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1. Introduction 

The antisaccade task has been introduced for the first time by Hallet (1978) in order to 

explore the ability of the brain to control behaviour flexibly. Antisaccades are voluntary 

saccades during which subjects have to inhibit the movement towards a peripheral visual 

target. Usually subjects fixate a central fixation point, which is then extinguished and the 

peripheral target is presented. Subjects are instructed to generate a saccade of the same 

amplitude to the opposite direction, as quickly and accurately as possible. It is generally 

assumed that the sudden appearance of the target in an antisaccade task automatically 

triggers a motor program for a prosaccade in this direction, and that errors occur when 

certain endogenous processes fail to inhibit or cancel this program (Everling & Fischer, 

1998). It is argued that correct antisaccade latencies are increased compared to prosaccade 

latencies because the application of the inhibitory processes is time consuming (Olk & 

Kingstone, 2003). Everling and Fischer (1998) argued that antisaccade performance requires 

two intact subprocesses: 1) the ability to suppress a reflexive saccade towards the target; 2) 

the ability to generate a voluntary saccade in the opposite direction. In clinical research, 

increased antisaccade error rates are often interpreted as reflecting failures in inhibitory 

processing (Crawford, Bennett, Lekwuwa, Shaunak, & Deakin, 2002; Hutton et al., 2008).  

Neuropsychological studies have shown an important role of the frontal cortices during 
performing antisaccades. For instance, Everling and Munoz (2000), and Funahashi et al. 
(1993) revealed that several frontal structures (frontal eye field, dorsolateral cortex and 
supplementary eye field) are more activated during antisaccade tasks than during 
prosaccades (a saccade made towards the peripheral target). Furthermore, Matsuda et al. 
(2004) reported increased activity in the inferior parietal cortex during antisaccade tasks 
compared to prosaccades. Interestingly, Ettinger et al. (2008) showed activity in such area 
during a period preceeding the antisaccade generation, suggesting an inhibitory role of this 
region. Other studies found out that the parietal cortex (some regions in the intraparietal 
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sulcus) is responsible for the vector inversion required to generate an antisaccade to the 
correct location (Clementz et al., 2007; Zhang & Barash, 2000). 

Several researchers have focused on the development of the ability to perform antisaccades. 
For example, as suggested in Luna’s exhaustive review (Luna et al., 2008) exhaustive review, 
the maturity of the cortical structures devoted to eye movement performances is reached at 
14-15 years. Consequently, the improvements in antisaccade performance continue during 
adolescence even though the ability to successfully inhibit a saccade toward a new target is 
already present at 8 years old (Johnson, 1995).  

Moreover, the antisaccade task has also been used as important clinical tool for investigating 
dysfunction in various neurological and psychiatric disorders (Leigh and Kennard, 2004). 
Patients with discrete lesions of the dorsolateral cortex and in the frontal eye field have 
difficulty in performing correctly the antisaccade task (Guitton et al., 1985; Walker et al., 
1998; Gaymard et al., 1999; Davidson et al., 1999).  

The antisaccade task has been extensively studied in dyslexic children by the Fischer’s 

group. Indeed, Biscaldi et al. (2000) and Fischer & Hartnegg (2000a) compared the 

performance in an antisaccade task between dyslexic children and non-dyslexic children of 

similar age. These authors reported an increased number of directional errors and several 

saccades being missed in dyslexic children. Furthermore, Fischer and Hartnegg (2000b) 

showed that this poorer performance in dyslexic children could be improved by training, 

leading to obtain a performance similar to that reported in non-dyslexic children. Therefore, 

although some evidence exists suggesting impaired inhibitory processing in dyslexic 

children, such a deficit can be overcome by training. 

Based on all these findings we aimed to explore whether the poor antisaccade performance 

reported in dyslexic children could be a consequence of immaturity of cortical structures 

responsible of triggering and execution of saccadic eye movements rather than a congenital 

deficit of these areas. Indeed, the fact that dyslexic children are able to improve antisaccade 

performance with training as shown by Fischer and Hartnegg (2000b) is in line with the 

hypothesis of a delayed maturation of the oculomotor system in such type of subjects (Bucci 

et al., 2008).  

In the present study we compared antisaccade performance in three different groups of 

children: (i) dyslexic children; (ii) age-matched non-dyslexic children; (iii) reading age-

matched non-dyslexic children.  

2. Materials and methods 

2.1 Participants 

Twenty-one dyslexic children were recruited from the pediatric hospital where they were 
referred for a complete evaluation of their dyslexia state with an extensive examination 
including neurological/psychological and phonological capabilities. For each child the time 
required to read a text, its comprehension, and the capacity of reading word/pseudowords 
was evaluated by using the L2MA battery (Chevrie-Muller et al., 1997). This is a standard 
test developed by the Applied Psychology Centre of Paris (Centre de Psychologie Appliquée 
de Paris), and is used everywhere in France. Inclusion criteria for dyslexic were: scores on 
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this test below 2 standard deviations of normalized values; and a normal mean intelligence 
quotient, between 85 and 115 (IQ, evaluated with WISC IV). The mean age of the dyslexic 
children was 11.19 ± 0.2 years, the mean IQ was 100 ± 6 and the mean reading age was 8 ± 1 
years. A carefully selected age-matched (29 children, mean age 11.6 ± 0.17) and reading age-
matched (24 children, mean age 7.8 ± 0.19) groups of non-dyslexic children were selected. 
These children had to satisfy the following criteria: no known neurological or psychiatric 
abnormalities, no history of reading difficulty, no visual impairment or difficulty with near 
vision. For the two groups of non-dyslexic children reading capabilities were in normal 
range. Both the similitude test of the WISC IV assessing the verbal capability, and the matrix 
test of the WISC IV assessing the logic capability were performed. Normal range for both 
tests is 10 ± 3 (Wechsler intelligence scale for children—fourth edition, 2004). The selected 
reading age-matched group was normal for verbal (11.78 ± 0.8) and for logic (9.97 ± 0.6) 
capabilities. The selected age-matched group was also normal (10.36 ± 0.4 for verbal and 
11.89 ± 0.5 for logic).  

Both non-dyslexic and dyslexic children underwent an ophthalmologic and orthoptic 

examination in order to evaluate their visual function (median values shown in Table 1). All 

children had normal binocular vision (60 sec of arc or better), which was evaluated with the 

TNO random dot test. Visual acuity was normal (≥20/20) for all children, dyslexic as well as 

non dyslexic. The near point of convergence was normal for all three groups of children 

tested (≤ 5 cm). Moreover, an orthoptic evaluation of vergence fusion capability using 

prisms and Maddox rod was carried out at far and at near distance. At far distance, the 

divergence and convergence amplitudes were similar in the three groups of children 

examined. In contrast, at near distance, the divergence and convergence amplitudes were 

significantly different in the dyslexic group with respect to the other two groups of non 

dyslexic children. ANOVA showed significant main effects of group, F(2,71) =  6.36, p < 0.003 

and of the divergence and convergence amplitudes, F(2,71) =  3.18, p < 0.04., respectively). The 

LSD test showed that the dyslexic group had significantly smaller value of divergence and 

convergence amplitudes with respect to the two groups of non-dyslexic children (younger 

and older). 

Finally, phoria (i.e. latent deviation of one eye when the other eye is covered, using the 
cover-uncover test) was normal for all three groups of children tested.  

 

 TNO 

 
NPC 

 

Phoria 

Far 

Phoria 

Near 

Div  

Far 

Div 

Near 

Conv  

Far 

Conv 

Near 

D 10-13 63 3 0 Exo 1 4 10 15 32 

ND 7-9 45 2 0 Exo 2 4 14* 16 40* 

ND 10-13 40 2 0 Exo 2 6 13* 17 40* 

Note: dyslexic children, D 10-13; non-dyslexic children chronological age matched, ND 10-13; and non-

dyslexic children reading age matched, ND 7-9. Median values of: binocular vision (Stereoacuity test, 

TNO measured in seconds of arc); near point of convergence, NPC measured in cm; Heterophoria at far 

and near distance, measured in prism diopters; Exo = exophoria; Vergence fusional amplitudes 

(divergence and convergence) at far and at near distance,  measured in prism diopters. Asterisks 

indicate that value is significantly different with respect to the group of dyslexic children (p<0.01).  

Table 1. Clinical characteristic of the three groups of children examined 
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The investigation adhered to the principles of the Declaration of Helsinki and was approved 
by our Institutional Human Experimentation Committee. Informed consent was obtained 
from the children’s parents after explaining the procedure for the experiment to them.  

2.2 Oculomotor paradigm 

Stimuli were presented on a PC screen of 22″, its resolution was 1920×1080 and the refresh 
rate was 60 Hz. The stimulus consisted in a red filled circle subtending a visual angle of 0.5 
deg. The trial consisted of a target positioned at the center of the screen for a variable delay 
between 2000 and 3500 ms. The central target disappeared and after a period of 200 ms (= 
gap period), a lateral target (green filled circle) appeared at 22.8 degrees, randomly to the 
left or to the right of the center, and stayed on for 1000 ms. After this duration, the central 
fixation target appeared again, signalling the beginning of the next trial as shown in Figure 
1. The lateral target appeared randomly to the left or right and each direction was presented 
an equal number of times (i.e., 15 each). Children were instructed to look at the central 
fixation point, then to trigger a saccade as soon as possible in the opposite direction and 
symmetrically to the lateral target. Thus, when the target moved to the right, the child had 
to look at the same distance to the left side. When the target returned to the center, the child 
was instructed to follow it back to the center. An initial training block of trials was given to 
ensure that the instructions were understood. 

 

Note: When the green target appears, the child has to make a saccade to it mirror position as quickly as 
possible. The duration of each trial was between 3200 and 4700 ms. 

Fig. 1. Schematic trial of the antisaccade task.  

2.3 Eye movements recording 

Eye movements were recorded with the Mobile Eyebrain Tracker (Mobile EBT®, 

e(ye)BRAIN, www.eye-brain.com), an eye-tracking device CE marked for medical purpose 

(see Figure 2). The Mobile EBT® benefits from cameras that capture the movements of each 

eye independently. Recording frequency was set up to 300 Hz.  

2.4 Procedure 

Children were seated in a chair in a dark room with the head leaning on a forehead and chin 
support; viewing was binocular; the viewing distance was 58 cm. Calibration was carried 

200 ms 

1000 ms 

2000-3500 ms Time = 3200-4700 ms  
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out at the beginning of eye movements recordings. During the calibration procedure, 
children were asked to fixate a grid of 13 points (diameter 0.5 deg) mapping the screen. Each 
calibration point required a fixation of 250 ms to be validated. A polynomial function with 
five parameters was used to fit the calibration data and to determine the visual angles. After 
the calibration procedure, the antisaccade task was presented to the child. Duration of the 
task was kept short (lasting a couple of minutes) allowing an accurate evaluation of eye 
movement recordings. 

 

Fig. 2. Mobile Eyebrain Tracker (Mobile EBT®) used to record eye movements from both 
eyes in children. 

2.5 Data analysis 

The software MeyeAnalysis (provided with the eye tracker) was used to extract saccadic eye 
movements from the data. It determines automatically the onset and the end of each 
saccade. All detected saccades were verified afterwards by the investigator and 
corrected/discarded if necessary. 

The latency and the gain (saccade amplitude/mirror target amplitude) of correct responses 
and of wrong responses, as well as the percentage of correct antisaccade responses were 
analyzed in the three different groups of children. Saccades with latencies inferior to 100 ms 
were counted but not included in the analysis.  

Statistical analysis was performed by a three-way ANOVAs using the three groups of 
children (dyslexics and non-dyslexics, chronological and reading-age matched) as inter-
subject factor. 

3. Results 

The ANOVA showed a main effect of age (F(2,71)=130.9, p<0.001). Post hoc comparisons 
showed that reading age matched non-dyslexic children (ND 7-9) were significantly 
younger than the two other groups (p<0.001). There was no age difference between the 
group of dyslexic children (D 10-13) and the group of chronological age-matched non 
dyslexic children (ND 10-13) (p=0.22). 
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Figure 3 shows the mean latency of antisaccades for each group of children examined 
(dyslexic children 10-13 years (D 10-13), non dyslexic children, 7-9 (ND 7-9), and 10-13 years 
old (ND 10-13) respectively). 

The mean latency value for correct antisaccades was 337 ± 14.7 ms for the group of dyslexic 
children and 353 ± 14.0 ms and 282 ± 12.5 ms for the group of younger and older non 
dyslexic children respectively.  

 

Note: Vertical lines indicate standard error. *** = p<0.01. 

Fig. 3. Mean latency of antisaccades for dyslexic children 10-13 years old (D 10-13) and non 
dyslexic children 7-9 years old (ND 7-9) and 10-13 years old (ND 10-13), respectively.  

The ANOVA showed a significant main effect of group, F(2,71) = 8.18, p<0.0006 on the latency 
of antisaccades. Post hoc comparison showed that the latency of antisaccades of the older 
group of non-dyslexic children was significant shorter with respect to the group of dyslexic 
children (p<0.01) and to the younger group of non dyslexics (p<0.0001). The latency of 
dyslexics was similar to that of non-dyslexic reading age matched children (ND 7-9) 
(p=0.73). 

The mean latency value measured for saccades in the wrong direction (prosaccades towards 
the target) is showed in Figure 4. The mean value was 196 ± 10.2 ms for the group of dyslexic 
children and 182 ± 9.5 ms and 175 ± 8.8 ms for the group of younger and older non dyslexic 
children. The ANOVA showed no significant main effect of group (F(2,71) = 1.18, p=0.31).  

For each group of children tested we counted also the frequency of anticipatory saccades 
(latency < 100 ms). The ANOVA did not show group effect (F(2,71)=1.60, p=0.20). Dyslexic 
children (D 10-13) made 5.7 ± 1.4 % of anticipatory saccades; while reading age matched 
(ND 7-9) and chronological age matched non-dyslexic children (ND 10-13) made 3.8 ± 1.3 
and 2.4 ± 1.2 % of anticipatory saccades, respectively. 

In Figure 5 the gain of correct and wrong antisaccade trials are shown for the different 

groups of children. The ANOVA revealed that a main effect of group was approaching 

significant for the gain of the antisaccades (F(2,71) = 2.97, p<0.057) but this was not significant 

for the wrong prosaccades (F(2,86) = 0.72, p=0.48). 

*** 
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Note: Vertical lines indicate standard error.  

Fig. 4. Mean latency of wrong prosaccades (towards the target) for dyslexic children 10-13 
years old (D 10-13) and non dyslexic children 7-9 years (ND 7-9) and 10-13 years old (ND 10-
13). 

 

Note: Vertical lines indicate standard error. 

Fig. 5. Gain (amplitude of eye movements/amplitude of the attended position target) for 
antisaccades and wrong prosaccades for dyslexic children 10-13 years old (D 10-13) and non 
dyslexic children (younger and older, 7-9 (ND 7-9) and 10-13 years old (ND 10-13), 
respectively).  
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The mean error rate was also examined (see Figure 6). The mean error rate was 50.8 ± 4.4 % 
for the group of dyslexic children and 63.3 ± 4.2 % and 30.3 ± 3.8% respectively for the group 
of younger and older non dyslexic children. 

 

Note: Vertical lines indicate standard error. *** = p<.0003. 

Fig. 6. Mean error rate in antisaccades for dyslexic children 10-13 years old (D 10-13) and 
non dyslexic children (younger and older, 7-9 (ND 7-9) and 10-13 years old (ND 10-13), 
respectively).  

The ANOVA on error rate showed a significant main effect of group, F(2,86) = 17.88, p<0.0001. 
Post hoc comparison showed that the error rate for the older group of non-dyslexic children 
was significantly lower with respect to the other groups of children: p<0.003 for the 
dyslexics and p<0.0001 for the younger non dyslexic children. There was no difference 
between the non-dyslexic younger group and the dyslexic group (p=0.10). 

4. Discussion 

The present study showed first that dyslexic children performed the antisaccade task 
differently to chronological age matched non-dyslexic children: the latency values of correct 
antisaccades were longer; furthermore the error rate for dyslexic children was significantly 
higher compared to that of non dyslexic children of similar age. Secondly, this study 
showed that in non-dyslexic children the performance in the antisaccade task improved 
with age.  

Both results lend support to the previous studies conducted by Fischer’s group with 
dyslexic children (Biscaldi et al., 2000; Fischer & Hartnegg, 2000a) and also other studies 
with normal children conducted by Fukushima et al. (2000) and by Irving et al. (2009). Note 
also that in this study the mean latency values of wrong prosaccades were similar in all 
three groups of children tested. This finding is only apparently in contrast with 
developmental evidences showing that latency of saccades is age dependent (see Leigh & 
Zee, 2006 for review). Indeed, in all developmental studies exploring latency of saccades, 
children had to saccades as quickly as possible to the target (by making a prosaccade) and it 

*** 
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is well known, particularly in the case of children, that latency value depends on the 
subject’s attention and motivation (Clark, 1999). In the present study child had to perform 
an antisaccade task and the latency here reported for prosaccades is due to a wrong 
response. Note that a similar finding has been also reported from the study of Munoz et al. 
(1998). 

The new important finding of the present study comes from the comparison between 
dyslexic children with reading age matched non-dyslexic children. Indeed, the oculomotor 
behavior of the group of dyslexic children 10-13 years old was similar to that observed in the 
group of reading age matched non-dyslexic children (7-9 years old). Both the latency values 
of correct antisaccades and the error rate in the antisaccade task of dyslexic children 10-13 
years old were similar to those found in reading age matched non dyslexic children (7-9 
years old).  

During saccade latency, it is assumed that several processes occur such as the shift of the 
visual attention to the new stimulus, the disengagement of oculomotor fixation, and the 
computation of the new parameters (Fischer & Ramsperger, 1984; Findlay & Walker, 1999). 
These processes involve different cortical and sub-cortical areas (see Leigh & Zee, 2006 for a 
full review). The longer saccade latency has frequently been attributed to an 
underdeveloped related cortex, and some investigations have also suggested that increased 
latency of saccades is related to difficulty in controlling visual fixation (Munoz et al., 1998).  

To perform an antisaccade it is necessary to first inhibit the reflexive response towards the 
stimulus, and then to prepare a voluntary saccade in the opposite direction (antisaccade). 
Klein (2001), and Klein and Foerster (2001) reported that the capability to inhibit this type of 
saccade as well as the circuitry controlling cognitive processes is present as early as at 6 
years old. They suggested that what is immature in young children is the capability to use 
such cognitive facilities, leading to a partially correct antisaccade response but to an overall 
impaired general performance for this task. 

Malone and Iacono (2002) hypothesized that although young children have adequate 
working memory capability to perform correctly on the antisaccade task, they might not be 
capable of maintaining these instructions continuously throughout the course of the 
experiment. This may explain why young children in the current study showed long 
latencies and a high error rate in the antisaccade task.  

On the other hand, it is also well known that the parietal cortex, the frontal eye field, the 
supplementary eye fields and the prefrontal cortex play important roles in antisaccade 
performance (Luna et al., 2008; McDowell et al., 2008). Further, the inferior parietal cortex 
has been suggested to be important for the inhibitory period preceding an antisaccade 
movement (Ettinger et al., 2008) and regions in the intraparietal sulcus (within parietal 
cortex) could be responsible for generating a correct antisaccade response (Clementz et al., 
2007; Nyffeler et al., 2007). 

Based on all the available evidences, we postulate the hypothesis that in dyslexic children 

the delayed maturation of all these structures could lead to longer latencies and increased 

error rate in the antisaccade task, similar to those reported in reading age matched non-

dyslexic children.  
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Furthermore, it should be noted that the limited fusional amplitude in divergence and 
convergence capabilities reported in dyslexic children with respect to the two groups of non 
dyslexic children found with the orthoptic tests is also in favour of a general immaturity of 
the cortical structures controlling the oculomotor system. Indeed, fusional vergence 
capabilities are age dependent (Scheiman et al., 1989; von Norrden and Campos, 2006) and 
at the cortical level some studies showed evidence of vergence control. For instance, the 
study of Gamlin & Yoon (2000) identified an area close to frontal eye field containing cells 
that discharge before and during vergence movements. More recently, Quinlan and Culham 
(2007) with an fMRI study showed an activation of parietal and occipital cortex while 
humans performed convergence. Thus, in the light of the existing physiological evidence for 
cortical control of vergence both in monkeys and in humans, the results of the clinical tests 
presented here in dyslexics suggest immaturity of the neuro-physiological circuitry 
responsible for generating vergence movements that are closer to the structures for 
generating saccades.  

Finally, it should be noted that orthoptic training is widely used by clinicians for improving 
vergence capabilities (e.g., von Noorden & Campos, 2006). van Leeuven et al. (1999) and 
Bucci et al. (2004) reported objective studies on eye movements recordings in children, 
showing an improvement of vergence eye movements performance after orthoptic training. 
Consequently, orthoptic training could be applied also for dyslexic population. 

5. Conclusion and future directions 

The deficits in oculomotor behavior reported in dyslexic children seem to be due to the 
immaturity of their adaptive mechanism. We believe that visual attentional training along 
with oculomotor training could help dyslexic children to override such deficiencies allowing 
an appropriate control of the triggering and execution of saccadic eye movements. We hope 
to develop new training techniques resulting from this principle to help dyslexic children.  
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