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1. Introduction 

Several epidemiological and clinical studies confirm an inverse correlation between a diet 

rich in vegetables, fruits, and red wine, in cancer development and chronic diseases such as 

cardiovascular diseases. This is linked to the presence in these aliments of high levels of 

nutrients of vegetal origin called phytonutrients. They are natural phytochemical 

compounds contained in plant food; they are not vitamins or minerals but they have 

beneficial effects on the health, sometimes acting in association with other essential 

nutrients. Phytonutrients are divided in three families: the terpenes, the sulfuric 

compounds, and the polyphenols which are the subject of this chapter. 

Polyphenols are the most important group of phytonutrients. They are not only present in 
fruits and vegetables but also in seeds, spices, herbs and teas, at different concentrations and 
molecular structures in correlation with the aliment involved. The most studied 
polyphenolic compounds for their vascular action are resveratrol, delphinidin, quercetin 
and tannins contained in red wine. Indeed, the red wine is the beverage the most correlated 
to cardiac and vascular protection. It could reduce of 40% the risk of myocardial infarction, 
and of 25% the risk of vascular thrombotic events in brain. 

Elevated content in polyphenols of red wine seems to play a benefic role in the mechanism 

of vascular and cardiac protection, not only by its anti-oxidant but also by its anti-

thrombotic properties. Thus, more recently, research works were focused to study the 

vascular and cardiac effects of non-alcoholic fractions of red wine and have identified the 

oestrogenic receptor-ǂ (ERǂ), as the preferential endothelial target of these molecules. 

First, this chapter is focused on the “French Paradox” history. Then, we have described 

successively the composition and content of these compounds in food and beverages, and 

the epidemiological and fundamental studies showing how red wine polyphenolic 

compounds (RWPC) are able to improve endothelial function and cardiovascular protection. 

Finally, we explain the effects of oestrogens on the cardiovascular system and the 

implication of ERǂ in the beneficial cardiovascular effects of these natural molecules that 

could be used to prevent or treat cardiovascular diseases. 
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2. French paradox history 

For a long time, it was suggested that a high fat intake is associated with an elevated risk of 

mortality for cardiovascular diseases in Anglo-Saxon populations. In contrast, several 

epidemiological studies have revealed a relatively low incidence of coronary heart diseases 

(CHD) in the French population, despite a high dietary intake of saturated fats. This was 

potentially attributable to the consumption of red wine (Renaud et al., 1999). 

One of the first epidemiological studies conducted on 100,000 subjects in 1970 by Doctor 

Arthur Klatsky, a cardiologist of the Oakland Hospital in California, clearly evidenced that 

people following a diet with moderated consumption of red wine (1-3 glasses per day), 

showed a very little risk of death by CHD (Renaud et al., 1999). This was confirmed in 1979 

by Doctor Saint-Léger which evidenced a negative correlation between wine consumption 

and mortality for CHD in men and women (from 55 to 64 years old), in more than 18 

developed countries. Furthermore, Italy and France showed a lower level of mortality by 

myocardial infarction (about 3 or 5 folds less) compared to Anglo-Saxon populations such as 

Irish, North-American, and Scottish (Renaud et al., 1999). On the other hand, it has been 

demonstrated that to drink one glass of wine per day reduced death risk by CHD, but to 

drink more than three glasses of wine per day was associated with an increased death rate 

(Thun et al., 1997). In wine drinkers, the lower all-cause mortality was associated with a 

significant reduction in mortality from CHD, for about 45-48%, and other cardiovascular 

diseases (CVD), for about 39-40% (Renaud et al., 1999). Other studies have also suggested 

that both non-drinkers and heavy-drinkers have a higher risk of cardiovascular mortality 

than those who drink wine moderately (Providencia, 2006). 

Then, numerous correlation studies concerning the strict relation between consumption of 
fat and CHD mortality have been conducted in various countries. In one of the most 
interesting ones, Artaud-Wild and colleagues examined the relation between CHD mortality 
and the intake of foodstuffs and nutrients in 40 different countries. After they have defined a 
cholesterol–saturated fat index (CSI), they studied this correlation in 100,000 men (aged 55 
to 64 years) in all the countries studied. The findings of this epidemiological study 
evidenced that France had a CSI of 24 per 1000 kcal and a CHD mortality rate of 198; 
whereas Finland had a CSI of 26 per 1000 kcal and a CHD mortality rate of 1031 (Ferrières, 
2004). The high consumption of saturated fatty acids suggests that French subjects could be 
exposed to a high risk of CHD (Renaud 1992), but it is in fact not the case considering the 
low rate of CHD mortality observed. Then, much attention has been focused on the possible 
superior protective effect of red wine consumption relative to those of other alcoholic 
beverages. So, the differential effects of wine, beer, and spirits have been examined. 
European research carried out in France and Denmark has shown that wine consumption 
was associated with a decrease of 24 up to 31% of all cause mortality; little to moderate wine 
drinking leads to a lower mortality rate from CVD than having an equivalent consumption 
of beer or spirits (Ferrières, 2004). 

Nevertheless, alcohol consumption, from whatever sources, appears to have a J-shaped 

curve, whereby a modest intake is beneficial and either no intake or excess is harmful. This 

is confirmed by several studies: the Framingham study (Fuchs et al., 1995), the British 

Doctors study (Doll et al., 1994), the Cancer Prevention study of Thun and coworkers, 

conducted on about 490,000 persons (Thun et al., 1997), the Nurse Health study (Emberson 
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et al., 2005), and other epidemiological investigations (Gaziano et al., 2000; Suh et al., 1992). 

It would take too long to report on all the studies dealing with the relations between alcohol 

and CHD. 

The mechanisms involved in the protective role of red wine include anti-platelet, anti-

coagulatory, improved glucose control, and anti-inflammatory effects as shown in MONICA 

(multinational MONItoring of trends and determinants in CArdiovascular disease) study 

(Imhof et al., 2004). The World Health Organization had collected all the results of these 

data, evidencing the protective role of moderated red wine consumption in cardiovascular 

disease development. Despite the high consumption of saturated fatty acids, why the French 

people do not develop a high CHD risk? This is the central question behind the “French 

Paradox” concept. The French epidemiologist Serge Renaud evidenced for the first time this 

“Paradox”, which is defined as the light level of incidence of CVD in people following a diet 

containing a high quantity of saturated fatty acids, but also having a moderated red wine 

consumption (Pechanova et al., 2006, Renaud et al., 1999). 

The results of Criqui and colleagues (Criqui & Ringel, 1994) were found in agreement with 

the French Paradox. In  21 developed countries, subjects in an age range of 35 to 74, without 

differences linked to gender, were studied and assessed at four time periods: 1965, 1970, 

1980, and 1988, respectively. The independent variables chosen were: consumption of wine, 

beer, spirits, animal fats, vegetables, and fruits. Ischemic heart disease and all-cause 

mortality were finally assessed. Wine was the beverage most strongly negatively correlated 

with coronary diseases. Animal fat had a tendency to positive correlation, while fruits were 

negatively correlated. On the light of the numerous epidemiological studies, a protective 

activity of wine against CVD has been widely described, suggesting that moderated 

consumption of wine could reduce the risk of myocardial infarction and the risk of vascular 

thrombosis of brain vessels.  

So many questions arose next. What were the elements that differentiate the wine (especially 

red wine) of other spirits? What were the processes responsible for the beneficial effect of 

wine consumption? What, in wine, promoted this effect?  

3. Differences in polyphenolic compositions in food and beverages 

Polyphenolic compounds are the biggest group of phytochemicals characterized by one or 

more phenolic rings associated with one or more hydroxyl groups, free or implicated in an 

ester, ether or eteroside function (Richter, 1993). This family of substances includes more 

than 8000 phenolic structures currently known, and among them, over 4000 flavonoids have 

been yet identified in plants and the list is constantly growing (Bravo, 1998; Cheynier, 2005; 

Harborne & Williams, 2000). Flavonoids contain a structural backbone C6-C3-C6, 

characterized by two C6 units of phenolic nature; while the non-flavonoids are phenolic 

acids divided in two main types, benzoic acid and cinnamic acid derivatives, based on C1-

C6 and C3-C6 backbones, respectively (Tsao, 2010). The phenolic acids are usually contained 

as free molecules in fruits and vegetables. Phenolic acids could be also found in the bound 

form in grains and seeds (Chandrasekara & Shahidi, 2010). 

Polyphenols are enrolled in numerous physiological functions in vegetal organisms: cell 

development, latent buds, blooming, and tuber formation. These substances are involved in 
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the color of fruits, in particular they play a main role to confer the red color of ripe fruits, 

and in the savor and properties of food (Bahorun, 1997). Polyphenols include yellow, 

orange, red and blue pigments and various compounds implicated also in bitterness and 

astringency of unripe fruits, resulting from interaction of tannins with salivary proteins. 

Moreover, some volatile polyphenols, in particular vanillin and eugenol, are potent 

odorants and are responsible of the characteristic odor of cloves (Cheynier, 2005). 

The content of polyphenolic compounds is particularly elevated in red wine but also in skin 
of red grapes, red fruits, cereals, several vegetables such as red onions, chocolate, tea, and 
coffee with different polyphenolic composition and percentage according to the kind of 
vegetal food or beverage (see Table 1) (Bravo, 1998; Tsao, 2010). Considering the diversity 
and wide distribution of polyphenols, they have been classified by their source of origin, 
biological function, and chemical structure. In plants, the majority of polyphenols exists as 
glycosides associated to sugar units or acylated sugars linked at different positions of the 
polyphenolic skeletons (Tsao, 2010). 

Food Total polyphenols Food Total polyphenols 

(mg/100 g of dry mutter) (mg/100 g of fresh mutter)

Cereals: Vegetables:

  Barley 1200-1500   Onion 100-2025

  Millet 590-1060

Legumes: Fruits:

  Black gram 540-1200   Apple 27-298

  Green gram 440-800   Blackcurrant 140-1200

  Pigeon peas 380-1710   Grapes 50-490

  Raspberry 37-429

Beverages Total polyphenols Beverages Total polyphenols 

(mg/L) (mg/L)

  Orange juice 370-7100   Tea 750-1050

  Red wine 1000-6500   Coffee 1330-3670

  White wine 200-300

 

Table 1. Plant food and beverages with high levels of total polyphenolic compounds (from 
Bravo, 1998). 

Some flavonoids such as the isoflavones are mostly found in plants of the leguminous 

family. Genistein and daidzein are the two main isoflavones found in soybeans and red 

clovers (Tsao et al., 2006). The flavonoid subgroup of the neoflavonoids is rarely present in 

food plants, but the open-ring chalcones are still found in fruits, in particular in apples and 

hops of beers (Tsao et al., 2003; Zhao et al., 2005). In contrast, other flavonoid subgroups 

such as flavones, flavonols, flavanones and flavanonols are most common and ubiquitous in 

the plant kingdom and in particular quercetin and kaempferol (Tsao, 2010). Flavanols or 

flavan-3-ols, also called catechins, are found in many fruits, the skin of grapes, apple and 

www.intechopen.com



French Paradox, Polyphenols and  
Cardiovascular Protection: The Oestrogenic Receptor-α Implication 

 

323 

blueberries (Tsao et al., 2003). Catechin, epicatechin (isomer of catechin with cis 

configuration), and their derivatives, gallocatechins, are the major flavonoids contained in 

tea leaves and cacao beans and thus in chocolate (Si et al., 2006; Prior et al., 2001). 

The red, blue and purple pigments of the majority of flower petals, fruits and vegetables and 
certain varieties of grains, for instance black rice, mainly contain anthocyanidins and in 
particular cyanidin, delphinidin, pelagonidin, and their methylated derivatives (composed 
up to 90% of anthocyanins). The color of these kinds of molecules can change with the pH 
and temperature: they are red in acidic and blue in basic conditions (Tsao, 2010). In grapes 
and apples, anthocyanins are found only in the red varieties (Cheynier, 2005). 

Polyphenols are highly unstable species and, accordingly, their chemical structure can 
change during food and beverage processing and storage, leading to new compounds with 
different properties compared to their precursors (Xu et al., 2011). In particular, total 
catechin contents of fresh fruits can decrease of about 26% up to 58% after home preparation 
or industrial transformations (Cheynier, 2005).  

Wine is a hydro-alcoholic acid solution. Indeed, its major component is water (80-90%) and 

ethanol (10-14%) implicated in the solubilization of polyphenols. The fraction of 

polyphenolic compounds contained in wine is high in red wine and its composition 

depends of the kind of wine. More precisely, generally red wine contains 1.2 gr/L of 

polyphenolic compounds while white wine contains only 0.2 gr/L of these compounds and, 

besides, does not contain the molecules involved in the red color such as the anthocyanidins 

and in particular delphinidin (see Table 2) (Pellegrini et al., 2000; Soleas et al., 1997). 

Interestingly, the level of these compounds in red wine is modified by the fermentation 

process used during wine production. Vinification variations and techniques are known to 

affect the phenolic composition of red wines. The fermentation of grape juice into wine is a  

Compounds White young White aged Red young Red aged

     (mg/L) wine wine wine wine

Total phenols 215 190-290 1300 955-1215

Non flavonoides 175 160-260 235 240-500

Flavonoides 30 25 1060 705

   Catechins 25 15 200 150

   Anthocyanins 0 0 200 20

   Soluble tannins 5 10 550 450

 

Table 2. Polyphenolic compound contents in several types of wine (from Soleas et al., 1997). 

complex microbial reaction, traditionally due to the sequential development of various 

species of yeast and lactic acid bacteria. In the past, wine was produced by natural 

fermentation of grape juice by yeasts originating from grapes and winery equipment 

(Ribereau-Gayon et al., 2000). Nowadays, another kind of fermentation process, the carbonic 

maceration, is more and more used to produce wine. With this method, freshly harvested 

bunches of grapes are allowed to ferment in carbonic anaerobiosis, in an atmosphere 

saturated with carbon dioxide (Navarro et al., 2000). The absence of oxygen is important to 
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reduce the oxidation of polyphenolic compounds, especially the monomeric anthocyanidins 

such as malvidin and delphinidin. The preservation of these molecules by this new carbonic 

process increases their final levels in wine compared to the traditional maceration of grapes 

(Pellegrini et al., 2000). Furthermore, the wine ageing could modify polyphenol composition 

and levels in white and red wines with a time-dependent reduction of catechins and 

anthocyanidins contents (see Table 2) (Pellegrini et al., 2000; Soleas et al., 1997). 

It is interesting to note that, after food or beverage intake, the degradation and absorption of 

polyphenols within the gastrointestinal tract depend on the nature of the polyphenolic 

compound but also of the intestinal microflora, with subsequent fermentative effect on other 

dietary components. Thus, these molecules are modified by intestinal bacteria but they can 

influence in return microflora and its fermentative capacity (Bravo, 1998). Several recent 

studies are focused in how processing and beverage composition might influence phenolic 

profiles and bioavailability of an individual polyphenol. Specifically, they showed the 

impact of beverage formulations and the influence of digestion on stability, bioavailability, 

and metabolism of bioactive polyphenolic compounds from food and beverages. For 

example, the co-formulation with ascorbic acid and other phytochemicals may improve 

absorption of these health-promoting phytochemicals (Ferruzzi, 2010). Thus, it is critical to 

develop beverage products designed to deliver specific health benefits. 

4. Beneficial effects of RWPC in cardiac and vascular functions 

Evidences from different experimental studies has suggested the presence of molecules with 

anti-oxidant properties in red wine, such as tannins and other flavonoids. These molecules 

could be key factors in the protective effects observed (Vidavalur et al., 2006). Red wine, 

might provide, through the polyphenols (non-flavonoids and flavonoids), an anti-oxidant 

role, leading to additional protection mechanisms in coronary arteries (Liu et al., 2007). 

Thus, RWPC are able to decrease oxidative stress, enhance cholesterol efflux from the 

vascular wall, and inhibit lipoprotein oxidation. These components may also increase nitric 

oxide (NO) bioavailability, thereby antagonizing the development of endothelial 

dysfunction. Thus, RWPC are able to modify several factors involved in the development of 

CDV by a direct action on vascular cells and in particular in endothelium, thus playing a 

preventive role in the development of atherosclerosis, hypertension and myocardial 

infarction. One of the most studied molecules, the resveratrol, found in grapes and wine in 

significant amounts, is implicated in this beneficial action because of its ability to act as an 

anti-oxidant and an inhibitor of platelet aggregation (Kopp, 1998; Providencia, 2006). 

On the light of several recent major studies, the consumption of RWPC reduces the 

incidence of CVD probably by their ability to change many factors and intermediate 

markers implicated in these diseases. A beneficial association between consumption of food 

rich in polyphenols, especially flavonoids, and other chronic diseases was also investigated. 

People with very low consumption of flavonoids showed a higher risk to develop chronic 

and degenerative diseases including cardiovascular disorders, diabetes, obesity and 

neurodegenerative disorders compared to people with a diet rich in polyphenols (Mojzisova 

and Kuchta, 2001). Thus, it is important to better identify factors that may affect the 

bioavailability of specific phenolic components from food and beverages and to better 

understand how these molecules are able to act positively on organism. 
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4.1 Role on nitric oxide production 

RWPC are able to improve NO production and vascular endothelium-dependent relaxation. 
This is possible through their action to increase endothelial nitric oxide synthase (eNOS) 
expression and activation in vitro on endothelial cells and ex vivo on rodent vessels. 

One of the earliest works on this purpose was conducted in 1993 by Fitzpatrick and 
coworkers. They found that extracts from grapes and wine containing polyphenols were 
able to induce an endothelial-dependent vasorelaxation, probably by NO production and 
elevated accumulation of guanosine 3’,5’-cyclic monophosphate (cGMP) (Fitzpatrick et al., 
1993). The mechanisms and the identification of the molecules involved in these vascular 
effects were still unknown. These findings were confirmed later by another study, in which 
it was evidenced an endothelial and NO-dependent relaxation induced by a non-alcoholic 
red wine extract, RWPC, and leucocyanidol administrated directly at low concentrations 
(from 10-4 to 10-2 g/L) ex vivo on noradrenaline pre-contracted rat aortic rings 
(Andiambeleson et al., 1997). This was associated with an enhanced NO generation and a 
seven-fold increase in cGMP accumulation. A non-relevant relaxant effect was found using 
the structurally closely related polyphenol, catechin, at the same concentrations on the same 
vessels. To better determine which group(s) of polyphenols were able to cause endothelial-
dependent vasorelaxation, the same team separated RWPC by chromatography in 10 
fractions. These fractions were tested separately for their capacity to induce the vascular 
relaxation on rat aortic rings with and without endothelium. In this study, it was shown that 
fractions containing high polymeric condensed tannins produced a moderate 
vasorelaxation, at relatively high concentrations (10-2 to 10-1 g/L) and flavan-3-ol, 
(+)-epicathtechin, also failed to produce endothelium-dependent vasorelaxation. In contrast, 
oligomeric condensed tannins and fractions containing anthocyanins, and in particular 
delphinidin, displayed strong vasorelaxant properties (maximal relaxation in the range of 
59–77%) comparable to the original RWPC mixture (Andriambeloson et al., 1998). 

The same endothelial-dependent relaxation was also found in small mesenteric arteries, but 
it was due to both NO and endothelium-derived hyperpolarizing factor (EDHF) and it was 
absent in vessels without endothelium. The NO component of the relaxation was linked to 
eNOS activity and absent when the NOS inhibitor, the NG-nitro-L-arginine methyl ester (L-
NAME), was used, while the EDHF component was abolished by partial depolarization 
with KCl. Thus, NO and EDHF are both required to promote endothelium-dependent 
relaxation produced by RWPC in mesenteric resistance arteries (Duarte et al. 2004). 

Several studies conducted in vitro confirmed these results. In bovine aortic endothelial cells 
(BAECs) treated with RWPC (10-2 g/L), it was found an increased Ca2+-dependent eNOS 
activation and a subsequent increased NO production. These required the presence of 
extracellular Ca2+, although polyphenolic compounds were able to mobilize Ca2+ from 
intracellular stores and were also able to activate phospholipase C (PLC) and tyrosine kinase 
(TK) pathways. ProvinolsTM, which contain similar types of polyphenols compared to the 
RWPC used by Andriambeloson and coworkers, and delphinidin displayed differences in 
the process leading to this increase in endothelial intracellular Ca2+, thus illustrating 
multiple cellular targets of natural dietary polyphenolic compounds (Martin et al., 2002).  
This effect of RWPC in this cell model is associated with an increased superoxide ion (O2-) 
production in order to promote Ca2+ signaling (Duarte et al., 2004). Most recently, it was 
found that resveratrol, a stilbenoid contained in wine, used at nanomolar concentrations, 
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rapidly activated extracellular-signal-regulated kinase (ERK)1/2 in BAECs and, in turn, 
activated eNOS (Klinge et al., 2005). The same effect of resveratrol was confirmed later in 
another model of endothelial cells, the human umbilical endothelial cells (HUVECs). The 
implication of ERǂ in the eNOS-pathway activation by resveratrol was also evoked (Klinge 
et al., 2008). 

Interestingly, beneficial effects on hemodynamic parameters and on endothelial function 
were confirmed in vivo after a short-term oral administration of RWPC in normotensive rats 
at the dose of 20 mg/kg for 7 days. Indeed, these rats, after only 4 days of treatment, 
showed a significant decrease in blood pressure (129 ± 4 mmHg versus 141 ± 2 mmHg for 
control non-treated rats). This effect was associated, ex vivo, with an increased endothelium-
dependent relaxation to acetylcholine in aortic rings, that was related to the enhanced 
endothelial NO activity. Nevertheless, RWPC induced at the same time gene expression of 
inducible NOS (iNOS) and inducible cyclooxigenase (COX-2), with subsequent endothelial 
thromboxane A2 release in the arterial wall, maintaining unchanged agonist-induced 
contractility (Diebolt et al., 2001). The in vivo effects of ProvinolsTM (40 mg/kg per day) on 
hemodynamic and functional cardiovascular changes were also investigated during the 
inhibition of NO synthesis by L-NAME (40 mg/kg per day for 4 weeks) in rats. This model 
of hypertension evidenced that RWPC partially prevent L-NAME-induced hypertension, 
cardiovascular remodeling, and vascular dysfunction or accelerate the decrease of systolic 
blood pressure after L-NAME administration. These beneficial effects were mediated by the 
increased NO-synthase activity and the oxidative stress prevention (Bernatova et al., 2002; 
Pechanova et al., 2004). Nevertheless, most recently, the anti-hypertensive effects of RWPC, 
orally administered for 5 weeks at the dose of 40 mg/kg by gavage, was confirmed in 
female spontaneously hypertensive rats (SHR). The authors suggested that a chronic 
treatment with RWPC reduced hypertension and vascular dysfunction in this model of 
hypertension, rather through reduction in vascular oxidative stress (Lopez-Sepulveda et al., 
2008). This findings revealed a major preventive role of these substances in cardiovascular 
complications linked to hypertension. 

Polyphenol vascular activity in human vessels after food or beverage intake was confirmed 
by several studies that detected these molecules in human plasma at individual levels in the 
range of 0.5 to 1.6 µmol/L, comparable to the concentration required to induce 50% of the 
maximal relaxation, comprised between 1 and 10 µmol/L of active fractions (Paganga and 
Rice-Evans, 1997). Polyphenols detected in human plasma are in the range of 2.5 µg/ml after 
a 100 ml red wine intake (Duthie et al., 1998). Most interestingly, the vasorelaxant effect of 
polyphenols from red wine was confirmed also in men in which NO and normalized flow-
mediated dilation were measured before and 30, 60, and 120 minutes after red wine 
consumption (Boban et al., 2006; Papamichael et al., 2004). Moreover, RWPC are not only 
able to improve NO production, for their anti-oxidant and anti-inflammatory properties but 
also increase the NO bioavailability in the vascular wall, by decreasing its transformation in 
peroxynitrite induced by O2- during oxidative stress. 

Altogether, these findings suggest a possible beneficial effect of a diet rich in these 
vasoactive polyphenolic compounds to prevent hypertension as the effective concentrations 
of these molecules can be reached in human plasma and they might act on the endothelium 
in vivo. The RWPC responsible of this effect (resveratrol, delphinidin and tannins) could be 
used for hypertension treatment. 
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4.2 Protective role in cardiac function and ischemic diseases 

RWPC, administrated in a preventive purpose way, are able to reduce cardiac or cerebral 
ischemic injuries in rat models of myocardial infarct and stroke, respectively. Left ventricular  
hypertrophy, myocardial fibrosis and vascular remodeling were investigated in rats during 
chronic inhibition of NOS activity by L-NAME. The in vivo treatment of rats with ProvinolsTM 
(40 mg/kg per day) reduced not only the increase in blood pressure caused by L-NAME 
treatment, but also protein synthesis in the heart and aorta caused by the chronic inhibition of 
NO synthesis, finally reducing myocardial fibrosis. These effects were associated with an 
increase of NOS activity, a moderate enhancement of eNOS expression and a reduction of 
oxidative stress in the left ventricule and aorta (Pechanova et al. 2004). 

The protective cardiac effect of polyphenols was confirmed by another study, conducted in 
rats and observing, ex vivo, the effects of short-term oral administration of RWPC (20 mg/kg 
per day for one week) on cardiac responsiveness and ischaemia-reperfusion injury. The 
involvement of NO in the cardiac effects of RWPC was evaluated using L-NAME (2 mg/kg 
per day for one week), a dose which did not affect blood pressure, in a group of rats 
previously treated with polyphenols. Heart reactivity was studied in perfused isolated 
hearts by the Langendorff method. The hearts harvested from RWPC-treated rats showed a 
lower basal pressure, a greater heart rate and decreased inotropic responses to either 
isoprenaline or carbachol, the agonists of beta-adrenoceptors or muscarinic receptors, 
respectively. RWPC treatment did not modify cardiac expression of eNOS or Cu/Zn 
superoxide dismutase, a protein involved in oxidative stress protection. However, it was 
found increased nitrite levels in the coronary effluent from hearts harvested from RWPC-
treated rats, suggesting an increased NO production. Most interestingly, in ischaemia-
reperfusion protocols, RWPC treatment reduced infarct size, oxidative stress, and the 
myocardial content of end products resulting from lipid peroxidation, malondialdehyde and 
4-hydroxynonenal, without affecting post-ischaemic contractile dysfunction. All these 
observed effects were prevented by L-NAME treatment, suggesting the involvement of NO 
in this protective role of RWPC on heart. In conclusion, these data showed that short-term 
treatment with RWPC could prevent the heart injury caused by cardiac ischemia through 
oxidative stress decrease and  NO pathway improvement (Ralay-Ranaivo et al., 2004). 

The presence of melatonin in red wine was demonstrated in most recent studies. Lamont 
and co-workers investigated the cardio-protective role of both melatonin and resveratrol. 
These molecules improve heart protection via the activation of the newly discovered 
survivor activating factor enhancement (SAFE) pathway. This pro-survival signaling 
pathway involves the activation of pro-inflammatory molecules such as tumor necrosis 
factor alpha (TNFǂ) and interleukin 6 (IL6) and the signal transducer and activator of 
transcription 3 (STAT3). They realized ex vivo studies in isolated perfused hearts from either 
wild type or total TNFǂ receptor 2-knockout or cardiomyocyte-specific STAT3-deficient 
mice. The protocols of heart injury by ischemia-reperfusion showed that both resveratrol 
and melatonin, at concentrations found in red wine, significantly reduced infarct size in 
wild-type mice (25% ± 3% versus 69 ± 3% in the control non treated mice) but failed to 
protect hearts in both knockout mice. Perfusion with either melatonin or resveratrol 
increased STAT3 phosphorylation prior to ischemia by 79% and 50% versus the control, 
respectively. These findings suggest that both melatonin and resveratrol contained in red 
wine, protect heart via the SAFE pathway, in an experimental model of myocardial 
infarction (Lamont et al., 2011). 
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Concerning cerebral ischemia, Ritz and co-workers investigated the beneficial effects of  
chronic or acute treatment of RWPC in rats submitted to an experimental model of stroke. 
Rats were treated for the chronic treatment with RWPC (30 mg/kg per day) dissolved in 
drinking water for one week, before being subjected surgically to a transient middle cerebral 
artery occlusion followed by reperfusion. The volume of the ischemic lesions was assessed 
24 h after reperfusion and a proteomic analysis of brain tissues was performed, to study the 
effects of RWPC on expression of proteins involved in cerebral stroke injury. Treatment with 
RWPC partially or completely prevented the increased levels of excitatory amino acids 
(aspartate, glutamate and taurine) that characterized the response to ischemia in control 
rats, significantly reduced brain infarct volumes, and enhanced residual cerebral blood flow 
after brain ischemia. This was associated to lower basal concentrations of energy metabolites 
including glucose, lactate, and free radical scavengers such as ascorbate, in the brain 
parenchyma, compared with untreated rats. No difference in uric acid levels was found. 
These effects resulted in arterial vasodilatation, as the internal diameters of several arteries 
were significantly enlarged after RWPC treatment. Proteomic analysis revealed that RWPC 
could be able to modulate in vivo the expression of proteins involved in maintenance of 
neuronal caliber and axon formation, in protection against oxidative stress, and in energy 
metabolism (Ritz et al., 2008a). These data were confirmed in the second work of the same 
team, about the protective effects of an acute treatment with RWPC (a bolus of 0.1 mg/kg), 
realized by an intracerebral microdialysis started at the beginning of the stroke. In this 
study, RWPC induced increased residual blood flow after 10 minutes of the reperfusion 
following ischemia and reduced size of the cerebral ischemic infarct in both cortex and 
striatum. The acute treatment of rats with RWPC dramatically decreased the extracellular 
concentrations of excitatory amino acids and, concomitantly, increased the levels of free 
radical scavengers such as uric and ascorbic acids (Ritz et al., 2008b). Altogether these 
findings provide an experimental evidence of the advantage to use RWPC for the 
prevention, in patients with high risk to developing ischemic events, or in the acute 
treatment of patients during stroke. 

Angiogenesis is a main process involved in the repair of ischemic injury. The role of RWPC 
in angiogenesis was also investigated and several studies evidenced that these molecules are 
able to modulate, at the molecular and cellular levels, several actors of the pivotal pathways 
involved in vascular cell proliferation and migration. Previous studies had demonstrated an 
anti-angiogenic role of polyphenols both in vitro and in vivo (Fotsis et al., 1998; Igura et al., 
2001). In contrast, most recently, Baron-Menguy and co-workers evidenced a dose-
dependent effect on angiogenesis of RWPC, and in particular of delphinidin, in a model of 
post-ischaemic neovascularization in rats submitted to femoral artery ligature. Indeed, high 
doses of RWPC (i.e. 7 glasses of red wine) reduced arterial, arteriolar, and capillary densities 
and blood flow, inhibited the phosphoinositol 3-kinase (PI3-K)/Akt/eNOS pathway, 
decreased vascular endothelial growth factor (VEGF) expression, and reduced 
metalloproteinase-2 (MMP-2) activation. In contrast, low doses of RWPC (i.e. 1/10th glass of 
red wine) increased neovascularisation in ischemic legs compared to control level in 
association with an increased blood flow. The angiogenic effect was linked to the 
overexpression of PI3-K/Akt/eNOS pathway and to increased VEGF production, without 
effect on MMP-2 activation. These anti- or pro-angiogenic effects of RWPC were reproduced 
when they used delphinidin, administrated alone at low or high doses. This dual dose-
dependent effect of polyphenols in angiogenesis is particular interesting because of its 
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potential applications both in the therapy of diseases requiring the block of angiogenesis 
such as in some cancers, and in the treatment of post-ischemic injuries to improve 
angiogenesis and ameliorate reperfusion of tissues, at high  and low doses, respectively. 

4.3 Role in metabolic diseases 

It has been extensively evidenced the strict correlation between metabolic dysfunctions and 
the development of cardiovascular diseases. Endothelial dysfunction, an independent 
predictor of cardiovascular events, has been consistently associated with obesity and the 
metabolic syndrome in a complex interplay with insulin resistance. Deficiency of eNOS is 
considered  as the primary defect that links insulin resistance and endothelial dysfunction 
(Cersosimo and Defronzo, 2006; Defronzo, 2006; Fornoni and Raij, 2005). Furthermore, 
several epidemiological studies have shown that patients affected by metabolic diseases are 
often also affected by hypertension and other cardio-vascular complications such as 
atherosclerotic plaque formation and increased levels of pro-thrombotic factors, associated 
to an elevated risk of mortality by vascular thrombotic events (Kopelman, 2000). 

More recently, we have suggested a protective role of RWPC in metabolic syndrome 
(Agouni et al., 2009). In our study, Zuker fatty (ZF) rats (Fa/Fa), an experimental model of 
metabolic syndrome, or their “lean” littermates, received normal diet or a diet 
supplemented with ProvinolsTM for 8 weeks in food. This treatment significantly reduced 
the plasmatic levels of metabolic products such as glucose, fructosamine, total and LDL-
cholesterol, and triglycerides, and finally improved cardiac and endothelial vascular 
functions. Regarding vascular function, ProvinolsTM corrected endothelial dysfunction in 
aortas and mesenteric arteries from ZF rats by improving endothelium-dependent 
relaxation in response to acetylcholine. This beneficial effect in endothelium was associated 
to an enhanced NO bioavailability due to increased NO production and eNOS activity, and 
reduced oxidative stress and O2- release. The effect on eNOS activity was associated to a 
decreased expression of caveolin-1, a protein known to inactivate eNOS by cell membrane 
sequestration, while the reduction of free radical production was linked to a decrease of 
Nox-1 (NADPH oxidase membrane sub-unit) expression (Agouni et al., 2009). In agreement 
with our work, this protective effect of RWPC in plasmatic metabolic parameters and 
oxidative stress linked to metabolic disorders was confirmed recently in hamsters submitted 
to high-fat diet (Suh et al., 2011). 

Because of these interesting results, polyphenols might be good candidates for prevention 
and treatment of metabolic syndrome and cardiovascular risk reduction. This was 
previously suggested by another study of Napoli and coworkers who have shown that red 
wine consumption improved insulin resistance in type 2 diabetic patients (Napoli et al., 
2005). Thus, RWPC could represent a new class of medicinal products against obesity-
associated diseases. 

5. The oestrogenic receptors in cardiovascular protection 

Several epidemiological studies suggested a protective effect of oestrogens in 
premenopausal women in vascular and metabolic diseases development. These numerous 
studies showed that the incidence of hypertension and other cardiovascular diseases is 
significantly lower in premenopausal females compared to males and that, after the onset of 
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menopause, the incidence increases dramatically, eventually approaching the level observed 
in age-matched males (Mendelsohn and Karas, 1999). This effect has been attributed to the 
fall in circulating oestrogen levels, contributing to a menopause-related increase in blood 
pressure, and thus to a greater predisposition to cardiovascular disease. Consistent with 
this, oestrogen replacement therapy has been reported to reduce the risk of cardiovascular 
disease, and in particular of hypertension and atherosclerosis, in postmenopausal women to 
that observed in premenopausal women (Barton et al., 2007; Mendelsohn and Karas, 1999). 
Oestrogens have been shown to have direct vasodilatory and anti-atherosclerotic effects via 
the oestrogen receptors expressed on human and rat arteries (Haas et al., 2007; Shaw et al., 
2001). The mechanisms involved in the protective role played by these hormones is 
associated to vascular inflammation reduction (Nilsson, 2007), increased endothelial NO 
production (Chen et al., 1999) and the prevention of smooth muscle vascular cell 
proliferation (Pareet al., 2002). But the ability of oestrogens to elicit effects on autonomic 
functions involved in cardiac control appears also to constitute a major part of its beneficial 
effects (Spary et al., 2009). Despite wealth of evidences for its central autonomic role, the 
sites and mechanisms of oestrogenic action on the neural pathways of cardiovascular 
regulation are still poorly understood. 

Oestrogens act on specific receptors which are transcription factors, the nuclear oestrogenic 

receptors (ERs). Two ERs have been described, ERǂ and ERǃ, with several structurally and 

functionally conserved domains, and involved in genomic signaling mechanism or 

associated to plasma membrane, influencing cytosolic non-genomic signaling. ERǂ was first 

characterized in mid-1980 and the cloning of ERǃ following in late 1995 (Kuiper et al., 1996). 

In addition, as a result of alternative splicing of the eight exons encoding rat ERǃ, five 

different isoforms of this ER exist (ǃ1, ǃ2, ǃ1δ3, ǃ2δ3 and ǃ1δ4) with a not yet completely 

determined role (Maruyama et al., 1998; Petersen et al., 1998; Price et al., 2000). It has been 

suggested that ERǃ may modulate ERǂ gene transcription, acting in some conditions by 

opposite actions to ERǂ (Lindberg et al., 2003; Maruyama et al., 1998; Zhao et al., 2008). 

In the absence of oestrogens, the receptors are conserved in an inactive state in a complex 

with one of the several chaperone molecules, such as heat shock protein 90 (Beato and Klug, 

2000). Following binding to oestrogens, the receptor undergoes a conformational change, 

activating an intracellular cascade leading to the ER release from the chaperone. ER can 

forms homo- or hetero-dimers that interact with target gene promoters, inducing the up- or 

the down-regulation of several genes (Figure 1) (Hall et al, 2001). The ER subtypes have also 

been shown to interact differently with a range of other transcription factors, including 

activating protein-1 (Paech et al., 1997; Webb et al., 1999; Zhao et al., 2008). This genomic 

response usually occurs within hours after oestrogen exposure and is believed to be the 

result of a direct action, not involving the second messenger signaling pathways. In contrast, 

the non-genomic oestrogenic signaling is also possible but less well understood. It is 

associated to the cytosolic pathways with classical second messengers and occurs 

considerably faster than the genomic signaling (Kang et al., 2010). It is possible that these 

rapid non-genomic events are mediated by cytoplasmic, rather than nuclear ERǂ and ERǃ, 

suggesting the involvement of another plasma membrane receptor, a particular G protein-

coupled receptor (GPCR) which is not related to ERǂ or ERǃ. To confirm this hypothesis 

more recently, another membrane-bound ER was emerged. This GPCR, the G protein 

coupled oestrogen receptor 1 (GPER1), also called GPR30, is able to bind with a high affinity 
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to 17ǃ-estradiol (E2), mediating oestrogenic signals in cardiovascular and metabolic 

regulations (Nilsson et al., 2011). GPER1 is expressed in different vascular segments and in 

the heart of several species. In rats, the mRNA of this receptor was found both in endothelial 

and in smooth muscle cells; but in mice and humans, it seems to be expressed primarily in 

endothelial cells of small systemic arteries, suggesting a direct role of GPER1 in endothelial 

function regulation, while the effects of its activation in vascular smooth muscle cells and 

vascular tone are indirect, via the endothelium (Nilsson et al., 2011). GPER1 is located to the 

endoplasmic reticulum of vascular cells mediating the rapid oestrogen signaling (Revankar 

et al., 2005). 

The role of GPER1 activation by its specific agonist, G-1, on vascular tone was 

investigated in rat vessels. Several studies showed the involvement of this receptor in 

vascular relaxation by reducing angiotensin II (AngII) and/or endothelin-1 (ET-1)-

induced vascular contractions. This was not influenced by the endogenous oestrogenic 

levels and it was gender independent (Haas et al, 2009, Lindsey et al., 2009; Meyer et al., 

2010). This effect was not found in serotonin-dependent vascular contraction, suggesting a 

direct effect of GPER1 activation on the renin-angiotensin system, probably independent 

of NO production (Nillson et al, 2011). In contrast, another study suggests that GPER1 

causes arterial relaxation via an endothelial and a NO-dependent mechanism (Broughton 

et al., 2010). Thus, the involvement of endothelial NO in this vascular relaxation cannot be 

excluded. Moreover, an hypotensive effect of GPER1 activation was observed in 

ovariectomized animals, in agreement with the hypertensive phenotype of GPER1 knock-

out mice (Martensson et al., 2009). Furthermore, GPER1 activation could play a protective 

role in atherosclerosis and/or excessive angiogenesis during cancer, reducing vascular 

smooth muscle or endothelial cell proliferation, respectively (Haas et al., 2009; Holm et al., 

2011). 

If the non-genomic effects of E2 are realized through GPER1, ERǂ is the receptor 

implicated in the anti-atherogenic effects of oestrogens. Indeed, the ERǂ, when stimulated 

by E2, induces endothelial cell proliferation, vascular re-endothelialization, endothelial 

NO production, vascular inflammation attenuation, and reduction of smooth muscle cell 

proliferation (Brouchet et al., 2001; Pare et al., 2002; Vegeto et al., 2003). Nevertheless, 

studies conducted on vessels harvested from ERǂ or ERǃ knockout mice showed that both 

these ERs are responsible for E2-dependent vascular relaxation (Guo et al., 2005). It was 

previously evidenced the association of a subpopulation of ERǂ with the endothelial 

membrane and the complex structure of caveolae (Chambliss and Shaul, 2002). The 

binding of E2 with ERǂ in caveolae leads to the MAPK/Akt pathway activation, resulting 

in eNOS phosphorylation and activation, and subsequent increased NO production 

(Figure 1) (Chambliss and Shaul, 2002). This beneficial effect on vascular function played 

by oestrogens was confirmed by epidemiological studies, in which the presence of 

endogenous oestrogens and their effect on cardiovascular homeostasis appear to be 

closely related to the degree of atherosclerosis progression throughout a woman's life 

(Clarkson 2007). Experimental studies suggest that in the mouse, ERǂ appears to be 

largely responsible for the protective effects of oestrogens against atherosclerotic vascular 

disease (Hodgin et al., 2001). In turn, according to some studies, the abundance of both ER 

subtypes, ERǂ and ERǃ, in human aorta, decreases with the progression of 
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atherosclerosis, aggravating the endothelial dysfunction of atherosclerotic vessels by the 

reduction of oestrogenic-dependent eNOS activation and NO release (Losordo et al., 1994; 

Nakamura et al., 2004). 

On the light of the effect of E2 via ERǂ in eNOS pathway activation and NO production, a 

vascular role of oestrogens, similar to that evidenced for RWPC on endothelium, was 

evoked. Some researchers and our studies started to investigate if RWPC or one of the 

polyphenolic compounds contained in red wine, resveratrol or delphinidin, could play a 

role of phytoestrogens, interacting at high affinity with ERs and inducing their beneficial 

vascular effects via these endothelial receptors. 

6. Oestrogenic receptor alpha and polyphenols 

After the description of these encouraging findings, nobody exactly identified the pivotal 

compound responsible of RWPC vascular effects and, most important, how this molecule 

was able to interact with the vascular endothelium, thus improving endothelial function. 

It was previously described that resveratrol is able to enhance eNOS expression and 

activity, but the mechanisms by which this polyphenol induced these effects were still not 

well known (Wallerath et al., 2002). In a study conducted in vitro in BAECs, nanomolar 

concentrations of resveratrol induced ERK1/2 signaling activation, similar to that of E2, 

since this was dependent of ER activity triggering eNOS activation and NO release 

(Klinge et al., 2005). The same team, in another study in vitro (in HUVECs), better 

determined the mechanisms by which resveratrol was able to improve eNOS activation 

pathway. The authors of this work demonstrated for the first time that resveratrol 

increased interaction between ERǂ, Caveoline-1 (Cav-1) and proteins involved in eNOS 

activation such as Src, by a Gǂ-protein-coupled mechanism. A main role for ERǂ in the 

NO production induced by resveratrol in endothelial cells was suggested because they 

observed attenuated effects of resveratrol in cells in which ERǂ was depleted using a 

siRNA. Resveratrol and E2 did not stimulate ERǃ/Cav-1 interaction (Klinge et al., 2008). 

Moreover ERǂ is 4.5 times more expressed then ERǃ in HUVECs and no effect of a siRNA 

directed versus ERǃ was found on resveratrol action in endothelium. This study implies 

that dietary intake of resveratrol might offer possible vascular protective effects via the 

activation of ERǂ in vivo. 

In contrast, experiments conducted in rats did not evidence a role of oestrogen receptors 

in aorta endothelium-dependent relaxation to RWPC (Kane et al., 2009). The authors of 

this work showed that RWPC caused redox-sensitive PI3-K/Akt-dependent eNOS 

activation and NO-mediated relaxation in rat aortas ex vivo. This vascular effect was more 

pronounced in the aorta of female than male rats, but it was due most likely to increased 

expression levels of eNOS rather than activation of oestrogen receptors, because the 

inhibition of ER by the oestrogen antagonist, ICI 182780, did not modify the ability of 

RWPC to induce their vascular effects (Kane et al., 2009). Interestingly, another study 

conducted in female SHR rats evidenced that the chronic treatment with RWPC of 

ovariectomized rats induced reduction of arterial pressure and vascular dysfunction 

characterizing this hypertensive model in a manner independent of the ovarian function 

(Lopez-Sepulveda et al., 2008). 
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Fig. 1. ERǂ activation by polyphenols or oestrogens induces eNOS increased activity and 
NO production. Signaling pathway by which delphinidin or E2 interacting with ERǂ, 
activates rapidly eNOS and increases NO production in endothelial cells by PI3-K/Akt or 
via Src/ERK1/2 pathways. ERǂ is associated in endothelial cells caveolae with Cav-1 which 
links to the membrane the inactive form of eNOS. When ERǂ binds E2 or polyphenols, 
eNOS is phosphorylated in its active site, thus improving NO release. The same pathways 
implicated in delphinidin-ERǂ activation were proposed by Klinge and coworkers for 
endothelial cell stimulation by resveratrol at nanomolar concentrations (Klinge et al., 2008). 
NO is able to activate guanilyl-cyclase (GLc) in smooth muscle cells inducing increased levels 
of cyclic-GMP (GMPc) with subsequent protein-kinase G activation (PKG), reducing 
intracellular calcium and inducing vascular relaxation. On the right of the figure, is 
represented the homo-dimer formation and nuclear translocation of E2-activated ERǂ, 
inducing the genomic response. 

Conversely, we investigated the hypothesis that ERǂ is one of the key targets involved in 

vivo in the vasculoprotective effects of RWPC (and in particular of delphinidin) interacting 

with the endothelium. Thus, the ERǂ implication in the French Paradox was first tested 

using ERǂ-deficient mice (Chalopin et al., 2010). We have shown the necessity of this 

oestrogenic receptor in the ProvinolsTM- or delphinidin-induced endothelial-dependent 

relaxation, eNOS activation, and NO release. Indeed, no effect of these products on 

endothelium were observed in vessels harvested from ERǂ-deficient mice or in wild-type 

vessels without endothelium. The activation of ERǂ by RWPC or delphinidin alone induced 

the activation of the same pathway, evidenced by the previously described in vitro work of 

Klinge and colleagues with resveratrol. Indeed, E2 and the selective agonist of ERǂ, 1,3,5-

tris(4-hydroxyphenyl)-4-propyl-1H-pyrazole (PPT), as well as Provinols™ and delphinidin, 

are able to activate molecular pathways involving Src, ERK1/2, eNOS and caveolin-1 

phosphorylations (see Figure 1). The mechanism involved required ERǂ activation because 
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of the absence of effect in vessels or cells from ERǂ-deficient mice, and after silencing, in 

wild-type endothelial cells, ERǂ activity or expression either with a pharmacological 

inhibitor (fulvestran) or with a siRNA, respectively. Moreover, using a binding assay and a 

docking study, we have shown that delphinidin fits on ERǂ's activation site, exerting 73% of 

specific inhibition against E2 on ERǂ, in the binding assay. Most importantly, ERǂ is also 

implicated in the in vivo effects observed in mice treated with Provinols™ administrated in 

the food, with respect to the improvement in endothelial function given by the concomitant 

increase in NO and decrease in O2− release in vessels. Indeed, these vascular and anti-

oxidant effects of the in vivo treatment with ProvinolsTM were not found in ERǂ-deficient 

mice (Chalopin et al., 2010). Then, we have demonstrated for the first time the physiological 

relevance of ERǂ in the in vivo vascular effects of RWPC. 

It is important to note that ERǂ, ERǃ, and GPER-1 are all expressed in the arterial wall of 
both women and men (Meyer et al., 2006; Haas et al., 2007), and that E2 has potent dilator 
effects on vascular tone of human coronary and internal mammary arteries harvested from 
patients without gender differences (Haas et al., 2007; Mugge et al., 1993). These findings 
suggest a potential function for oestrogen receptor also in male cardiovascular system. Thus, 
RWPC could have the same protective vascular properties in both women and men through 
ERǂ. In line with the fact that ERǂ mediates atheroprotective effects, in a man with a 
disruptive mutation in the ERǂ gene, it was noted an impaired vascular function and a 
premature coronary artery disease (Sudhir et al., 1997). Thus, not only the female but also 
the male cardiovascular system appears to be an important target for oestrogens affecting 
vascular disease development (Haas et al., 2007; Meyer et al., 2008). Nevertheless, studies in 
humans comparing oestrogen plasma concentrations and the progression of cardiovascular 
diseases have revealed conflicting results (Meyer et al., 2008). Actually, there is doubt about 
the interest to treat male patients with oestrogen receptor agonists to interfere with 
atherosclerosis progression. 

Finally, further works are needed to confirm if ERs are implicated in all the vascular and 
metabolic effects of RWPC or if ERǂ activation by RWPC induces only the eNOS pathway 
improvement. For instance, the role of ERs activation by RWPC in inhibition of endothelial 
cell proliferation and cell cycle progression or in angiogenesis has not been investigated yet. 

7. Conclusion 

The first epidemiological studies played a main role in the demonstration of a French 
Paradox existence, leading to the start of about forty years of scientific findings concerning 
the protective properties of polyphenols and, more particularly, those contained in red 
wine. Currently, the numerous data obtained in vitro, ex vivo, and in vivo, on their beneficial 
effects in heart and vessels, validly suggest a therapeutic potential for RWPC. 

The last findings have identified in delphinidin and resveratrol some of the key molecules 

involved in the vascular effects of RWPC via ERǂ activation, adding a new piece to the 

puzzle explaining the French Paradox (Chalopin et al., 2010; Klinge et al., 2008). Indeed, 

despite a previous study (Kane et al., 2008), which evidenced no implication of ERs in 

RWPC-dependent vascular relaxation in rats, the last studies clearly showed that the 

beneficial endothelial effects of RWPC require ERǂ activation. This is followed by a rapid 

response to the polyphenolic stimuli in endothelial cells, involving the pathways associated 
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to eNOS activation and subsequent NO release. Furthermore, the phytoestrogenic role of 

RWPC, and especially of delphinidin, was confirmed by binding experiences which found 

high affinity of delphinidin against ERǂ compared to its natural agonist E2 (Chalopin et al., 

2010). Similar mechanisms and a phytoestrogenic role on ERǂ activation were suggested 

also for resveratrol on endothelial cells by Klinge and coworkers (Klinge et al., 2005, 2008). 

In this chapter, we have focalized our attention on the red wine because it contains both, 
delphinidin and resveratrol, the main vasoactive compounds contained in non-alcoholic red 
wine extract. In particular, we wanted to explain the main mechanisms by which these 
compounds are able to induce cardiovascular protection against hypertension, cardiac 
ischemia, stroke and atherosclerotic plaque formation as one of the complications linked to 
metabolic syndrome. It is important to note that the effects of these substances could be 
different according to the concentrations employed as evidenced in experimental models of 
angiogenesis (Baron-Menguy et al., 2007). It is also relevant to remember of other beneficial 
properties of RWPC, as anti-oxidant, anti-inflammatory, anti-tumor or antithrombotic 
agents, that we have not extensively described here. Indeed, RWPC are also able to 
modulate the apoptotic, proliferative or migration processes in cells (Martin et al., 2003) by 
acting directly on vascular remodeling and angiogenesis (Brownson et al., 2002; Favot et al., 
2003). Here, we have chosen to stress on strong properties of RWPC as vasodilators 
inducing endothelial NO production, because this effect implicates ERǂ activation as 
demonstrated in the last studies.  

Furthermore, despite the favorable effect of some molecules contained in red wine in the 
prevention of several cardiovascular pathologies, alcohol is a serious problem of public 
health and, actually, it is important to remenber that these beneficial effects are due to the 
non-alcoholic fractions of red wine. Interestingly, in multinational studies it was shown an 
increased risk of mortality by myocardial infarction, especially in women who take no 
alcohol, but compared to moderate drinkers (Yusuf et al., 2004). Moreover, on the light of 
other epidemiological data, it seems to be developed the view that modest alcohol but 
neither zero nor more than modest intake reduces total mortality and cardiovascular risk by 
cardio and neuroprotection (Collins et al., 2009; Opie and Lecour, 2007). 

According with the French Paradox, the moderate intake of wine (1 or 2 glasses per day) 
could be beneficial for health by reducing the risk of CVD mortality. As evidenced in Table 
1, the content of these vasoactive substances is more relevant in red wine compared to other 
food and beverages. Finally on the light of all the epidemiological and fundamental studies 
analyzed in this chapter, and our works, we can suggest that RWPC, and in particular 
delphinidin and resveratrol, could be used for their therapeutic potential in the prevention 
and treatment of cardiovascular pathologies. We think that ERǂ activation might be the 
main molecular target triggering the beneficial effects of dietary supplementation of RWPC. 
Nevertheless, further studies are needed to verify the implication of ERǂ in other 
physiological effects of polyphenols and not only in NO release and vascular relaxation. 
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