whole population of this disease. 
2 Representative BC: breast cancer dataset at hand carries representative features that are associated with 
a certain breast cancer subpopulation. 
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expression of a set of 70 prognostic markers that was identified in a ‘‘supervised’’ fashion 

based on their ability to predict freedom from tumor metastasis (favorable prognosis) 

over a five-year period in the same dataset. It was validated subsequently on NKI295, a 

larger cohort consisting both node negative and positive patients (van de Vijver et al. 

2002) and another validation study (Mook et al. 2008) was done on cohorts of 241 patients 

with 1-3 positive lymph nodes. Despite the fact that part of the validation set in the 

original retrospective validation study (van de Vijver et al. 2002) was overlapped with the 

training set of the signature (van 't Veer et al. 2002), the 70-gene signature has been 

validated in the independent cohort by the TRANSBIG consortium (Buyse et al. 2006). 

Espinosa et al. (Espinosa et al. 2005) reproduced with quantitative reverse-transcriptase-

polymerase chain reaction (Q-RT-PCR) the results obtained with a 70-gene expression 

profile. 

The gene signature classifies patient into good or bad prognostic group by the average 

profile of previously determined 70 genes in tumors from patients with a good prognosis. A 

patient with a correlation coefficient of more than 0.4 was then assigned to the group with a 

good-prognosis signature and all other patients were assigned to the group with a poor-

prognosis signature. The threshold was set to achieve a 10 percent rate of false negative 

results in the 78 tumors in the previous study (van 't Veer et al. 2002).  

76-gene signature 

The 76-gene signature (Veridex) (Wang et al. 2005, Foekens et al. 2006, Desmedt et al. 2007a) 

is designed to predict distant metastasis within five years for lymph-node-negative breast 

cancer patients. It was original developed based on 286 lymph-node-negative breast cancer 

patients (Wang et al. 2005) and validated on an independent multicentric population of 180 

untreated N- breast cancer patients (Foekens et al. 2006) and another gene expression study 

of 198 node-negative breast cancer patients (Desmedt et al. 2007a) from the same Affymetrix 

U133a platform as in the original study (Wang et al. 2005).  

In the 76-gene signature (Wang et al. 2005), a relapse score is calculated for ER+ and ER- 

samples using sum of the weighted log2-gene-expression of the 60 genes and 16 genes, 

respectively:  

60

1

16

1

 (for ER positive sample)

 (for ER negative sample)

i i
i

j j
j

w x

u y








 

where i and j indicate markers for ER positive and ER negative group, respectively; wi and uj 

are the standardized Cox regression coefficients for ER positive and ER negative markers, 

respectively; xi and yj are the expression values of ER positive and ER negative markers, 

respectively. 

Intuitively, the pre-derived constants in the relapse model (Wang et al. 2005) are likely 
platform dependent. Additionally, we observed that the 76-gene signature was unable to 
identify any Desmedt sample (Desmedt et al. 2007a) with good prognosis when applied on 
RMA- instead of MAS5-normalized data. The discrepancies suggested that the risk cutoffs 
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and possibly its original gene weights in the algorithm are sensitive to the data scale (Zhao 
et al. Unpublished). 

Genomic Grade Index 

The Genomic Grade Index (GGI) is a 97-gene measure of histologic tumor grade. The  
GGI was able to reclassify patients with histologic grade 2 tumors into two groups with 
distinct clinical outcomes similar to those of histologic grade 1 and 3, respectively (Sotiriou 
et al. 2006).  

The Genomic Grade Index signature contains 128 Affymetix probes (representing 97 genes), 

of which 112 probes were with increased expression in histologic grade 3 tumors; and the 

remaining 16 probes with increased expression in histologic grade 1 tumors. The 

expressions of the 97 grade associated genes were further combined into the genomic grade 

index (GGI) by: 

3 1

j j
j G j G

x x
 

   

where xj is the expression of either a grade 1 marker or grade 3 marker. The raw GGI scores 

were further scaled so that the mean of the GGI scores of histologic grade 1 tumors was − 1 

and that of histologic grade 3 tumors was +1: 

3 1

GGI = scale( )j j
j G j G

x x offset
 

    

High GGI is associated with decreased relapse-free survival in both untreated and 

tamoxifen-treated patients (Loi et al. 2007). In the original publication (Sotiriou et al. 2006) 

the GGI signature was proposed to classify histologic grade 2 samples (or samples neither 

HG1 nor HG3) into "HG1-like" & "HG3-like". Tumors with a negative GGI score were 

classified as "HG1-like"; 0 or a positive GGI score put a tumor into "HG3-like" category. In 

the subsequent study (Haibe-Kains et al. 2008a), the authors dichotomized the raw GGI into 

"low-risk" and "high-risk" group based on 33% quartile in two different populations, VDX 

and TRANSBIG, respectively: the third of the patients having the lowest GGI scores being 

defined as low-risk and the remaining patients as high-risk. The population based 

prognostic strategy for GGI signature particularly requires that the samples are a good 

representative of the population of breast cancer with consecutive clinical parameter 

distribution. 

GGI has a standardization procedure using the information of histological grade so that the 

mean of the GGI scores of histologic grade 1 tumors was -1 and that of histologic grade 3 

tumors was +1, which is likely to increase its robustness when transferred to another array-

based expression dataset (Zhao et al. Unpublished).  

Wound response 

The wound response or core serum response (CSR) gene signature (Chang et al. 2004) was 
derived from the transcriptional response of normal fibroblasts to serum in cell culture. It 
has been shown to improve the risk stratification of early breast cancer over that provided 
by standard clinic pathological features, in that the development of distant metastases is 
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more likely among patients whose breast cancers have activated pathways for matrix 
remodeling, cell motility, and angiogenesis than among those whose cancers do not. The 
signature classifies tumors into two classes (Activated vs. Quiescent) through a centroid, 
which was built from the averaged fibroblast serum-induced expression pattern of the CSR 
genes (Chang et al. 2004, Chang et al. 2005).  

Hypoxia signature 

The epithelial hypoxia signature (Chi et al. 2006) consists of genes (253 image clones) that 

were consistently induced by hypoxia in cultured epithelial cells (HMECs and RPTECs). The 

253 image clones were mapped to 168 Unigene clusters in the study (Chi et al. 2006). A 

“hypoxia score” was computed for a patient by averaging expression levels for the hypoxia 

response genes. Patients were assigned into high or low hypoxia response group by a cutoff 

hypoxia-score at zero (Nuyten et al. 2008). A positive score indicates hypoxic and non-

positive score indicates non-hypoxic. Using published data sets, the authors found that the 

“high hypoxia response” group tends to be higher grade, and more likely to have p53 and 

oestrogen receptor deficiencies, and, most importantly, a significant association with a 

poorer prognosis in breast and ovarian cancer.  

Oncotype DX® 

Oncotype DX® (Genomic Health Inc., Redwood City, CA) (Paik et al. 2004) or the 21-gene-

recurrence-score signature was developed from quantitative reverse transcription-

polymerase chain reaction (Q-RT-PCR) assay to quantify the likelihood of distant recurrence 

at 10 years in adjuvant-tamoxifen-treated patients and further spare patients from adjuvant 

chemotherapy, in both node-negative (Paik et al. 2004) and node-positive disease(Albain et 

al. 2010). It includes 16 cancer-related genes that can be grouped into five different biological 

domains—proliferation, HER2 signaling, ER signaling, invasion and other—along with five 

reference genes. The linear combination of scores from these biological groups was 

computed and scaled into a Recurrence Score (RS), which is used to classifier a patient into 

categories of high risk (RS≥31), intermediate risk (18≤RS<31), and low risk of recurrence 

(RS<18). 

Applying Oncotype DX® to a microarray-based dataset is not straightforward, which has 

often been underappreciated in existing studies (Fan et al. 2006, Loi et al. 2007). In Oncotype 

DX®, reference-normalized expression measurements ranged from 0 to 15, where one unit 

increase reflects approximately a 2-fold increase in RNA. The exact quantifications are hard 

to draw in the microarray-based measurements. We emphasize that only a pseudo RS based 

on the Oncotype DX® algorithm can be computed from microarray-based datasets.  

Applicability of individual gene signatures 

Translating the expression-based gene signatures to a new dataset is complicated by the 

heterogeneities derived from using several microarray, the differences of data processing 

procedures and the clinical uniqueness of each studied cohort.  

We grouped the above gene signatures into two broad categories based on their associated 

approaches of summarizing expression values: centroid-based (Intrinsic, PAM50, 70-gene and 

WR) and weighted average gene expression predictors (76-gene, GGI, RS and Hypoxia).  
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For the 76-gene signature, the pre-derived constants in the relapse model are likely platform 
dependent. Ideally, applying this signature to a new dataset, one should follow the same 
protocol using the same platform with the same normalization procedure as in the original 
studies (Wang et al. 2005, Desmedt et al. 2007a). The Oncotype DX® (RS), another signature 
based on weighted sum method, also has potential issues related to the data scale in 
computing the recurrence score. Furthermore, the differences between the microarray and 
PCR technologies make the recurrence scores estimated from microarray experiments less 
optimal. GGI shares similarities with the 76-gene signature and Oncotype DX® in 
constructing risk estimation from gene expression pattern. However, GGI has a unique 
standardization procedure incorporating the information of histological grade, which likely 
increases its robustness when transferred to different microarray platforms. Generally, when 
the distribution of risk scores depends on platform and normalization procedure, as we 
found with some signatures, cutoffs for risk group assignment need to be recalibrated. The 
population-based strategy in which a fixed proportion of the population was assigned to 
each risk group is more general and applicable for a study with pure prognosis purpose on 
the new cohort. However, it particularly requires the samples to be representative of the 
population of breast cancer.  

A previous study concluded that complex models are not better predictors of prognosis than 
simpler ones derived from gene expression studies (Haibe-Kains et al. 2008b). In general, we 
believe that successful models should be constructed in a robust way to tolerate cross-
platform differences. This may explain why methods based on centroid correlations (such as 
subtype signatures and the 70-gene) or methods that transform the data into an invariant 
scale before computing the risk scores (such as GGI), have more consistent performances. 
We suspect that the weighted average fashion is more sensitive to the data scale and the 
issue of missing signature gene(s) in the data at hand.  

2.3 Limitations of the “first-generation” expression profiling 

Gene expression profiling has opened a door for personalized medicine. However, the 
“first-generation” gene signatures may offer no more than a snapshot of a tumor’s gene 
expression profile that is most relevant for only a particular point in time. Meanwhile, tumor 
development is essentially Darwinian and tumor heterogeneity is dynamic as selective 
pressures change during the metastatic process. The complex structural network of the 
tumor system and the vital interactions of tumor cells with stromal and immune cells 
highlight the need for a cellular systems biology approach to cancer diagnostics, which 
combines multiplexed biomarker panels with informatics tools to produce a systemic 
readout relevant to patient prognosis. Comprehensive genomic analysis of tumor 
subpopulations of the host patient is likely the best way to effectively use gene signatures 
from both patient and tumor, so that treatment plans can be optimized. 

2.3.1 Influence of time and ER status on gene signatures in breast cancer survival 
prediction 

In Zhao et al. (Zhao et al. Unpublished), we assessed several prognostic gene signatures that 
have received the greatest interest and been validated in multiple studies. These include the 
Intrinsic signature (Perou et al. 1999, Perou et al. 2000, Sørlie et al. 2001, Sørlie et al. 2003), 
PAM50 (Parker et al. 2009), 70-gene profile or MammaPrint® (Agendia, Amsterdam, The 
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Netherlands) (van 't Veer et al. 2002, van de Vijver et al. 2002, Mook et al. 2008, Buyse et al. 
2006, Espinosa et al. 2005), 76-gene signature (Wang et al. 2005, Foekens et al. 2006, Desmedt 
et al. 2007a), Genomic Grade Index (GGI) (Sotiriou et al. 2006, Loi et al. 2007), wound 
response (WR) signature (Chang et al. 2004, Chang et al. 2005), hypoxia signature (Chi et al. 
2006, Nuyten et al. 2008) and 21-gene-recurrence-score (RS) or Oncotype DX® (Genomic 
Health Inc., Redwood City, CA) (Paik et al. 2004).  

The eight signatures were applied on an expression dataset (van Vliet et al. 2008) (n = 947) 
pooled from six published breast cancer datasets (Loi et al. 2007, Miller et al. 2005, Pawitan 
et al. 2005, Desmedt et al. 2007a, Minn et al. 2005, Chin et al. 2006) on Affymetrix Human 
Genome HG-U133A arrays. Survival predictions were fairly concordant across most gene 
signatures (Zhao et al. Unpublished). We found that these signatures generally performed 
better in ER positive than in ER negative breast cancers for prediction of distant metastasis 
free survival (Zhao et al. Unpublished). Cell proliferation seems to be the common driving 
force for the prognostication in ER positive breast cancers, while different biological 
mechanisms such as stress response and immune response (Rody et al. 2009, Teschendorff 
and Caldas 2008) may be crucial for risk stratification in ER negative tumors. The majority of 
the tested gene signatures are strong risk predictors especially during the first five years of 
follow-up for distant metastasis free survival and throughout the first 10 years for breast 
cancer specific survival. These indications are also in line with results from other studies 
(Desmedt et al. 2007b, Desmedt et al. 2008, Wirapati et al. 2008, Loi et al. 2007). It suggests 
that different molecular mechanisms are likely to be involved in the early and the late stage 
during the progression of the metastatic disease. 

2.4 Combining multiple gene signatures likely to improve prognosis  

Despite the fact that very few genes are shared among various gene signatures, most of gene 
signatures, evaluated in our own studies (Zhao et al. 2011) and by others (Fan et al. 2006, 
van Vliet et al. 2008, Reyal et al. 2008), have similar performances in survival risk assessment 
on the same breast cancer patients. This indicates that some common biological processes 
overlap across those gene signatures (Reyal et al. 2008, Yu et al. 2007, Desmedt et al. 2008), 
but more importantly they are likely to capture various biological aspects of breast cancer 
(Drier and Domany 2011). The combined information from multiple informative gene 
signatures is arguably more broadly applicable for survival prediction across heterogeneous 
tumor groups capturing a broad spectrum of biological aspects. 

Methods such as decision-tree analysis have been explored to develop a combined predictor 
that showed improved performance than the individual gene signatures (Chang et al. 2005). 
In Zhao et al. (Zhao et al. 2011), an analytical framework (Fig. 1) was proposed to improve 
breast cancer risk stratification by integration of multiple informative gene signatures. We 
use the gene sets of eleven published gene signatures (Paik et al. 2004, Finak et al. 2008, 
Minn et al. 2005, van 't Veer et al. 2002, Wang et al. 2005, Sotiriou et al. 2006, van Vliet et al. 
2008, Chi et al. 2006, Liu et al. 2007, Hu et al. 2006, Chang et al. 2004) to analyze breast 
cancer survival and relapse. To investigate the relationship between breast cancer survival 
and gene expression on a particular gene set, a Cox proportional hazards model is applied 
using partial likelihood regression with an L2 penalty to avoid overfitting and using cross-
validation to determine the penalty weight. The fitted models are applied to an independent 
test set to obtain a predicted risk index (PI) for each individual and each gene  
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Fig. 1. Flowchart of the analysis showing integration of multiple informative gene 

signatures.  

(A) Construction of the gene-set predictor/gene signature for risk prediction. Input: A set of 

genes of interest (gene 1, …, m) which can be traced by the corresponding colors through out 

the diagram; gene expression data for training cohort and test cohort with genes placed in 

the rows and patients in the columns. Step 1. Gene identity mapping and extract expression 

matrix. Step 2. With available status of observing an event for the patients on the training 

set, a Cox model with L2 penalty is used to model the relationship of survival probability 

and gene expression pattern of the gene set. The coefficients or “gene weights” (1, …, m) 

associated with individual genes are estimated from the Cox-ridge model. Size of the bubble 

in the gene weights matrix reflects the importance of the corresponding gene for survival 

prediction. Step 3. A Prognostic Index (PI), the predicted risk score for a test patient  

i (i = 1, …, n) is calculated by the sum of weighted gene expression from test patient i  

using the estimated gene weights from step2. (B) Integration of multiple gene signatures by 

dimension reduction. Input multiple gene sets of interest together with their gene 

expression data. Module 1: For jth gene set (j = 1, …, R), the procedure described in  

panel A is used to predict a risk score PI for individual test patient. The resulting PI matrix 

is positioned in R by n dimension representing the risk prediction of the n test patients by 

each of the R gene sets. Module 2: Integrate predictions from multiple gene signatures by 

dimension reduction using principal components analysis (PCA).  

Module 3: Dichotomize the risk scores on PC1 by median (higher than median indicates high 

risk) resulting in two predicted risk groups for survival outcome. Image is taken from Ref. 

(Zhao et al. 2011). 
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Fig. 2. Univariate comparison of predictors for systemic recurrence. Comparison of 
combined-PI risk predictor with clinical parameters and individual gene-set predictors 
using univariate Cox model. (A) Y-axis indicates C-index associated with individual 
predictor and X-axis indicates the p values (on minus log10 scale) from likelihood ratio test 
in univariate Cox model. C-index = 0.5 and the significant level:  = 0.05 for the likelihood 
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ratio test are indicated by the dotted line. The size and the color of the bubble indicate the 
PVE and the deviance in univariate Cox model, respectively. The combined-PI risk predictor 
had the most significant marginal effect for predicting systemic recurrence (p = 0.003). It was 
associated with the second highest C-index score (C = 0.75) following TP53 mutation status 
(C = 0.76). It had the second highest deviance (8.61) following tumor size (9.36), and the 
combined-PI predictor alone explained 10.6% of the variability as indicated by PVE, 
following tumor size (11.7%) and stage (11.1%) (B) X-axis indicates HR from the univariate 
Cox model and the 95% CIs are shown along with the point estimates. “LR test” stands for 
likelihood ratio test. Insignificant predictors (likelihood ratio test p > 0.05) are grayed out. To 
keep the results interpretable, only predictors with two levels are compared. The combined-
PI risk predictor had the 2nd largest HR (2.82 with 95% CI 1.37—5.80) following TP53 
mutation status (2.87 with 95% CI 1.42—5.83). Image is taken from Ref. (Zhao et al. 2011). 

set. Finally, principal components analysis of the gene signatures is used to derive a 
combined predictor from the first principal component. Based on a media cut, this combined 
model classifies test individuals into two risk groups with distinct survival characteristics 
(recurrence: p=0.003; breast cancer specific death: p=0.001). And it outperforms all the 
individual gene signatures, as well as Cox models based on traditional clinical parameters 
and the Adjuvant! Online for survival prediction (Fig. 2).  

One weakness of this study is the fact that the training and test sets contain small sample 
sizes (training set: n = 123; test set: n = 80). The effect of the small sample size is reflected in 
the low degree of correlation between the PIs obtained by swapping the training and test 
sets. On the positive side, this study represents an elegant way to combine existing gene sets 
into a single predictor, without discretizing the survival times. It would be very interesting 
to see the performance of this classifier on a much larger cohort and explore different 
approaches for the integration step.  

2.5 Clinical trials to conclude the clinical utility of gene expression signatures  

To meet the requirements of a prognostic marker, the potential marker should be tested 
retrospectively in large patient cohorts with a long follow-up period. Subsequently, the 
findings should be validated by an independent group of experts, and, ideally, a prospective 
study should confirm the prognostic significance of the tested marker.  

Ongoing clinical trials, MINDACT (Microarray In Node negative Disease may Avoid 
ChemoTherapy) (Cardoso and Van't Veer 2008) and TAILORx (Trial Assigning 
IndividuaLized Options for Treatment (Rx)) (Sparano and Paik 2008) have been launched to 
test the clinical usage of MammaPrint® (Agendia, Amsterdam, The Netherlands) (van 't Veer 
et al. 2002) and Oncotype DX® (Genomic Health Inc., Redwood City, CA) (Paik et al. 2004), 
respectively. MINDACT will directly compare the 70-gene signature (experimental arm) with 
Adjuvant! Online (clinico-pathological control arm) to determine whether to offer adjuvant 
chemotherapy in patients with node-negative breast cancer presenting with discordant risk 
estimation according to the two methods. It is estimated that 10-15% fewer women will be 
treated with chemotherapy in the experimental arm. In TAILORx, patients with low RS will be 
treated with hormonal therapy alone and patients with a high score will receive chemotherapy 
plus hormonal therapy. However, the 10-year results of both trials will not be available before 
the year 2020. These trials should provide level I evidence about the clinical relevance of 
applying gene-expression signatures to daily breast cancer patient management. 

www.intechopen.com



 
The Continuum of Health Risk Assessments 

 

128 

In addition, a phase II clinical trial design, the I-SPY 2 (investigation of serial studies to 
predict your therapeutic response with imaging and molecular analysis 2) (Barker et al. 
2009), will test the idea of tailoring treatment by using molecular tests (estrogen receptor 
status, HER2 status, and the MammaPrint® (Mook et al. 2007, Cardoso and Van't Veer 2008) 
to identify patients who might benefit from investigational new drugs given along with 
standard neoadjuvant chemotherapy.  

3. Conclusion 

Breast cancer is markedly heterogeneous with respect to distinctive biological characteristics 
and clinical behavior. Many examples highlight that gene expression signatures have 
tremendous power to identify new cancer subtypes and to predict clinical outcomes. The 
genome-wide information of breast cancer provides overlapping clinico-pathological 
classifications, more importantly, adds prognostic accuracy and biological insights than 
relying on single biomarkers alone.  

These signatures are more predictive in ER positive tumors, as seen from our study (Zhao et 
al. Unpublished) and others. Their low performances in ER negative group are in line with 
their limitation of assigning the high-risk category to almost all ER-negative patients 
(Sotiriou and Pusztai 2009, Wirapati et al. 2008). Moreover, their effects on survival 
prediction seem to decay with time (Desmedt et al. 2007b, Zhao et al. Unpublished), 
suggesting that different molecular mechanisms are likely involved during the development 
of early and late stages of the disease.  

4. Future of personalized medicine in breast cancer  

Genomic signatures play a significant role in individualized diagnosis, prognosis and 
therapeutic decision-making for cancer patients. In additional to mRNA expression 
profiling, other genetic information such as genomic complexity inferred from aCGH data 
(Russnes et al. 2010) also has possibilities to be translated into clinical applications for breast 
cancer. More recently, next generation DNA sequencing has been used to support the goals 
of personalized medicine. Charactering complete catalogues of the somatic alterations in 
cancer genomes holds great potential to discover informative biomarkers and develop 
targeted therapeutics (Chin et al. 2011). 

Clinical and pathological factors such as axillary lymph node status, tumor size, histological 
grade, histological subtype, HER2 status, and hormone receptor status are still the most 
important factors for determining treatment. With increasing knowledge of specific genetic 
alterations and gene expression profiles of tumors, and the prognostic and predictive value 
of these genetic tumor characteristics, more individualized predictions of disease outcome 
and refined patient therapy are beginning to be realized. 

Integration of clinical, pathological, genetic information derived from gene expression 
profiling, aCGH and massive parallel sequencing as well as metabolic profiles is a 
promising approach to achieve better breast cancer risk stratification and further to improve 
treatment decisions in breast cancer patients. Methods such as PARADIGM (Vaske et al. 
2010) have been explored to infer patient-specific signaling pathway activities from 
integration of multi-dimensional cancer genomics data. Furthermore, the predicted pathway 
perturbations were able to stratify patients into clinically relevant subtypes (Vaske et al. 
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2010). With the advances in genomic technologies and the increased volume of high 
throughput data, it is imperative to develop approaches for integration of diverse biological 
information—DNA (and epigenetic changes), RNA, proteins and metabolites together with 
clinical, pathological information. 

We look forward to the completion of the ongoing clinical trials to confirm the clinical utility 
of expression-based gene signatures in breast cancer. We anticipate that these results will 
facilitate the translation of other genetic information (such as genomic complexity inferred 
from aCGH data) (Russnes et al. 2010) into clinical applications for breast cancer. We 
particularly look forward to the impact of next generation DNA sequencing on diagnosis, 
prognosis and therapeutic decision-making.  
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