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1. Introduction 

The spontaneously hypertensive rat (SHR) is a laboratory model of naturally developing 
hypertension and heart failure that appears to be similar in many aspects to essential 
hypertension in humans (Trippodo & Frohlich, 1981). Systolic blood pressure in SHR 
rapidly increases during 5 to 10 weeks of age and develops cardiac hypertrophy between 9 
and 12 weeks of age (Shimamoto et al., 1982). Increasing evidence from different 
experimental models supports the concept that oxidative stress contributes to the 
pathogenesis of myocardial hypertrophy and in the process of myocardial remodeling 
leading to heart failure (Yücel et al., 1998; Lasségue & Griendling, 2004).  

The oxidative stress is the result of an increase of reactive oxygen species (ROS) and/or 
inadequate antioxidant defense mechanisms. It has been shown that an increase in the 
activity and expression of myocardial NAD(P)H oxidase (NOX) is the main source of ROS in 
cardiac hypertrophy (Bendall et al., 2002; Griendling et al., 2000; Xiao et al et al., 2002). 
However, existing data about the antioxidant status in hypertension are inconsistent. Some 
studies have shown that the activities of one or more antioxidant enzymes are lower (Ito et 
al, 1995; Newaz & Nawal, 1999), higher (Czonka et al., 2000) or without changes (Gómez-
Amores et al., 2006; Girard et al, 2005) compared with normotensive controls. Although the 
underlying causes of these discrepancies are unknown, it may be possibly due to the use of 
different hypertension models, animals at different hypertensive stages and/or different 
experimental preparations.  

On the other hand, ROS are thought to be a key mechanism in the aging process (Beckman 
& Ames, 1998; Colavitti & Finkel, 2004; Harman, 1988) and there are arguments that NOX-
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derived ROS may lead to cellular senescence (Ago et al., 2010a; Ago et al., 2010b; Imanishi et 
al., 2005). Thus, lipid peroxidation and oxidative modification of proteins by ROS like 
peroxynitrite-the product of combination of superoxide (O2–.) and nitric oxide (NO)- are 
implicated in the pathogenesis of hypertrophy (Nadruz et al., 2004) and in cardiac normal 
aging (Beal, 2002).  

The aim of this study was to assess the oxidative stress in hearts from young and old SHR 
compared to age-matched Wistar rats. 

2. Methods 

Experiments were conducted with 40 days and 4-, 11- and 19-month-old male SHR and age-
matched Wistar  rats. All animals were identically housed under controlled lighting (12 hs) 
and temperature (20 °C) conditions with free access to standard rat chow and tap water. The 
experiments were conducted in accordance with the Guide for the Care and Use of 
Laboratory Animals published by the US National Institutes of Health (NIH Publication No. 
85-23, revised in 1996). Systolic blood pressure (SBP) was recorded by the tail-cuff method 

(Camilión de Hurtado et al., 2002).  Left ventricular hypertrophy (LVH) was evaluated by 
the ratio between heart weight (HW) and tibia length (TL) as previously described (Yin et 
al., 1982). Wistar strain was used as normotensive control rat. For the biochemical 
determinations SHR and Wistar rats of 4- and 19 months-old were used. The animals were 
decapitated and hearts were quickly removed and perfused with ice-cold saline solution 
(0.9% NaCl) to remove the blood. Left ventricle (LV) samples were taken to assay NOX 
activity, superoxide production and protein nitration. The rest of the heart was 
homogenized in 5 volume of 25 mM PO4KH2 - 140 mM ClK at pH = 7.4 containing protease 
inhibitors cocktail (Complete Mini Roche) with a Polytron homogenizer. An aliquot of heart 
homogenate was used to assess lipid peroxidation. The remaining homogenate was 
centrifuged at 12000 x g for 5 min at 4º C and the supernatant stored at -70 ºC until 
superoxide dismutase  (SOD), catalase (CAT) and glutathione peroxidase (GPx) activities 
were assayed. Protein concentration was evaluated by Bradford method (Bradford, 1976) 
using bovine serum albumin as a standard. 

2.1 Assessment of lipid peroxidation 

Lipid peroxidation was determined by measuring the level of thiobarbituric acid reactive 
substances (TBARS), expressed as nmol/mg protein. Heart homogenates were centrifuged 
at 2000 x g for 10 min. Supernatants (0.5 ml) were mixed with 1.5 ml trichloroacetic acid (30 
% w/v), 1 ml thiobarbituric acid (0.7% w/v) and 0.5 ml water followed by boiling during 15 
min. After cooling, absorbance was determined spectrophotometrically at 535 nm, using a ε 
value of 1.56 x 105 M-1 cm−1 (Buege & Aust, 1978). 

2.2 Assessment of protein nitration 

The interaction of peroxynitrite leads to nitrotyrosine formation actually considered as an 
indirect marker of oxidative /nitrosative stress (Halliwell, 1997). Thus, we assessed 
nitrotyrosine level by Western blot analysis. A sample of left ventricle was homogenized in 
lysis buffer (300 mM sucrose; 1 mM DTT; 4 mM EGTA, protease inhibitors cocktail: 1 
tablet/15 ml of buffer; 20 mM Tris-HCl, pH 7.4). After a brief centrifugation proteins were 
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denatured and equal amounts of protein subjected to PAGE and electrotransferred to PVDF 
membranes. Membranes were incubated with an anti-nitrotyrosine polyclonal antibody 
(Cayman Chemical). A peroxidase-conjugated, anti-rabbit IgG (Santa Cruz Biotechnology) 
was used as secondary antibody, and finally bands were visualized with ECL-Plus 
chemiluminescence detection system (Amersham). Autoradiograms were analyzed by 
densitometric analysis (Scion Image).   

2.3 Determination of NAD(P)H oxidase (NOX) activity 

Left ventricular slices (LVS, 1 x 5 mm, 3 – 3.5 mg dry weight) were incubated for 5 min at 37 
°C in Krebs-Hepes buffer  (in mmol/l: 99 ClNa, 4.69 ClK, 1.87 Cl2Ca, 1.2 SO4Mg, 1.03 K2PO4, 
25 CO3HNa, 20 Hepes, 11.1 glucose) bubbled with 95% O2 - 5% CO2 to maintain pH 7.4 and 
then transferred to glass scintillation vials containing the same buffer with 5 M  lucigenin. 
Chemiluminiscence was assessed at 37°C over 15 minutes in a Scintillation counter (Packard 
1900 TR) at 1-minute intervals. Vials containing all components without tissue were 
previously counted and the values were substracted from the chemiluminiscence signals 
obtained in the presence of LVS. NOX activity was measured in the presence of 100 mM 
NAD(P)H and expressed as cpm/mg dry weight of LVS (Souza et al., 2002). 

2.4 Measurement of superoxide (O2
–. 

) production  

Superoxide production was measured in LVS with lucigenin-enhanced chemiluminiscence 
in Krebs-Hepes buffer with 5 M lucigenin (Khan et al., 2004). The chemiluminiscence in 
arbitrary units (AU) was recorded with a luminometer (Chameleon, Hidex) during 30 
seconds each with 4.5 min interval during 30 minutes. O2–. production was expressed as AU 
per mg dry weight per minute. To determine the involvement of NOX in O2–. production, 
the slices were pretreated during 30 min with 300 M apocynin. 

2.5 SOD, CAT and GPx activities assays  

SOD activity was determined by inhibition of formazan production (produced by nitroblue 
tetrazolium (NBT) reduction by superoxide anion) at pH 10.2 and 25º C. The reaction 
mixture consists in: 100 M xanthine, 100 M EDTA, 25 M NBT, 50 mM CO3Na2, pH 10.2. 
The reaction was started by the addition of xanthine oxidase, reading the absorbance at 560 
nm each 30 sec for 5 min (Beauchamp & Fridovich, 1971). One unit of SOD assay was 
defined as the amount of enzymatic protein required to inhibit 50 % of NBT reduction. 

CAT activity was determined by the procedure of Aebi (1984). Decrease in absorbance at 240 
nm by the addition of 30 mM H2O2 was monitored each 15 sec and for 30 sec. One unit of 
CAT assay was defined as the amount of the enzyme that decomposed 1 mol of H2O2. 

The GPx activity was measured according to Lawrence and Burk method (1976). The assay 
reaction comprised 50 mM K2HPO4 buffer, 1 mM EDTA, 1 mM NaN3, 1 mM reduced 
glutathione, 0.2 mM NADPH, 0.25 mM H2O2 and 1 U/ml glutathione reductase. Gpx 
activity was assayed by following NADPH oxidation at 340 nm, measuring the absorbance 
each 15 sec for 5 min. The activity was calculated using a molar extinction coefficient for 
NADPH of 6.22 103 M−1 x cm−1 at 340 nm. One unit of the enzyme was represented the 
decrease of 1 mol of NADPH/min under assay conditions. 
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2.6 Statistical analysis 

Data are presented as mean ± SE. Differences between Wistar and SHR, young and old 
groups were analyzed using two-way analysis of variance (ANOVA) with the Newman-
Keul’s post-hoc test used for multiple comparisons among groups, considering P < 0.05 as 
statistically significant. 

3. Results 

Comparing to age-matched W rats, SBP of SHR was higher at all ages examined. The 
analysis of the time course of SBP showed that as early as at 40-day-old the SHR exhibited 
higher SBP values compared to age-matched W rats. At 4-month-old SBP increased more in 
comparison to the youngest rats and it remained elevated throughout the last stage studied. 
LVH significantly increased in SHR at 4, 11 and 19-month-old compared to age-matched W 
rats. Higher values were obtained at 11 and 19-month-old SHR when compared to younger 
SHR. An increase in LVH was also observed in W rats with aging (11 and 19-month-old) 
compared to younger rats (Table 1). 
 

 SHR Wistar 
 SBP (mmHg) LVH SBP (mmHg) LVH 

40 days-old 154 ±  5 * 2.04 ±  0.11 115 ±  5 1.56 ±   0.15 
4 months-old 187 ±  2 *# 2.72 ±  0.17 * 116 ±  3 2.05 ±  0.12 

11 months-old 178 ±  1.5 *# 3.18 ±  0.23 *# 116 ±  3 2.56 ±  0.09 § 
19 months-old 191 ±  5 *# 3.40 ±  0.26 *# 107 ±  6 2.46 ±  0.04 § 

Table 1. Values of systolic blood pressure (SBP) and left ventricular hypertrophy (LVH) of 
SHR and Wistar rats of 40 days and 4, 11 and 19 months-old.  * P < 0.05  in SHR vs. Wistar; # 
P < 0.05  in SHR vs. 40-day-old;  §  P < 0.05  in Wistar vs.to 40-day-old. 

Fig. 1 shows TBARS content in hearts from 4-, and 19-month-old SHR and Wistar rats. In 
hearts from SHR there was a significantly higher TBARS level of approximately 87% at 19-
month-old compared to age-matched Wistar rats. No differences in TBARS with aging were 
observed in Wistar rats.  

Nitrotyrosine levels from hearts of 4 and 19-month-old Wistar and SHR are depicted in Fig. 
2. Immunoblotting assays showed a statistically significant increase of approximately 40 % 
in nitrotyrosine levels at 19-month-old SHR compared to age-matched Wistar rats. The 
oldest SHR and Wistar rats exhibited an increase of 200 and 120 %, respectively, in 
nitrotyrosine levels compared to their respective younger group. 

Although there were no significant differences in NOX between SHR and Wistar hearts 
from young animals, an increase in aged rats (approximately 30% for Wistar and 60% for 
SHR) was obtained showing SHR the highest values (Fig. 3).  

Similar  O2–. production was obtained in hearts from Wistar rats and SHR at 4 months of age, 
whereas in older animals SHR showed a significantly higher O2–. production (approximately 
170%) in comparison with age matched Wistar rats (approximately 70%)  (Fig. 4). Anyway, 
aged rats produced a higher O2–.  amount that younger. The addition of the selective NOX 
inhibitor apocynin decreased O2–. production in hearts of aged SHR and Wistar rats. In 4-
month-old SHR and Wistar rats O2–.  production was lower in the presence of apocynin, but  
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Fig. 1. TBARS content in nmol/mg protein, expressed in nmol/mg protein in hearts from 
SHR and Wistar rats at 4, and 19 months-old . * P < 0.05 in SHR vs Wistar ; # P < 0.05 vs 4 
months-old SHR. 

 
Fig. 2. Nitrotyrosine content, expressed as percentage with respect to 4-month-old Wistar 
rats in hearts from SHR and Wistar rats at 4 and 19 months-old. * P < 0.05 in SHR vs Wistar ; 
# P < 0.05 vs 4 months-old SHR;  P < 0.05 vs 4-month-old Wistar rats. 
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Fig. 3. NOX (NAD(P)H oxidase) activity, expressed as cpm/mg protein in hearts from SHR 
and Wistar rats at 4 and 19-month-old.  * P < 0.05 in SHR vs Wistar; # P < 0.05 in 19- vs 4-
month-old SHR;  P < 0.05 in 19- vs 4-month-old Wistar. 

 
Fig. 4. Superoxide production, expressed as arbitrary units AU/mg/min, in hearts from 
SHR and Wistar rats at 4 and 19 months of age in the absence and presence of apocynin. *P < 
0.05 in SHR vs. Wistar rats, # P < 0.05 in 19- vs. 4-month-old SHR, § P< 0.05 in 19- vs. 4-
month-old Wistar rats, ξ P < 0.05 in 19-month-old SHR and Wistar rats in the presence vs. 
absence of apocynin. 
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the difference was not statistically significant. This may have been because the lucigenin 
method was unable to detect very small differences in O2–.  levels that were only slightly 
above the background levels (Dikalov et al., 2007). 

 
Fig. 5. Superoxide dismutase (SOD) activity, expressed as U/mg protein, in SHR and Wistar 
hearts of 4 and 19-month-old. # P < 0.05 in 19- vs 4-month-old SHR. 

 
Fig. 6. Catalase (CAT) activity, expressed as U/mg protein, in SHR and Wistar hearts of 4 
and 19-month-old. * P < 0.05 in SHR vs Wistar ; # P < 0.05 in 19- vs 4-month-old SHR.  
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The activities of antioxidant enzymes are shown in Fig. 5, 6 and 7. SOD activity significantly 
decreased in older hearts from SHR (approximately 17 %) while not significant differences 
were detected in Wistar rats with aging (Fig. 5). 

Hearts from 4-month-old SHR exhibited a higher catalase activity (approximately 40%) in 
comparison to hearts from age-matched Wistar rats and it decreased in 19-month-old SHR. 
In Wistar rats CAT activity did not change with aging (Fig. 6).  

Compared to younger animals, a significant decrease of GPx activity was detected in hearts 
from 19-month-old SHR and Wistar rats. No differences were detected between SHR and 
age-matched Wistar rats (Fig. 7). 

 
Fig. 7. Glutathione peroxidase (GPx) activity, expressed as U/mg protein, in SHR and 
Wistar hearts of 4 and 19-month-old. # P < 0.05 in 19- vs 4-month-old SHR;  P < 0.05 in 19- 
vs 4-month-old Wistar.  

4. Discussion 

The present study shows an increase of oxidative stress associated to ageing in both rat 
strains, showing SHR the highest values. Oxidative stress is a major contributor to the aging 
process (Fukagawa, 1999) and appears to be a common feature of hypertensive disorders 
from diverse origins (Ito et al., 1995; Dobrian et al., 2003; Vaziri & Sica, 2004; Swei et al., 
1997). The damage caused by oxidative stress during aging becomes more evident when 
analyzing the effect of ROS on organic macromolecules, like proteins and lipids. Lipid 
peroxidation is a major contributor to the age-related loss of membrane fluidity, especially 
related to increase in the levels of two aldehydic lipid peroxidation products, 
malonyldialdehyde (MDA) and 4-hydroxy-2-nonenal (HNE). Therefore, it is not surprising 
that lipid peroxidation is increased in the aged heart as demonstrated by higher levels of 
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MDA (Cocco et al., 2005) or HNE (Judge et al., 2005). However, in the present study, in 
accordance with previously reported data (Muscari et al., 1990; Navarro-Arévalo et al., 1999; 
Cand & verdetti, 1989), we did not find any increase of TBARS in hearts from normotensive 
rats with aging. These results can be explained considering that the normal hearts have a 
reduced amount of substrate for the lipoperoxidation (Cand & Verdetti, 1989) or /and the 
end products of lipoperoxidation are readily metabolized (Muscari et al., 1990) or possess 
efficient antioxidant defence system . However, we detected an increase in TBARS content 
with aging in hearts from SHR, compared to age-matched Wistar rats. Moreover, 19-month-
old SHR exhibited the highest hypertrophy index and level of lipid peroxidation suggesting 
that an increase of oxidative damage can be the consequence or the reason for the persistent 
elevated systolic blood pressure and/or increased cardiac hypertrophy in addition to aging.  

Nitric oxide (NO) plays pivotal roles in the maintenance of blood pressure and vascular tone 
(Loscalzo & Welch, 1995). Superoxide avidly reacts with NO and in the process produces 
highly reactive and cytotoxic products, like peroxynitrite (ONOO-). Peroxynitrite, in turn, 
reacts with and modifies various molecules, namely lipids, DNA, and proteins. For instance, 
peroxynitrite reacts with the tyrosine and cysteine residues in protein molecules to produce 
nitrotyrosine and nitrocysteine, leading to inactivation of important antioxidant enzymes, 
like SOD (Mac Millan-Crow & Cruthirds, 2001; Alvarez et al., 2004). In addition to these and 
other harmful biochemical reactions, the oxidation of NO by ROS inevitably results in 
functional NO deficiency, which can contribute to pathogenesis and maintenance of 
hypertension and its long-term consequences. In agreement with previous findings in the 
vasculature of hypertensive animals (Mc Intyre et al., 1999; Zalba et al., 2001), we detected a 
higher O2–. production in cardiac tissue of aged SHR compared to age-matched 
normotensive Wistar rats. The fact that blood pressure of SHR decreased with antioxidant 
therapy implies that oxidative stress is involved in the genesis and/or maintenance of 
hypertension (Vaziri et al., 2000). Recent investigations using hypertensive models other 
than SHR have shown that an increase of cellular tolerance to oxidative stress is one of the 
mechanisms responsible for the efficacy of anti hypertensive treatments such as calcium 
antagonists (Umemoto et al., 2004; Hirooka et al., 2006), angiotensin II type 1 receptor 
antagonists, or angiotensin-converting enzyme inhibitors (Takai et al., 2005; Tanaka et al., 
2005).  In our study, hearts from 4-month-old SHR and Wistar rats showed a similar 
nitrotyrosine content. In addition to lipid peroxidation data, this result is another 
demonstration that the higher LVH observed in young SHR relative to age-matched Wistar 
rats was not accompanied by higher nitrosative damage. Aged Wistar rats exhibited an 
increase in nitrotyrosilation compared with young animals. This increase was lower in 
Wistar in comparison to SHR, indicating that the addition of hypertrophy to aging process 
leads to a high degree of nitration due to an increased imbalance in myocardial production 
of either NO or O2–. . Although we did not measure the expression or activity of NOS, it has 
been reported that aged hearts exhibited increased myocardial NOS-cGMP signaling 
associated with an up-regulation of NOS (Zieman et al., 2001; Llorens et al., 2005). Therefore, 
higher levels of nitrotyrosine in aged SHR hearts would be attributed to an increase of 
peroxynitrite derived from an excessive production of both reactive species, NO and O2–.. 
Another possibility for explaining the higher oxidative and nitrosative stress of aged SHR 
compared to Wistar rats is a decrease in NO availability due to an increase in O2–.  

production.  
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Mitochondria occupy a central position in the metabolism of ROS, supporting the so-called 
“free radical theory of aging” (Beckman & Ames, 1998; Hardman, 1956; Hardman, 1988). 
Other cardiovascular sources of ROS include the enzymes xanthine oxidoreductase (Berry & 
Hare, 2004), NOX (multisubunit membrane complexes) (Griedling et al., 2000) and eNOS 
uncoupling (Kuzkaya et al., 2003; Landmesser et al., 2003). This eNOS transformation takes 
place when its essential cofactor (6R)-5,6,7,8-tetrahydro-L-biopterin (BH4) is oxidized by 
ONOO- then a functional NOS is converted into a dysfunctional O2–. generating enzyme that 
contributes to oxidative stress. Abnormal activation and expression of myocardial NOX have 
been suggested to be the mains sources of ROS in the hypertrophic and failing myocardium 
(Bendall et al., 2002; Li et al., 2002). A recent paper of Miyagawa et al. (2007) shows that the 
production of O2–. by NOX in femoral arteries of SHR in comparison to WKY is enhanced, 
resulting in the inactivation of NO and impairment of endothelial modulations of vascular 
contractions. In our study, whereas young SHR showed a similar NOX activity as age-matched 
Wistar, an increase in the activity of this enzyme was detected in aged SHR, suggesting that 
NOX-dependent ROS production would be mediating both the hypertrophic response and 
aging. Apocynin is a well characterized inhibitor of NOX (Meyer & Schmitt, 2000). It acts by 
impeding the assembly of the p47-phox and p67-phox subunits within the membrane NOX 
complex (Meyer & Schmitt, 2000; Hamilton et al., 2001). Some of the effects of apocynin 
treatment are protection of the endothelium from the initiating events of atherosclerosis 
(Hamilton et al., 2001), a reduction of p22-phox mRNA expression and cardiac hypertrophy in 
aldosterone-infused rats (Park et al., 2004), and a prevention of hyperglycemia-induced 
intracellular ROS elevation and myocyte dysfunction (Privratsky et al., 2003). Aponycin has 
also been shown to reduce oxidative stress in stroke-prone spontaneously hypertensive rats, 
leading to the suppression of cardiac hypertrophy, inflammation and fibrosis (Yamamoto et 
al., 2006). Under our experimental conditions, apocynin blunted the O2–. production in hearts 
from aged SHR and Wistar rats. Although a significant increase in NOX activity was only 
evident in aged SHR hearts, we suggest that NOX–dependent ROS production would mediate 
both the hypertrophic response and aging. 

In the myocardium, as in other tissues, antioxidant enzymes protect cells by maintaining ROS 
at low levels, thus preventing oxidative damage to biological molecules. SOD rapidly converts 
O2–. to H2O2, which is further degraded by CAT and GPx. The levels of the antioxidant 
enzymes are sensitive to the oxidative stress and increased or decreased levels have been 
reported in different pathologies in which an enhancement of ROS is cause or consequence of 
the disease (Navarro-Arévalo et al., 1999; Ulker et al., 2003). Our data show that SOD activity 
in hearts from young SHR was slightly but not significantly higher than Wistar rats. The lack 
of significant difference between SOD activities of hearts from both rat strains is in accordance 
with previous findings (Gómez-Amores et al., 2006; Wilson & Johnson, 2000; Robin et al., 
2004). GPx activity was slightly but no significantly higher in hearts from young SHR 
compared to age-matched Wistar rats whereas CAT activity showed a significant increase. An 
opposite result has been recently demonstrated in thoracic aorta of SHR in which a CAT 
activity decreased and a concomitant increase of H2O2 were detected (Ulker et al., 2003). 
Although we did not have experimental evidence, the increase in CAT activity without GPx 
one changes detected in young SHR would indicate that CAT is acting as compensatory 
mechanism. This action could lead to a diminution of H2O2 amount in our preparations and 
could explain the similar TBARS and nitrotyrosine content obtained in young hearts from both 
rat strains. Aged Wistar rats did not exhibit any change in SOD and GPx activities. However, a 
significant diminution of antioxidant enzymes was evident in aged compared to younger SHR. 
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These data are in concordance with those reported by Ito et al. (1995) and opposed to recent 
observations of Csonka et al. (2000). In addition, both rat strains of 19 months old showed 
similar antioxidant enzyme activity.  Therefore, this fact could not explain the differences of 
oxidative damage detected between aged SHR and W rats. These differences could be 
attributed to a significantly higher NOX activity in aged than young SHR in accordance with 
the increased O2–. production with aging, indicating that the compensatory mechanism 
detected in young rats will be abnormal in cardiac tissue from aged SHR. In this regard, it is 
worth noting a previous report that an increase of SOD pharmacology potency by 
lecithinization is able to protect endothelial cells against alterations induced by ROS (Igarashi 
et al., 1992). Another explanation to the differences observed would be related to angiotensin II 
content, which appears involved in the genesis of oxidative stress in another tissue than heart 
in the SHR model (De Godoy & Rattan, 2006). This hypothesis was supported by the recent 
experiments performed in vascular tissue of stroke-prone SHR (Takai et al., 2005; Tanaka et al., 
2005) in which the inhibition of angiotensin receptor or angiotensin-converting enzyme system 
produced a reduction of ROS production. Our results are also consistent with investigations 
showing that cardioprotective treatments are mediated by a restoration or up-regulation of 
antioxidant enzyme (Umemoto et al., 2004; Tanaka et al., 2005). Accumulating evidence has 
suggested that ROS are capable to activate directly intracellular cascades involved in the 
regulation of hypertrophic growth (Takano et al., 2003). It has been reported that Rho family 
proteins, specially Rac1, play critical roles in mechanical stress-induced hypertrophy responses 
and are involved in ROS-mediated activation of MAP kinases (such as p38, ERK1/2) and 
activation of nuclear factor-B.  Moreover, Rac 1 is essential for assembly of plasma membrane 
NOX (Griendling et al., 2000). Thus, in our experimental conditions, sustained hemodynamic 
load in SHR would modulate the action of extracellular stimuli (such as angiotensin II, 
norepinephrine, tumor necrosis factor-, epidermal growth factor) on Rac1 activation leading 
to NOX activation. The increase in O2–. production by NOX would, in presence of a deficient 
endogenous antioxidant system, activate redox-sensitive kinase cascades and transcription 
factors. These actions would produce an induction of immediate early genes, reexpression of 
fetal genes, increased mRNA content and protein synthesis thus leading to the increase in 
myocyte cross-sectional area and fibrosis observed in aged SHR heart. 

5. Conclusion 

This study shows that an increase in O2–. production in NOX dependent way and 
consequently higher oxidative damage appears associated to the aging process and to the 
increase in cardiac hypertrophy detected in hearts of SHR compared to age-matched Wistar 
rats. Thus, oxidative stress would be the cause and/or consequence of hypertrophy 
development in the SHR model. 
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