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1. Introduction 

It is well documented that hyperlipidemia, obesity and diabetes increase the risk for the 

development of atherosclerosis and subsequent cardiovascular disease (Vinik, 2005, Ritchie 

& Connell 2007, Stapleton et al. 2010). However, until now the precise mechanism by which 

the above mentioned metabolic perturbations contribute to atherosclerosis has not been 

fully elucidated.  

Numerous studies have focused on the detrimental effects of excessive body fat stores as a 
possible reason for both insulin resistance and disturbed lipoprotein metabolism with special 
attention paid to the adverse effects of visceral fat (Sharma et al., 2002, Matsuzawa, 2005). In 
overweight and/or obesity, free fatty acids (FFA) are released into the circulation and their 
availability for lipoprotein synthesis in the liver is markedly elevated (Jensen, 2006).  

Moreover, high circulating FFA negatively affects whole body insulin sensitivity and 

disturbs carbohydrate and lipid metabolism (Kohen-Avramoglu et al., 2006). Furthermore, 

body fat excess brings about increased secretion of adipokines which depress insulin 

sensitivity (e.g. leptin, resistin), and decreased secretion of insulin-sensing adiponectin. 

Additionally, IL-6 and TNF-ǂ, derived from adipose tissue, on the one hand induce 

inflammation, and on the other stimulate adipose tissue lipolysis and augment FFA 

availability for lipid and lipoprotein synthesis (Lago et al., 2009). 

In addition, both insulin resistance and adipokines affect endothelial nitric oxide synthase 

(eNOS) and nitric oxide (NO) production and in consequence deteriorate blood vessel 

contractility (Muniyappa et al., 2008). Moreover, there are data indicating an adverse effect 

of LDL-cholesterol and positive action of HDL-cholesterol on eNOS expression and NO 

production (Stepp et al., 2002, Rämet et al., 2003).  

All the above-mentioned metabolic disturbances have pronounced consequences for the 
cardiovascular system due to inflammation, atherosclerotic plaque formation and structural 
alterations in the endothelium and subsequently lead to its dysfunction.  

Thus, in this sequence of metabolic perturbations the endothelium was recognized rather as 
a target of unfavorable events related to excessive body fat stores, insulin resistance and 
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dyslipidemia, but not as an independent player contributing to dysfunction of the 
cardiovascular system.  

2. Vascular dysfunction – Primary or secondary target 

However, there were also data suggesting that endothelial dysfunction was a major 
mechanism involved in the development of metabolic disturbances and subsequent 
atherogenesis (Yang & Ming, 2006).  

Recently this hypothesis has been the focus much attention mostly as a consequence of data 
concerning a wide spectrum of metabolic eNOS/NO action. It has been recognized that 
eNOS itself is indispensable for physiological insulin action and glucose disposal in the 
working muscle (Roberts et al., 1997, Kingwell et al., 2002, Ross et al., 2007). Moreover, in 
vitro NO markedly increases glucose transporter (GLUT 4) expression in the muscle and 
regulates AMP- kinase (AMPK) signaling (Lira et al., 2007). Taking into account the special 
role of AMPK in the regulation of substrate utilization it is clear that eNOS activity and NO 
production markedly affect energetic processes in the muscle (Smith A.C., et al., 2005).  

In contrast, eNOS deficiency in eNOS -/- mice depresses oxidative processes and brings 
about defective mitochondrial fatty acid oxidation (Momken et al., 2002, Le Gouill et al., 
2007). Recent data have shown that the ablation of eNOS in mice accelerates glucose and 
free fatty acid uptake by muscles and increases liver and muscle glycogenolysis (Lee-Young 
et al., 2010). In consequence, eNOS knockout animals exhibit hypoglycemia and limited 
exercise capacity during exercise.  

It is well documented that in vitro NO contributes to the regulation of lipid metabolism in 
the liver by inhibiting acetyl-CoA carboxylase (ACC) activity and de novo free fatty acid 
synthesis (Garcia-Villafranca et al., 2003). There are also data suggesting that both in vitro 
and in vivo NO exerts a hypocholesterolemic effect, since stimulation of NO synthesis in 
rabbits decreases circulating LDL-cholesterol (Kurowska & Carrol, 1998).  

At present eNOS/NO system contribution to the regulation of metabolism is far from being 
fully elucidated. However, it is accepted that the vascular endothelium is not exclusively a 
target responding to metabolic disturbances accompanying cardiovascular disease, but is an 
important and independent player in the complicated relationships between cardiovascular 
disease, obesity and diabetes.  

This assumption is partially supported by research indicating that adverse changes in 
vasculature in response to high fat diet (inflammation, insulin resistance, reduced NO 
production) precede detrimental effects in muscle, liver, or adipose tissue (Kim et al., 2008).  

3. Endothelial Nitric Oxide Synthase (eNOS) and Nitric Oxide (NO) system 
coupling and uncoupling 

It should be pointed out that the endothelium is one of the largest systems in human body 
spread throughout the capillaries and arterioles in all tissues, forming a selectively 
permeable barrier between the outer vascular wall and the bloodstream. It also the tissue 
producing nitric oxide (NO) responsible for vasorelaxation, platelet aggregation, leukocyte-
endothelium adhesion and vascular smooth muscle cell migration and proliferation (Michel 
& Vanhoutte, 2010).  
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The mechanism of endothelial eNOS regulation is not fully elucidated due to its complexity. 
However, there are data indicating that enzyme activity is subjected to complicated 
regulation by many intracellular factors including heat shock protein (HSP90), different 
phosphatases, kinases, but also by enzyme location in the cell and potentially motor proteins 
(Dudzinski & Michel, 2007).  

On the other hand, it is well documented that eNOS activity is also regulated by factors 
generated outside the endothelium - negatively by resistin, TNF-ǂ, and leptin and positively 
by estrogen ((Dai et al., 2004, Kougias et al., 2005, Valerio et al., 2006, Korda et al,. 2008, 
LeBlanc et al. 2009).  

Nitric oxide is synthesized from L-arginine in a reaction catalyzed by the endothelial eNOS 
(Moncada et al., 1991) (Fig. 1). Thus, any factors decreasing eNOS activity and/or increasing 
NO degradation i.e. affecting the eNOS/NO system have been recognized as a potential 
source of disturbed endothelium function. 

Under physiological conditions and optimal eNOS activity L-arginine in the presence of O2 
is converted to NO and citrulline with minor production of superoxide (Alp & Channon, 
2004). In consequence, NO production is “coupled” with eNOS activity.  

In contrast, inadequate L-arginine intake and deficiency of the eNOS cofactor - 
tetrahydropterin (BH4) brings about depressed NO synthesis, and promotes superoxide and 
peroxynitrite generation - a phenomenon named eNOS uncoupling (Huang, 2009).  

Taking into account that L-arginine is the exclusive substrate for NO synthesis it is clear that 
its metabolism catalyzed by arginase has the potential to decrease eNOS activity and NO 
production (Wu et al., 2009).  

In mammals there are two types of arginase, encoded by two genes – arginase I and II. 
Arginase I is expressed mostly in the liver catalyzing L-arginine conversion into urea and 
ornithine and in this way participating in ammonia detoxication. Arginase II is a 
mitochondrial enzyme of extrahepatic tissues contributing to biosynthesis of amino acids 
(glutamate, proline and ornithine) and polyamines, but also playing a fundamental role in 
the depression of endothelial NO production decreasing L-arginine availability for eNOS 
action. In addition, arginase II overexpression seems to induce superoxide and peroxynitrite 
generation – per se harmful for the endothelium. There are data suggesting increased 
arginase activity in atherosclerosis and hypertension, thus diseases characterized by 
endothelial dysfunction (Ryoo et al., 2011)  

BH4 bioavailability within the endothelium plays a fundamental role in eNOS/NO 
coupling. It has been demonstrated that the inhibition of the rate-limiting enzyme 
responsible for de novo BH4 synthesis - GTP cyclohydrolase 1 - brings about eNOS/NO 
uncoupling and elevated superoxide production in isolated bovine or mouse aortic 
endothelial cells. Moreover, superoxide production was reduced by the sepiapterin – BH4 
precursor (Tiefenbacher et al. ,2000, Wang et al., 2008).  

However, recent data have indicated that the regulation of BH4 levels in the endothelium is 
even more complicated since it is oxidized to 7,8-dihydrobiopterin (BH2) which in turn is 
recycled into BH4 in the reaction catalyzed by dihydrofolate reductase (DHFR). Moreover, a 
genetic DHFR knockout or pharmacological inhibition of the enzyme suppresses BH4 
synthesis and causes eNOS uncoupling (Crabtree et al., 2009) (Fig.2).  
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Fig. 1. L-arginine as a source of nitric oxide (NO) under physiological condition and minor 
superoxide  production. 

 

Fig. 2. eNOS/ NO uncoupling in response to metabolic disturbances resulting in increased 
superoxide and peroxynitrite production 

synthesis/degradation 
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It should be pointed out that regulation of cardiovascular system is not limited to eNOS 

action. Numerous research focus on neuronal (nNOS) and inducible (iNOS) nitric oxide 

synthase role in the cardiovascular system. It has been postulated that nNOS expressed 

outside of the vascular system might protect mice from diet-induced atherosclerosis through 

indirect action on hormonal and/or nervous system and blood pressure regulation. 

(Lowenstein, 2006). On the other hand, iNOS is expressed in a wide range of cells in 

response to cytokines and is overexpressed in macrophage and cardiovascular system of 

diabetic rats (Soskić et al.,2011). However, much more studies are needed to fully elucidate 

the relationship between three isoforms of NO in vascular system dysfunction. 

4. Asymmetrical dimethylarginine (ADMA) and the vascular system 

Recently numerous studies have focused on the role of endogenous inhibitor of eNOS 

activity and NO production – asymmetrical dimethylarginine (ADMA). ADMA is 

synthesized in many tissues, including the endothelium, by the methylation of L-arginine 

released from proteins which undergo regular turnover. The methylation process is 

catalyzed by arginine methyltransferase type I (PRMT I) and ADMA production is related to 

both protein turnover and enzyme activity (Pope et al., 2009) (Fig.3). However, about 90% of 

ADMA is metabolized to citrulline and dimethylamine by dimethylarginine 

dimethylaminohydrolase (DDAH), with the remainder partially excreted with urine (Tran et 

al., 2003). Numerous studies have indicated a substantial role for DDAH in ADMA 

turnover. DDAH is expressed as two isoforms (DDAH I and DDAH II) encoded by different 

genes (Leiper et al,. 1999). Animal studies have revealed that in mice overexpressing DDAH 

I plasma ADMA levels are reduced with concomitant increase in tissue NOS activity. 

(Dayoub et al., 2003). Moreover, in humans genetic variants of DDAH I and DDAH II genes 

are significantly associated with plasma ADMA levels (Abhary et al., 2010). Moreover, 

ADMA concentration in tissues and plasma is also affected by cationic amino acid 

transporter (CAT) in exchange for arginine and other cationic amino acids (Teerlink et al., 

2009). Reference values of circulating ADMA in healthy subjects vary widely, even when 

similar analytic methods are used (Meinitzer et al., 2007). However, the risk of acute 

coronary events and mortality increases with elevated plasma ADMA concentrations 

(Valkonen et al., 2001, Zoccali et al., 2001). Moreover, it is well documented that circulating 

ADMA is inversely related to endothelial function in hypertensive and healthy subjects 

(Perticone et al., 2003, Böger et al., 2007). Furthermore, it has been established that the 

intima-media thickness of the carotid artery and aortic stenosis are related to circulating 

ADMA (Furuki et al., 2007, Ngo et al., 2007). Additionally, circulating ADMA has been 

recognized as an independent factor determining flow mediated dilatation in cardiac 

syndrome X (Haberka et al., 2010).  

The mechanism of detrimental ADMA action in the vascular system is not fully established. 

It is still under debate whether ADMA represents a novel risk factor for the development of 

endothelial dysfunction or its production reflects endothelium response to other metabolic 

disturbances such as oxidative stress (Sydow & Münzel, 2003). This latter hypothesis could 

not be excluded since in vitro oxidative stress decreases ADMA-demethylating enzyme 

(DDAH) activity and causes elevated ADMA levels (Leiper et al., 2002). 
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Fig. 3. Asymmertical dimethyl arginine (ADMA) synthesis and action on eNOS/NO system   

On the other hand, the analysis of 131 cases with coronary heart disease (CHD) and 131 

controls matched for age, sex and body mass index has revealed that plasma ADMA 

concentrations in patients were higher than in controls and ADMA is an independent risk 

factor for CHD (Schultze et al., 2006). Similarly, in 138 patients with acute myocardial 

infartion ADMA was recognized as a marker of cardiovascular risk independent of 

traditional risk factors (Korandji et al., 2007).  

Despite these doubts the detrimental effects of ADMA on the endothelium are well 

documented. First of all ADMA is a potent inhibitor of eNOS inducing eNOS/NO 

uncoupling (Jin & Loscalzo, 2010). Moreover, it has been found that ADMA is an 

endogenous inhibitor of mobilization, differentiation and function of endothelial progenitor 

cells which participate in continuous endothelial renewal and neovascularization of 

ischemic tissues (Thum et al., 2005). Additionally, in vitro pathological concentrations of 

ADMA are sufficient to elicit marked changes in coronary artery endothelial cell gene 

expression of bone morphogenic protein receptor, and PRMT – the enzyme responsible for 

methylation of arginine to ADMA Moreover, in mice treated with high ADMA doses  

(2 μM) more than 50 genes in endothelium were significantly altered (Smith C.L., et al., 

2005). Some data also data suggest proinflammatory ADMA action in human endothelial 

cells (Chen et al., 2007)  

– 
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Thus, it should be pointed out that ADMA-mediated pathological processes are not 
exclusively due to eNOS uncoupling, however, eNOS inhibition is most likely being the 
dominant ADMA vascular effect (Cooke, 2004).  

5. Lifestyle and vascular system 

There is no doubt that lifestyle has a pronounced effect on health, decreasing body fat stores, 
improving insulin sensitivity, lipid and lipoprotein metabolism and positively affecting the 
cardiovascular system (Lamon-Fave et al., 1996, Lee et al., 2005, Takahashi et al., 2011). 
Numerous data have revealed that both eNOS and NO production are the target of lifestyle 
interventions such as dietary habits and physical activity.  

5.1 Dietary habits, eNOS and NO 

Dietary habits are associated with both acute and chronic effects on the vascular system. In 
healthy, normolipidemic young and middle-aged men a single high fat meal has been found 
to adversely affect endothelial function depressing the flow-mediated vasodilation of the 
brachial artery (Vogel et al., 1997, Marchesi et al., 2000). Moreover, a decrease in endothelial 
function has been observed in response to both glucose and fat load, with a more 
pronounced effect when high fat and glucose were combined (Ceriello et al., 2002). Thus, 
postprandial state has to be taken into consideration as a possible reason for diet-induced 
depression in vascular reactivity. 

The mechanism of the effects of postprandial state on vascular function is not fully 
elucidated, however it seems that oxidative stress due to elevated plasma remnant 
lipoproteins, triglycerides, and glucose concentrations contributes to the adverse effects of a 
single meal on vascularity (Doi et al., 2000, Bae et al., 2001, Ceriello et al,. 2004).  
Moreover, recent data have suggested that in addition to oxidative stress, oral fat load 
enhances metalloproteinase-2 and metalloproteinase-9 activity which in turn bring about 
unfavorable vascular remodeling (Derosa et al., 2010).  

However, it should be pointed out that adverse effects of fat load on the vascular system are 
mostly due to saturated fat (Vogel et al., 2000, Cortĕz et al,. 2006, Berry et al., 2008). In 
contrast, an exchange of saturated for unsaturated fat load has been found to improve 
postprandial vascular function probably due to the positive effect of the latter on endothelial 
eNOS/NO system (Armah et al., 2008, Masson & Mesink, 2011).  

Numerous experimental studies have focused on chronic effects of dietary habits on 
endothelium function and vasoreactivity, however, their results are inconsistent. In 
patients with coronary artery disease a long-term (6 weeks) treatment with purified 
eicosapentaenoic acid (EPA) markedly improved NO-mediated forearm vasodilatation 
(Tagawa et al., 1999). Similarly, improved forearm microcirculation has been noted in 
hyperlipidemic, overweight subjects following a 6 week treatment with purified 
docosahexaenoic acid (DHA), but not with EPA (Mori et al., 2000). On the contrary, 
positive action of longer (7 weeks) EPA and DHA supplementation on systemic arterial 
compliance has been demonstrated in dyslipidemic elderly men (Nestel et al., 2002). 
Additionally, it has been noted that 32 weeks EPA and DHA-rich fish oil supplementation 
improve endothelial function and vascular tone in healthy middle-aged men and women 
(Khan et al., 2003).  
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Thus, it seems that duration of supplementation possibly contributes to discordant results 
concerning the response of the vascular system to polyunsaturated fatty acid (PUFA) 
treatment.  

There are also data suggesting that EPA and DHA-rich fish oil exert a more pronounced 
effect on vascular function than other oils In rats fed a fish-oil rich diet the aortic content of 
eNOS protein and enzyme activity are markedly (by 70% and 102 %, respectively) higher 
than in rats fed corn oil (Lopez et al., 2004). Moreover, improved vascular reactivity and 
enhanced eNOS expression have been indicated in aortic rings of spontaneously 
hypertensive rats fed diet rich in pomace olive oil, but not refined olive or corn oil 
(Rodriguez-Rodriguez et al., 2007). Thus, the positive effect of unsaturated fat provision 
seems to be related to its composition.  

Recent data have indicated a positive effect of conjugated linoleic acid (CLA) on vascularity 
in obese fa/fa rats due to CLA-induced elevation in adiponectin production and subsequent 
eNOS phosphorylation increasing enzyme activity and NO production (DeClerq et al., 
2011). Therefore, it seems feasible that well-known beneficial effects of oil consumption on 
health are at least partially due to its action on the eNOS/NO system. 

Much attention has been paid to effects of dietary protein on vascular function. It has been 
demonstrated that in hypertensive men there is an inverse relationship between blood 
pressure and protein consumption with more pronounced action of soy and fish than 
animal protein intake. Further studies have shown that this effect is due to various amino 
acids such as cysteine, glutamate, and arginine which decrease oxidative stress, improve 
renal function and insulin resistance (Vasdev & Stuckles, 2010). However, numerous studies 
have focused on L-arginine contribution to vascular system regulation since, as was 
mentioned earlier, L-arginine serves as a substrate for NO synthesis.  

In young hypercholesterolemic adults after 4 week L-arginine supplementation (7 grams x 
3/day) marked improvement in endothelium-dependent vasodilation has been noted 
(Clarkson et al.,1994). Similarly, it has been observed that in patients with heart failure 6 weeks 
L-arginine treatment (5.5 to 12.6 g/ day) positively affects vascular system (Rector, et al. 1996).  

Growing evidence indicates that L-arginine supplementation brings about improved insulin 
sensitivity and decreases circulating free fatty acids and triglycerides in chemically induced 
diabetic and genetically obese rats (Kohli et al., 2004, Fu et al., 2005). Moreover, similar 
effects have been observed in obese and type II diabetic patients receiving oral/or 
intravenous L-arginine (Lucotti et al,. 2006). Furthermore, it has been documented that 
postprandial lipemia-induced endothelial dysfunction is neutralized by addition of proteins 
to the fatty meals due to increased L-arginine to ADMA ratio (Westphal et al.,2006). 
Moreover, in healthy volunteers addition of 2.5 g L-arginine to fatty meal prevents the 
lipemia-induced endothelial dysfunction (Borucki et al., 2009).  

The above data suggest a possible beneficial effect of L-arginine treatment in cardiovascular 
dysfunction. However, it should be pointed out that some studies do not show any 
beneficial effect of L-arginine treatment (Chin-Dusting et al., 1996, Oomen et al., 2000). It 
could not be excluded that this discrepancy is due to individual variability in the response 
to L-arginine treatment (Evans et al., 2004). Recently it has been postulated that beneficial L-
arginine action in vascular system is related to circulating ADMA with no effect in subjects  
with low metabolite levels (Böger, 2007).  
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On the other hand, it should be stressed that the acute provision of exogenous L-arginine 

possibly depresses NO production due to induction of arginases which metabolize L-

arginine to urea and in consequence divert it from eNOS and in this way adversely affects 

cardiovascular system (Dioguardi, 2011).  

Data concerning dietary carbohydrate effects on the eNOS/NO system are fragmentary. In 

obese Zucker rats a low carbohydrate diet (10 %) improves vascular function with no effect 

on NO production in comparison with that containing 59 % carbohydrates (Focaroli et al., 

2007).  

However, it is well documented that in the rat excessive fructose supply adversely affects 

endothelium-dependent vasodilation both in vitro and in vivo and this effect is probably due 

to inhibition of NO synthesis (Verma et al., 1997, Rickey et al., 1998, Kamata et al., 1999). 

Similarly, high glucose concentration iv vitro decreases eNOS protein expression and 

enzyme activity as a result of destroyed enzyme interaction with HSP-90 (Noyman et al,. 

2002, Mohan et al., 2009).  

On the other hand, many diet components have the potential to reduce detrimental effects of 
poor dietary habits.  

Consumption of antioxidant – rich products such as fruits and vegetables in humans 

prevents the  detrimental action of a saturated fat load due to their positive effect on the 

eNOS/NO system (Plotnick et al., 2003, Traber & Stevens, 2011). Similarly, low cholesterol , 

walnut-enriched and the Mediterranean diets are effective in improving the eNOS/NO 

system and vascular function (Winkler- Möbius et al., 2010). 

Data concerning diet effects on ADMA – an endogenous eNOS inhibitor and risk factor are 

scarce. Päivä et al., (2004) have indicated that in a middle-aged population with mild 

hypercholesterolemia circulating ADMA is inversely related to carbohydrate consumption. 

Additionally, Puchau et al. (2009) have demonstrated that in healthy young men circulating 

ADMA is inversely related to zinc and selenium status.  

In elderly subjects polyunsaturated fatty acid (PUFA) supplementation markedly elevates 

circulating L- arginine and in this way decreases L-arginine/ADMA ratio what might be 

discussed as an improvement of endothelial function (Eid et al., 2006). However, there are 

also data which question the fat contribution to increased ADMA level in the blood. 

Recently Engeli et al. (2011) have revealed that the variation in fat consumption (20% and 

above 40% of energy) exerts divergent effect on circulating ADMA. In obese subjects higher 

fat consumption slightly (by 4%) decreases ADMA level. In contrast, in lean subjects both 

low and high fat consumption causes 6% elevation in ADMA concentration. The authors 

have postulated that contradictory data concerning dietary fat intake on ADMA levels are 

mostly due to methodological issues concerning ADMA determination.  

Thus, the effects of dietary habits on ADMA plasma levels are far from being elucidated. 

Moreover, in analysis of the effect of the diet on the eNOS/NO system not only diet 

composition but also total caloric intake has to be taken into consideration. Animal studies 

have demonstrated that caloric restriction for 3 or 13 months significantly improves the 

expression of eNOS protein in various tissues (Nisoli et al., 2005).  
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5.2 Physical activity and eNOS/NO system 

For many years physical activity which decreases body fat stores, improves lipid and 
lipoprotein metabolism and insulin sensitivity and positively affects cardiovascular system 
has been recommended in the therapy of obesity, hypertension, type 2 diabetes and 
cardiovascular disease (Shephard & Balady, 1999).  

Assuming the importance of the eNOS/ NO system in the regulation of many metabolic 
processes in recent years numerous studies have focused on the relationship between 
endothelial function and physical activity. This issue seems to be of special importance since 
animal studies have indicated that physical inactivity induces endothelial dysfunction due 
to decreased eNOS activity (Suvarova et al., 2004).  

It is well documented that in rats both acute exercise and regular physical activity (2-4 
weeks) markedly enhance eNOS activity and endothelial NO synthesis in skeletal muscle 
arterioles (Sun et al., 1994, Roberts et al., 1999). Similarly, in dogs following exercise elevated 
NO synthesis has been noted in coronary circulation being responsible for ¼ of the 
vasodilation response (Bernstein et al., 1996, Ishibashi et al., 1998). Moreover, in active 
animals eNOS phosphorylation and activity is significantly elevated after 12 weeks of 
training (Touati et al., 2011). 

In apparently healthy young men and women acute aerobic exercise markedly counteracts 
detrimental effects of a high-fat meal on flow-mediated dilatation (FMD), but also improves 
FMD in participants consuming a low-fat meal possibly due to reduction of circulating 
lipids, insulin resistance and oxidative stress (Padilla et al,. 2006, Silvestre et al., 2008, 
Tyldum et al.,2009). Thus, it has been postulated that physical activity can attenuate adverse 
postprandial changes in vascular function (Johnson et al., 2011).  

It should be pointed out that a positive effect of physical activity on the eNOS/NO system 
has also been noted in patients with stroke, chronic heart failure, and myocardial infarction 
(Gertz et al., 2006, Mendes-Ribeiro et a.,2009, De Waard et al., 2010).  

The mechanism of exercise-induced positive changes in the eNOS/NO system is not fully 
elucidated. However, it is well documented that physical activity brings about hyperemia 
and subsequently endothelial shear stress (ESS) defined as a fractional force exerted by 
blood flow (Boushei et al,. 2000, Taylor et al., 2002, Boo & Jo, 2003). 

It is well documented that shear stress markedly affects a myriad of intracellular events in 
endothelial cells including remodeling, inflammation and NO production with low ESS 
inducing plaque formation (Harrison, 2005, Koskinas et al., 2010).  

Early studies have demonstrated that in bovine aortic endothelial cells the elevation of shear 
stress causes elevation in eNOS phosphorylation and expression which in turn increases 
enzyme activity (Corson et al., 1996, Malek et al. 1999). Furthermore, in human vessels 
increase in shear stress inhibits lipid peroxidation induced by high glucose and arachidonic 
acid in the medium (Mun et al., 2008). Thus, direct effects of physical activity on eNOS/NO 
system and inhibition of oxidative processes contribute to exercise – induced improvement 
in endothelium function. However, it is worth noting that positive action of physical activity 
is limited to moderate intensity, since it has been demonstrated that high intensity exercise 
(90 % VO 2 max) enhances platelet reactivity to shear stress and induces coagulation which 
in turn increases the risk of thrombosis (Ikaguri et al., 2003).  
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Taking into account all data cited in this review it is clear that eNOS/NO system  undergoes 
complicated regulation by both genetic and lifestyle factors (Fig. 4). 

eNOS/NO  system

Genetic factors
eg. arginase and DDAH 

variants affecting 
circulating ADMA

Lifestyle factors
adequate protein intake

low fructose and saturated intake
high intake of oils

high intake of antioxidant-rich food
moderate physical activity

 

Fig. 4. Interplay between genetic and lifestyle factors affecting eNOS/NO system 

6. Conclusion 

Our present knowledge about eNOS and NO effects on overall  metabolic processes  at least 
partially supports the hypothesis concerning a special and possibly central role of 
endothelium as an active tissue, and not only the target of metabolic disturbances. 
Moreover, circulating ADMA seems to be a risk factor of endothelial disturbances and 
disturbed cardiovascular system. In consequence, further research is required on strategies 
improving the eNOS/NO system and decreasing ADMA synthesis, including both 
pharmacological and lifestyle interventions.  
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