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1. Introduction

Throughout human history, infectious diseases have caused debilitation and premature death
to large portions of the human population, leading to serious social-economic concerns. Many
factors have contributed to the persistence and increase in the occurrence of infectious disease
(demographic factors, political, social and economic changes, environmental change, public
health care and infrastructure, microbial adaptation, etc.), which according to the World
Health Organization (WHO), are the second leading cause of death globally (≈ 23 % of deaths)
after cardiovascular diseases (WHO, 2010).

Research on basic and applied aspects of host, pathogen, and environmental factors that
influence disease emergence, transmission and spread have been supported so far, and
the development of diagnostics, vaccines, and therapeutics has been greatly increased. In
recent years, mathematical modeling became an interesting tool for the understanding of
infectious diseases epidemiology and dynamics, leading to great advances in providing
tools for identifying possible approaches to control, including vaccination programs, and for
assessing the potential impact of different intervention measures.

Epidemiological models are a formal framework to convey ideas about the components of a
host-parasite interaction and can act as a tool to predict, understand and develop strategies
to control the spread of infectious diseases by helping to understand the behaviour of the
system under various conditions. They can also aid data collection, data and interpretation
and parameter estimation. The purpose of epidemiological models is to take different aspects
of the disease as inputs and to make predictions about the numbers of infected and susceptible

people over time as output.

In the early 20th century, mathematical models were introduced into infectious
disease epidemiology, and a series of deterministic compartment models such as
SI (susceptible-infected), SIS (susceptible-infected-susceptible), and e.g SIR (susceptible-
infected-recovered) have been proposed based on the flow patterns between compartments

of hosts. In our days, most of the models developed try to incorporate other factors focusing
on several different aspects of the disease, which can imply rich dynamic behaviour even in
the most basic dynamical models. Factors that can go into the models include the duration
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of disease, the duration of infectivity, the infection rate, the waning immunity, and so forth.
In such a way, differential equation models are a simplified representation of reality, which
are designed to facilitate prediction and calculation of rates of change as functions of the
conditions or the components of the system.

There are two common approaches in modeling, the deterministic and the stochastic one.
In the first case, the model is one in which the variable states are uniquely determined by
parameters in the model and by sets of previous states of these variables. In mathematics,
a deterministic system is a system in which no randomness is involved in the development
of future states of the system. In a stochastic model, randomness is present, and variable
states are not described by unique values, but rather by probability distributions. Stochastic
epidemic models are appropriate stochastic processes that can be used to model disease
propagation. Disease propagation is an inherently stochastic phenomenon and there are a
number of reasons why one should use stochastic models to capture the transmission process.
Real life epidemics, in the absence of intervention from outside, can either go extinct with
a limited number of individuals getting ultimately infected, or end up with a significant
proportion of the population having contracted the disease in question. It is only stochastic,
as opposed to deterministic, models that can capture this behavior and the probability of each
event taking place.

Only few stochastic processes can be solved explicitly. The simplest and most thoroughly
studied stochastic model of epidemics are based on the assumption of homogeneous mixing,
i.e. individuals interact randomly at a certain rate. The mean field approximation is a good

approximation to be used in order to understand better the behavior of the stochastic systems
in certain parameter regions, where the dynamics of the mean quantities are approximated by
neglecting correlations, giving closed ordinary differential equations (ODE) systems, hence
mathematically deterministic systems which are easier to analyze.

In the following section of this chapter we present the properties of the basic SIR epidemic
model for infectious diseases with a summary of the analysis of the dynamics, identifying the
thresholds and equilibrium points. The goal is to introduce notation, terminology, and results
that will be generalized in later sections on more advanced models motivated by dengue fever
epidemiology as an example of multi-strain systems.

2. The SIR epidemic model

The SIR epidemic model divides the population into three classes: susceptible (S), Infected
(I) and Recovered (R). It can be applied to infectious diseases where waning immunity
can happen, and assuming that the transmission of the disease is contagious from person
to person, the susceptibles become infected and infectious, are cured and become recovered.
After a waning immunity period, the recovered individual can become susceptible again.
This model was for the first time proposed by William Ogilvy Kermack and Anderson Gray
McKendrick in 1927 (Weisstein, 2010). The model was brought back to prominence after
decades of neglect by Anderson and May (Anderson & May, 1979).

In the simple SIR epidemics without strain structure of the pathogens we have the following
reaction scheme for the possible transitions from one to another disease related state,
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susceptibles S, infected I and recovered R,

S + I
β−→ I + I

I
γ−→ R

R
α−→ S

for a host population of N individuals, with contact and infection rate β, recovery rate γ
and waning immunity rate α. The dynamic model in terms of ordinary differential equations
(ODE) reads,

Ṡ = − β

N
IS + α(N − S − I) (1)

İ =
β

N
IS − γI , (2)

where we use the time derivative Ṡ = dS/dt with time t for a constant population size of
N = S + I + R individuals. The solution of R(t) is given by R(t) = N − I(t)− S(t) which
can be calculated using the solution of the ODEs. The susceptible individuals become infected
with infection rate β, recover from the infection with recovery rate γ and become susceptible
again after waning immunity rate α.

In Fig. 1 we show the dynamical behavior of the susceptible, infected and recovered
individuals in a given population N, when solving the above ODE system.
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t)
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Fig. 1. Time dependent solution simulation for the SIR epidemic model. With a population
N = 100, and starting values I = 40, S = 60 and R = 0, we fixed β = 2.5, α = 0.1, and γ = 1.
In green the dynamics for the susceptibles S(t), in pink the dynamics for the infected I(t)
and in blue the dynamics of the recovered R(t). Note that N = 100 allows for the
interpretation for the class abundances in percentages.

The basic SIR model has only fixed points as possible stationary solutions, that can be
calculated setting the rates of change Ṡ and İ to zero. For the disease free equilibrium state,
the solution is given by

I∗1 = 0 (3)

S∗
1 = N (4)
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and for the disease endemic equilibrium state, the solution is

I∗2 = N

(

1 − γ

β

)

α

(α + γ)
(5)

S∗
2 = N

γ

β
. (6)

The epidemic dynamic as a function of the parameter β shows the spread of the epidemic
when β > γ (see Fig. 2 a)), and its extinction when β < γ (see Fig. 2 b)).
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Fig. 2. Epidemic dynamics as a function of β. With the same initial values as used in Fig. 1,
we plot time dependent solutions I(t) for several β values. In a)β ∈ [1.5, 2.5], with a
resolution ∆β = 0.1 and in b) β ∈ [0, 0.9] where ∆β = 0.2.

In order to analyze the stability of the equilibrium states, we look at the Jacobian matrix and

its eigenvalues. Let the dynamics for the state x := (S, I) be f (x), hence d
dt x = f (x) which

explicitly gives ∆x := x(t)− x∗ as a small perturbation around the fixed point x∗. We linearize

the dynamic d
dt ∆x = d

dt (x(t)− x∗) applying Taylor’s expansion

f (x∗ + ∆x) = f (x∗) +
d f

dx

∣

∣

∣

∣

∣

x∗
· (∆x) +O((∆x)2) (7)

with f (x∗) = 0 for the fixed point and neglecting higher order terms. For our system we have
the following linear differential equation system

d

dt

(

S(t)− S∗

I(t)− I∗

)

=

⎛

⎜

⎝

∂ f
∂S

∂ f
∂I

∂g
∂S

∂g
∂I

⎞

⎟

⎠

∣

∣

∣

∣

∣

∣

∣

(

S
I

)

=

(

S∗

I∗

)

·
(

S − S∗

I − I∗

)

(8)

where f := ( f , g) and the Jacobian matrix is explicitly given by
⎛

⎜

⎝

− β
N I∗ − α − β

N S∗ − α

β
N I∗ β

N S∗ − γ

⎞

⎟

⎠
=: A (9)

where we have to insert for S∗ and I∗, the respective steady states. In order to decoupled
the linear differential equation system, we diagonalize the matrix A, (9), with the eigenvalue
decomposition A u = λ u, u is an eigenvector of A, and λ is an eigenvalue of A
corresponding to the eigenvector u.

The eigenvalues can be calculated setting the determinant of [A − λ 1] equal zero.
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2.1 The disease free equilibrium state

For the disease free equilibrium state (I∗1 and S∗
1), Eq.(3) and Eq. (4), the eigenvalues are given

by

λ1 = β − γ (10)

λ2 = −α . (11)
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Fig. 3. Eigenvalues for the disease free equilibrium state as functions of β when fixing α = 0.1
and γ = 1.0.
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Fig. 4. eigenvectors for the disease free equilibrium state in function of β. For a population
N = 100, where I = 0.0001, S = 99.99, and R = N − I − S, in a) β = 0.9, in b) β = 0.97, in c)
β = 0.999, in d) β = 1.001, in e) β = 1.1, and in f) β = 1.3.

When looking at Eq. (10) and Eq. (11) we see that for β < γ both eigenvalues are negative, i.e.
the fixed point I∗1 is stable. The eigenvalues λ1 and λ2 are equal at the point β = γ − α and
for β > γ, λ1 is positive and λ2 is negative, therefore the fixed point I∗1 = 0 is unstable. The
stability of the system changes when one of the eigenvalues of the system becomes zero. At
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this point, βc = γ, when I∗1 becomes unstable and I∗2 stable. Fig. 3 shows the eigenvalues for
the disease free equilibrium state as functions of β.

To calculate the corresponding eigenvectors we use (A − λ1) u = 0, with λi and ui =:

(

u1i

u2i

)

.

For the first eigenvalue, λ1, the correspondent eigenvector u1 is giving by

u1 =
1

√

1 +
(

γ−β−α
β+α

)2
·
(

1
(

γ−β−α
β+α

)

)

,

and for λ2, the correspondent eigenvector u2 is is giving by

u2 =

(

1
0

)

.

In Fig. 4 we show the eigenvectors for the disease free equilibrium state as functions of β,
when fixing α = 0.1, and γ = 1. We plot the eigenvectors, u1 (blue line) and u2 (green line) on
top of the trajectory of the infected individuals (red line). Note that λ1 = λ2 at β = (γ − α),
i.e. the eigenvectors u1 = u2 (see Fig. 4a)). By increasing β toward the critical value βc = γ
the trajectory needs longer time to hit the fixed point (see Fig. 4b) and 4c)). For β > γ, the
trajectory goes toward the other fixed point I∗2 (see Fig. 4d) and 4e)).

2.2 The disease endemic equilibrium state

For the disease endemic equilibrium state (I∗2 and S∗
2), Eq. (5) and Eq. (6), the eigenvalues are

giving by

λ1 = − α

2

(

1 +
β − γ

α + γ

)

+

√

[

α

2

(

1 +
β − γ

α + γ

)]2

− (β − γ)α (12)

λ2 = − α

2

(

1 +
β − γ

α + γ

)

−
√

[

α

2

(

1 +
β − γ

α + γ

)]2

− (β − γ)α . (13)

In order to simplify the notation, let − α
2

(

1 +
β−γ
α+γ

)

=: a and
[

α
2

(

1 +
β−γ
α+γ

)]2
− (β− γ)α =: b.

If b > 0 the eigenvalues are real numbers, giving the contraction or expansion of the
trajectories near to the considered fixed point, and can be written as

λ1 = a +
√

b (14)

λ2 = a −
√

b . (15)

If b < 0, the eigenvalues

λ1 = a + i
√

|b| (16)

λ2 = a − i
√

|b| (17)
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become complex, where the real part a gives the contraction or expansion, and the imaginary

part i
√

|b| gives the frequency of oscillations of the trajectories spiraling into the fixed point
as is shown in Fig. 5. The parabola curve shows the contraction and expansion of the
eigenvalues. For β < γ the fixed I∗2 point is unstable, with one positive eigenvalue.

For β > γ, the fixed point I∗2 becomes stable with both eigenvalues negative. The system
changes stability when βc = γ and becomes complex when λ1 = λ2 (see Fig. 5).
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Fig. 5. Plot of the eigenvalues as functions of β when fixing α = 0.1 and γ = 1.0. In a) the real
part a of the eigenvalues gives the contraction and expansion of the trajectories. For β < γ
the fixed point is unstable (λ1 > 0). The system changes stability when βc = γ and becomes
complex when λ1 = λ2. Here, the straight green line represents only the real parts of the
complex eigenvalues obtained putting

√
−b = 0. In b) the imaginary part of the eigenvalues

gives the frequency of the oscillatory behavior on the trajectory toward at the fixed point.

The correspondent eigenvectors of the disease endemic equilibrium state can be calculated for
the eigenvalues in the same manner as it was shown above. For the first eigenvalue λ1, the
correspondent eigenvector u1 is given by

u1 =
1

√

1 +
(

a−
√

b
γ+α

)2
·

⎛

⎜

⎜

⎝

1

a−
√

b
γ+α · 1

√

1+
(

a−
√

b
γ+α

)2

⎞

⎟

⎟

⎠

. (18)

and for the second eigenvalue λ2, the correspondent eigenvector u2 is given by

u2 =
1

√

1 +
(

a+
√

b
γ+α

)

·

⎛

⎜

⎝

1

a+
√

b
γ+α

⎞

⎟

⎠
. (19)

In Fig. 6 we show the eigenvectors for the disease endemic equilibrium state in function of β.

For the real eigenvalue the general solution of the linearized system is given by

x(t) = C1eλ1tu1 + C2eλ2tu2

when λ1 �= λ2. By including the respective eigenvalues, Eq. (10) and Eq.(11), we get as a
solution

x(t) = C1e(β−γ)tu1 + C2e−αtu2 (20)
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Fig. 6. eigenvectors for the disease endemic equilibrium state in function of β. For a
population N = 100, where I = 0.001 and S = 99, we fixed α = 0.1, γ = 1 and vary β. We
plot the eigenvectors, u1 (blue line) and u2 (greenline), on top of the trajectory of the infected
individuals toward the second fixed point I∗2 . In a) β = 1.01, and in b) β = 1.025. In c) we
show the oscillatory trajectory toward the fixed point when β = 2.5

where the eigenvector u1 is the driving force for t → ∞, since λ1 > λ2 (see Fig. 4b) to 4f)).
When λ1 < λ2 the eigenvector u2 is the driving force for t → ∞.

For the special case where λ1 = λ2 =: λ and therefore the eigenvectors u1 = u2 =: u the
general solution is then given by

x(t) = C1eλtu + C2(te
λtu + eλtw)

where w is the so called generalized eigenvector, satisfying (A − λ1) w = u. In this case, for
t → ∞, the eigenvector u is again the driving force (see Fig. 4a)).

For the complex eigenvalues, where the real part a gives the contraction or expansion, and the

imaginary part i
√

|b| gives the frequency of oscillations of the trajectories spiraling into the
fixed point, the general solution of the linearized system is given by

x(t) = 2eat
([

C1 cos
(√

bt
)

− C2 sin
(√

bt
)]

u1 −
[

C1 sin
(√

bt
)

+ C2 cos
(√

bt
)]

u2

)

,

where C1 and C2 depend on the initial conditions and ui, respectively the real and imaginary
parts of the complex eigenvector. This expression shows that the stability of the fixed point
depends on the sign of a. For detailed information on the solution of a linear two dimensional
ODE system, see (Mattheij & Molenaar, 1996).

The stochastic SIR epidemic is modeled as a time-continuous Markov process to capture
population noise. The dynamics of the probability of integer infected and integer susceptibles,
while the recovered follow from this due to constant population size, can be give as a master
equation (van Kampen, 1992) in the following form

dp(S, I, t)

dt
=

β

N
(S + 1)(I − 1) p(S + 1, I − 1, t) + γ(I + 1) p(S, I + 1, t) (21)

+ α(N − (S − 1)− I) p(S − 1, I, t)−
(

β

N
+ γI + α(N − S − I)

)

p(S, I, t) .

This process can be simulated by the Gillespie algorithm giving stochastic realizations of
infected and susceptibles in time (Gillespie, 1976, 1978).

236 Epidemiology Insights

www.intechopen.com



Modeling Infectious Diseases Dynamics: Dengue Fever, a Case Study 9

a)

 0

 10

 20

 30

 40

 50

 60

 0  10  20  30  40  50

I(
t)

t

   

b)

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0  10  20  30  40  50

I(
t)

t

   

c)

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 0  10  20  30  40  50

I(
t)

t

   

Fig. 7. Stochastic simulations for the basic SIR epidemic model. Here 10 realizations are
plotted. We fixed α = 0.1, γ = 1 and β = 2.5. The deterministic trajectory is shown (pink
line) top of the stochastic realizations for different population size N a. In a) N = 100, in b)
N = 1000 and in c) N = 100000.

For mean values of infected 〈I〉 and susceptibles 〈S〉, defined as e.g.

〈I〉(t) :=
N

∑
S=0

N

∑
I=0

I p(S, I, t) . (22)

one can calculate the dynamics by inserting the master equation into the definition of the
mean values obtaining

d

dt
〈S〉 = α〈R〉 − β

N
〈SI〉

(23)

d

dt
〈I〉 = β

N
〈SI〉 − γ〈I〉

with 〈R〉 = N − 〈S〉 − 〈I〉. For more details on the calculations see e.g. (Stollenwerk & Jansen,
2010). These equations for the mean dynamics include now due to the nonlinear transition
rates in the master equation also higher moments 〈S · I〉. The simplest approximation to
obtain a closed ODE system is to neglect cross-correlations 〈S · I〉 − 〈S〉 · 〈I〉 ≈ 0, the so-called
mean field approximation (originally introduced for spatially extended systems in statistical
physics (Stollenwerk et al., 2010)). Hence, the equation system (23) gives with identifying
the higher moment 〈S · I〉 = 〈S〉 · 〈I〉 by a product of simple moments gives again the
ODE system for SIR system, as it was just presented above. For certain parameter regions
the mean field approximation describes the system well in terms of its mean dynamics and
only small fluctuations around it. Then the previously shown analysis of the system is
appropriate. However, noise can stabilize transients, a feature which becomes important
in parameter regions where in the deterministic description a fixed point is reached via
decreasing oscillations, as we have observed them in the SIR system. The noisy system would
show here continued oscillations (Alonso et al., 2006).

In Fig. 7 we compare the deterministic and stochastic dynamics and we see that the magnitude
of stochastic fluctuations decreases when the population size increases. However, the good
approximation (see Fig. 7c)) is only achieved when the population size is large enough (see
Fig. 7a) where most simulations die out very quickly for small population size).

Almost all mathematical models of diseases start from the same basic premise: that the
population can be subdivided into a set of distinct classes. The most commonly used
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framework for epidemiological systems, is still the SIR type model, a good and simple model
for many infectious diseases. However, different extensions of the classical single-strain SIR
model show a rich dynamic behavior, e.g. (Stone et al., 2007) in measles, or in generalized
multi-strain SIR type models to describe the epidemiology of dengue fever (Aguiar et al.,
2008).

3. Dengue fever epidemiology

Dengue is a viral mosquito-borne infection which in recent years has become a major
international public health concern. According to the estimates given by (PDVI, 2011), 3.6
billion (55% of world population) are at risk of acquiring dengue infection (see Fig. 8a)). It
is estimated that every year, there are 70 − 500 million dengue infections, 36 million cases of
dengue fever (DF) and 2.1 million cases of dengue hemorragic fever (DHF), with more than
20.000 deaths per year (CDC, 2011; PDVI, 2011; WHO, 2009). In many countries in Asia and
South America DF and DHF has become a substantial public health concern leading to serious
social-economic costs.

Fig. 8. Worldwide Dengue distribution 2010. In red Countries and areas where dengue has
been reported Data source: World Health Organization (WHO) & Centers for Disease
Control and Prevention (CDC). Adapted from (Gubler, 2002; Mackenzie et al., 2004).

Dengue fever is transmitted by the female domestic mosquito Aedes aegypti, although Ae.
albopictus and Ae. polynesiensis can also act as transmission vector (Favier et al., 2005). Virus
transmission in its simplest form involves the ingestion of viremic blood by mosquitoes and
passage to a second susceptible human host. The mosquito becomes infected when taking a
blood meal from a viremic person. After an extrinsic incubation period, the mosquito becomes
infective and remains so during its entire life span (Rigau-Pérez et al., 1998). As the blood meal
stimulates ovoposition, which undergoes at least one, often more, reproductive cycles there is
an opportunity of vertical transmission to the eggs, passing the virus to the next generation of
mosquitoes (CDC, 2011; Monath, 1994; Rosen et al., 1983).

There are four antigenically distinct dengue viruses, designated DEN-1, DEN-2, DEN-3, and
DEN-4 (Guzmán et al., 2010; Halstead, 1994; SES, 2010; WHO, 2009). Infection by one serotype
confers life-long immunity to only that serotype and a short temporary cross-immunity period
to other serotypes exists. It lasts from three to nine months, when the antibody levels created
during the response to that infection would be enough to protect against infection by a
different but related serotype (Dejnirattisai et al., 2010; Halstead, 1994; Matheus et al., 2005;
SES, 2010; WHO, 2009). Two variants of the disease exist: dengue fever (DF), a non-fatal form
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of illness, and dengue hemorrhagic fever (DHF), which may evolve toward a severe form
known as dengue shock syndrome (DSS).

Epidemiological studies support the association of DHF with secondary dengue infection
(Guzmán et al., 2000; Halstead, 1982, 2003; Nisalak et al., 2003; Vaughn, 2000), and there is
good evidence that sequential infection increases the risk of developing DHF, due to a process
described as antibody-dependent enhancement (ADE), where the pre-existing antibodies to
previous dengue infection cannot neutralize but rather enhance the new infection.

Fig. 9. Scheme of the immunological response on recurrent dengue infections. In (a.) the first
infection with a given dengue virus serotype, in (b.) production of antibodies
(Immunoglobulin M (IgM)), in (c.) inactivation of the virus and in (d.) production of
antibodies (IgG class, the so called memory antibodies). In (e.) the temporary cross immunity
period, that lasts between 3-9 months. After that period, the individual can get infected again
with another dengue virus serotype (f.). In (g.) the IgG from the previous dengue infection
binds to the new virus but do not inactivate them. In (h.) the complex antibody-virus
enhances the new infection (i.). In (j.) the production of antibodies (IgM class) which is then
able to inactivate the new viruses, leading to (l.), an enhanced immune response, such that
hemorrhagic symptoms are observed. In (m.) production of IgG antibodies.

In the first dengue infection virus particles will be captured and processed by so-called antigen
presenting cells. These viruses will be presented to T-cells causing them to become activated.
And likewise B-cells will encounter their antigen free floating and become activated. B-cells
produce antibodies that are used to tag the viruses to encourage their uptake by macrophages
and inactivate them. In a secondary infection the antibodies from the first infection will attach
to the virus particles but will not inactivate them. The antibody-virus complex suppresses
innate immune responses, increasing intracellular infection and generating inflammatory
citokines and chemokines that, collectively, result in enhanced disease (Dejnirattisai et al.,
2010; Guzmán et al., 2010; Halstead, 1982, 1994, 2003; Mackenzie et al., 2004; WHO, 2009).
Fig.9 is an scheme to illustrate the immunological response on recurrent dengue infections.

DF is characterized by headache, retro-orbital pain, myalgia, arthralgia, rash, leukopenia,
and mild thrombocytopenia. The symptoms resolve after 27 days. DHF is a potentially
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deadly complication that is characterized by high fever and hemorrhagic phenomenae. DHF
develops rapidly, usually over a period of hours, and resolves within 12 days in patients who
receive appropriate fluid resuscitation. Otherwise, it can quickly progress to shock (CDC,
2011; WHO, 2009).

Treatment of uncomplicated dengue cases is only supportive, and severe dengue cases
requires careful attention to fluid management and proactive treatment of hemorrhagic
symptoms (CDC, 2011; WHO, 2009). A vaccine against dengue is not yet available, since
it would have to simulate a protective immune response to all four serotypes (Stephenson,
2005), although several candidates of tetravalent vaccines are at various stages of development
(WHO, 2011).

Mathematical models describing the transmission of dengue viruses appeared in the literature
early as 1970 (Fischer & Halstead, 1970). More recently, mathematical models describing
the transmission of dengue viruses have focused on the ADE effect and temporary cross
immunity trying to explain the irregular behavior of dengue epidemics. Such models
ultimately aim to be used as a predictive tool with the objective to guide the policies of
prevention and control of the dengue virus transmission, including the implementation
of vaccination programs when the candidate dengue fever vaccines will be accessible. In
the literature the multi-strain interaction leading to deterministic chaos via ADE has been
described previously, e.g. (Billings et al., 2007; Ferguson et al., 1999; Schwartz et al, 2005) but
neglecting temporary cross immunity. Consideration of temporary cross immunity is rather
complicated and up to now not in detail analyzed. Models formulated in (Loureço & Recker,
2010; Nagao & Koelle, 2008; Recker et al., 2009; Wearing & Rohani, 2006), did not investigate
closer the possible dynamical structures. In (Aguiar & Stollenwerk, 2007; Aguiar et al., 2008,
2009, 2011 a) by including temporary cross immunity into dengue models with ADE, a rich
dynamic structure including deterministic chaos was found in wider and more biologically
realistic parameter regions.

4. Multi-strain models motivated by dengue fever epidemiology: a review

Multi-strain dynamics are generally modelled with SIR-type models and have demonstrated
to show critical fluctuations with power law distributions of disease cases, exemplified
in meningitis and dengue epidemiology (Massad et al., 2008; Stollenwerk & Jansen, 2003;
Stollenwerk et al., 2004). Dengue models including multi-strain interactions via ADE but
without temporary cross immunity period e.g. (Billings et al., 2007; Ferguson et al., 1999;
Schwartz et al, 2005) have shown deterministic chaos when strong infectivity on secondary
infection was assumed. The addition of the temporary cross immunity period in such models
shows a new chaotic attractor in an unexpected parameter region of reduced infectivity
on secondary infection (Aguiar & Stollenwerk, 2007; Aguiar et al., 2008, 2009, 2011 a), i.e.
deterministic chaos was found in a wider parameter regions. This indicates that deterministic
chaos is much more important in multi-strain models than previously thought, and opens
new ways to data analysis of existing dengue time series, as will be shown below. It offers a
promising perspective on parameter values inference from dengue cases notifications.

The basic multi-strain model divides the population into ten classes: susceptible to both
strains, 1 and 2 (S), primarily infected with strain one (I1) or strain two (I2), recovered from
the first infection with strain one (R1) or strain two (R2), susceptible with a previous infection
with strain one (S1) or strain two (S2), secondarily infected with strain one when the first

240 Epidemiology Insights

www.intechopen.com



Modeling Infectious Diseases Dynamics: Dengue Fever, a Case Study 13

infection was caused by strain two (I21) or for second time infected with strain two when
the first infection was caused by strain one (I12). Notice that infection by one serotype confers
life-long immunity to that serotype. Then the individuals recover from the secondary infection
(R).

To capture differences in primary infection by one strain and secondary infection by another
strain we consider a basic two-strain SIR-type model for the host population, which is only
slightly refined as opposed to previously suggested models for dengue fever (Billings et al.,
2007; Ferguson et al., 1999; Schwartz et al, 2005).

The stochastic version of the multi-strain dengue model is now in complete analogy to the
previously described SIR model, and the mean field ODE system for the multi-strain dengue
model can be read from the following reaction scheme (24), describing the transitions for first
infection with strain 1 and secondary infection with strain 2, and for the reverse process, where
the first infection is caused by strain 2 and the secondary infection is caused by strain 1, the
same reaction scheme can be used to describe the transitions by just changing labels.

S + I1
β−→ I1 + I1

S + I21
φβ−→ I1 + I21

I1
γ−→ R1

R1
α−→ S1 (24)

S1 + I2
β−→ I12 + I2

S1 + I12
φβ−→ I12 + I12

I12
γ−→ R

The demographic transitions are S, I1, I2, R1, R2, S1, S2, I12, I21, R
μ−→ S defining the system

of two strains completely (for more information on the deterministic ODE system and its
parametrization, see (Aguiar et al., 2011 a)).

The complete system of ordinary differential equations for the two strain epidemiological
system is given by Eq. system (25) and the dynamics are described as follows. Susceptibles to

both strains can get the first infection with strain one or strain two with force of infection
βI
N

when the infection is acquired via an individual in his first infection or
φβI
N when the infection

is acquired via an individual in his second infection. They recover from the first infection
with a recovery rate γ, conferring full and life-long immunity against the strain that they
were exposed to, and also a short period of temporary cross-immunity α against the other
strain, becoming susceptible to a second infection with a different strain. The susceptible with

a previous infection gets the secondary infection with force of infection
βI
N or

φβI
N depending

on whom (individual on his primary or secondary infection) is transmitting the infection.
Then, with recovery rate γ, the individuals recover and become immune against all strains.
We assume no epidemiological asymmetry between strains, i.e. infections with strain one
or strain two contribute in the same way to the force of infection. Here, the only relevant
difference concerning disease transmissibility is that the force of infection varies accordingly
to the number of previous infections the hosts have experienced. The parameter φ in our
model, is the ratio of secondary infection contribution to the force of infection. For more
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information on the parametrization of ADE and secondary dengue infection by φ, see (Aguiar
et al., 2008; Ferguson et al., 1999). The parameter values are given in Table 1, if not otherwise
explicitly stated.

Ṡ = − β

N
S(I1 + φI21)−

β

N
S(I2 + φI12) + μ(N − S)

İ1 =
β

N
S(I1 + φI21)− (γ + μ)I1

İ2 =
β

N
S(I2 + φI12)− (γ + μ)I2

Ṙ1 = γI1 − (α + μ)R1

Ṙ2 = γI2 − (α + μ)R2 (25)

Ṡ1 = − β

N
S1(I2 + φI12) + αR1 − μS1

Ṡ2 = − β

N
S2(I1 + φI21) + αR2 − μS2

˙I12 =
β

N
S1(I2 + φI12)− (γ + μ)I12

˙I21 =
β

N
S2(I1 + φI21)− (γ + μ)I21

Ṙ = γ(I12 + I21)− μR ,

Par. Description Values Ref

N population size 100 —

μ new born susceptible rate 1/65y (UNWPP, 2008)

γ recovery rate 52y−1 (Gubler et al., 1981; WHO, 2009)

β infection rate 2γ (Ferguson et al., 1999)

α temporary cross-immunity rate 2y−1 (Matheus et al., 2005; SES, 2010)

φ ratio of contrib. to force of inf. variable —

Table 1. Parameter set, rates given in units per year, ratio without unit

The stationary states can be calculated analytically by setting the time derivatives in Eq.
system (25) to zero,
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S∗ =
μN − (γ + μ)(I∗1 + I∗2 )

μ

I∗21 =
1

φ1

(

N

β1S∗ (γ + μ)− 1

)

I∗1

I∗12 =
1

φ2

(

N

β2S∗ (γ + μ)− 1

)

I∗2

S∗
1 =

(γ + μ)I∗12

(I∗2 + φ2 I∗12)

N

β2
(26)

S∗
2 =

(γ + μ)I∗21

(I∗1 + φ1 I∗21)

N

β1

R∗
1 =

γ

α + μ
I∗1

R∗
2 =

γ

α + μ
I∗2 ,

where still the stationary values of I∗1 and I∗2 have to be determined.

The solution of coexistence of both strains for I1 = I2 = I∗ is given by the following expression

I∗1 = I∗2 = −

⎡

⎣

αγ
(α+μ)(γ+μ)

φ +
(

(γ+μ)
β − 3

)

4
(γ+μ)

μ

(

1 − αγ
(α+μ)(γ+μ)

φ
)

⎤

⎦ N (27)

−

√

√

√

√

√

√

N2

4

⎡

⎣

αγ
(α+μ)(γ+μ)

φ +
(

(γ+μ)
β − 3

)

2
(γ+μ)

μ

(

1 − αγ
(α+μ)(γ+μ)

φ
)

⎤

⎦

2

+

⎡

⎣

N2μ
(

(γ+μ)
β − 1

)

2
(γ+μ)2

μ

(

1 − αγ
(α+μ)(γ+μ)

φ
)

⎤

⎦ ,

and the solution of the extinction of one of the strains is as follows

I∗1 =
μN(β − (γ + μ))

(γ + μ)β

(28)

I∗2 = 0 .

Finally, the stationary value of R∗, when hosts have been recovered from both strains, is given
by the balance equation for the total population size N, explicitly

R∗ = N − (S∗ + I∗1 + I∗2 + R∗
1 + R∗

2 + S∗
1 + S∗

2 + I∗12 + I∗21) . (29)

The time series for φ < 1 shows that the total number of infected I := I1 + I2 + I12 + I21 stays
quite away from zero, avoiding the chance of extinction in stochastic systems with reasonable
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system size (see Fig. 10 a)). The parameter region previously considered to model ADE effects
on dengue epidemiology, i.e. φ > 1, leads to rather low troughs for the total number of
infected giving unrealistically low numbers of infected. In Fig. 10 b) the logarithm of total
number of infected goes as low as −70 for φ = 2.7 in the chaotic region of φ > 1. Population
fluctuations would in this case drive almost surely the system to extinction.
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Fig. 10. Time series of the logarithm of the overall infected (ln(I)) comparison: a) simulation
for φ = 2.7 and b) simulation for φ = 0.6 for the same time interval.

The state space plots in terms of the variables S and the logarithm of the total number of
infected I show a rich dynamical behavior with bifurcations from fixed point to limit cycles,
till completely irregular behavior (see Fig. 11).

a)

-8

-7

-6

-5

-4

-3

-2

-1

 36  38  40  42  44  46  48  50

ln
(I

1
+

I 2
+

I 1
2
+

I 2
1
) 

(t
)

S(t) b)

-8

-7

-6

-5

-4

-3

-2

-1

 36  38  40  42  44  46  48  50

ln
(I

1
+

I 2
+

I 1
2
+

I 2
1
) 

(t
)

S(t) c)

-8

-7

-6

-5

-4

-3

-2

-1

 36  38  40  42  44  46  48  50

ln
(I

1
+

I 2
+

I 1
2
+

I 2
1
) 

(t
)

S(t)

Fig. 11. Attractors for various values of φ < 1: a) fixed point for φ = 0.1, and b) limit cycle for
φ = 0.4, and c) chaotic attractor for φ = 0.6.

Looking for higher values of φ, the chaotic attractor becomes unstable, just leaving simple
limit cycles as attractors for large parameter regions beyond φ = 1 (Aguiar & Stollenwerk,
2007; Aguiar et al., 2008). Only for much higher values of φ >> 1, another chaotic attractor
appears, the classical “ADE chaotic attractor” (Aguiar & Stollenwerk, 2007; Aguiar et al., 2008;
Ferguson et al., 1999).

The bifurcation diagram was obtained plotting the local extrema of ln(I) over the varying
parameter φ (see Fig. 12). Fixed points appear as one dot per parameter value, limit cycles
appear as two dots, double-limit cycles as four dots, more complicated limit cycles as more
dots, and chaotic attractors as continuously distributed dots for a single φ value (Ruelle, 1989).
We observe two chaotic windows, one for φ < 1, where this dynamical behavior has never
been described before, and also another one for φ > 1 (see Fig. 12a)) where the minimal
values go to very low numbers of infected, which already has been described (see Fig. 12b)) in
previous publications (Billings et al., 2007; Ferguson et al., 1999; Schwartz et al, 2005). In Fig.
12b) the dynamical behavior was obtained when neglecting the temporary cross-immunity
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Fig. 12. Bifurcation diagram for the local extrema of the overall infected with changing
parameter φ. In a) α = 2 (six month) and in b) α = 52 (one week).

period, i.e. by putting α → ∞. The recovered individuals can be immediately infected
with another strain, whereas consideration of temporary cross-immunity brings a new chaotic
attractor found first by Aguiar et al. (Aguiar & Stollenwerk, 2007; Aguiar et al., 2008).

This finding encourages to look closer to the parameter region of φ < 1, when dengue
patients in a secondary infection evolving to severe disease because of the ADE phenomenon
contribute less to the force of infection, and not more, as previous models suggested. This
assumption is likely to be more realistic for dengue fever since the possible severity of a
secondary infection may hospitalize people, not contributing to the force of infections as much
as people with first infection.
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Fig. 13. In a) spectrum of the four largest Lyapunov exponents with changing parameter φ
and fixed α = 2. In b) we show the one-parameter bifurcation diagram with temporary
cross-immunity rate α = 2 and varying the ratio of secondary infection contribution to the
force of infection φ. Solid lines denote stable equilibria or limit cycles, and dashed lines
unstable equilibria or limit cycles.

We quantify the attractor structure, fixed point, limit cycle or chaotic attractor etc., by
calculating Lyapunov exponents (Ott, 1993; Ruelle, 1989), which were calculated using an
iterated technique along a trajectory using the QR decomposition algorithm via Householder
matrices (see (Aguiar et al., 2008; Holzfuss & Lauterborn, 1989; Holzfuss & Parlitz, 1991)).
Lyapunov exponents are essentially a generalization of eigenvalues determining stability
versus instability along trajectories. A negative largest Lyapunov exponent indicates a stable
fixed point as attractor, a zero largest Lyapunov exponent indicates a stable limit cycle and
a positive largest Lyapunov exponent indicates a chaotic attractor. Fig. 13a) shows the
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largest four Lyapunov exponents as a function of φ. We observe that for small φ up to 0.1
all four Lyapunov exponents are negative, indicating the stable fixed point solution. Then
follows a region up to φ = 0.5 where the largest Lyapunov exponent is zero, characteristic for
stable limit cycles. Above φ = 0.5 a positive Lyapunov exponent, clearly separated from the
second largest Lyapunov exponent being zero, indicates deterministically chaotic attractors.
In the chaotic window between φ = 0.5 and φ = 1 also periodic windows appear, giving a
zero largest Lyapunov exponent. These findings are in good agreement with the numerical
bifurcation diagram, Fig. 13b).

A further analysis of the bifurcation structure, in the region of interest of φ < 1, was performed
using the numerical software AUTO (AUTO, 2009). Various bifurcations were found: Hopf
bifurcation H(φ = 0.11326), pitchfork bifurcations P(φ = 0.41145, 0.99214), torus bifurcation
TR(φ = 0.55069) and tangent bifurcations T(φ = 0.4.9406, 0.53874, 0.93103, 0.97825, 1.05242).
In addition to this main bifurcation pattern we found two isolas, consisting of isolated limit
cycles existing between two tangent bifurcations (see Fig. 13b), for more information on the
isolas see (Aguiar et al., 2008, 2009). These results agree very well with the simulation results
shown in the bifurcation diagram for the maxima and minima of the overall infected in Fig.
12a).
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Fig. 14. Time series of DHF incidence in Thailand.

Dengue fever epidemiology is characterized as a yearly cycle of incidences (see Fig. ??),
therefore in order to be able to reproduce the yearly cycle in dengue incidence seasonal
forcing and a low import of infected have to be included in the models. The first recorded
epidemic of DHF in Thailand (population of approximately 66 million people (Wikipedia,
2011)) was in 1958 (WHO, 2009). The co-circulation of all four dengue serotypes and their
capacity to produce severe dengue disease was demonstrated as early as 1960 in Bangkok,
Thailand (Halstead et al., 1969). DHF occurred first only in Bangkok, but was disseminated
to the whole region during the 1970s (Chareonsook et al., 1999; Gubler, 2002; Halstead et al.,
1969). Physicians in Thailand are trained to recognize and treat dengue fever and practically
all cases of DHF and DSS are hospitalized. A system for reporting communicable diseases
including DHF/DSS was considered fully installed in 1974 and the data bank of DHF and
DSS is available at the Ministry of Public Health, Bangkok (Chareonsook et al., 1999).

We extend the previously studied non-seasonal model by adding seasonal forcing, mimicking
the vectorial dynamics, and a low import of infected individuals, which is realistic in the
dynamics of infectious diseases, in order to get a more realistic pattern of dengue fever
epidemics, with irregular, yearly and smooth outbreaks.
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Fig. 15. The state flow diagram for the seasonal multi-strain model. The transition rate μ
coming out of the class R represents the death rates of all classes,
S, I1, I2, R1, R2, S1, S2, I12, I21, R, getting into the class S as a birth rate.

The seasonal multi-strain model is represented in Fig. 15 by using a state flow diagram where
the boxes represent the disease related stages and the arrows indicate the transition rates. In
the same manner as described for the non-seasonal, the population is divided into ten classes,
with constant size N = S+ I1 + I2 + R1 + R2 + S1 + S2 + I12 + I21 + R. The complete system of
ordinary differential equations for the seasonal multi-strain epidemiological can be written as
shown in system (25), with the difference that now the parameter β takes the seasonal forcing
into account as a cosine function given explicitly by

β(t) = β0 · (1 + η · cos(ω · t)) , (30)

where β0 is the infection rate, and η is the degree of seasonality. In this model, a susceptible
individual can become infected also by meeting an infected individual from an external
population (hence (β/N · S · I) goes to (β/N · S · (I + ρ · N))) contributing to the force of
infection with an import parameter ρ.

The parameters are fixed, temporary cross immunity rate α = 2y−1, recovery rate γ = 52y−1,
infection rate β0 = 2 · γ, seasonality η = 0.35, import factor ρ = 10−10, birth and death rate
μ = 1/65y and the ratio of secondary infection contribution to the force of infection φ = 0.9.

In Fig. 16a) the time series simulation results for the total number of infected (I1 + I2 + I12 +
I21) in the non-seasonal system, previously studied in (Aguiar et al., 2008), is shown. Besides
showing an irregular pattern of outbreaks that happens every 5 years, the non-seasonal system
and its time series are not able to represent dengue fever epidemiology that is characterized
as a yearly cycle of incidences. By adding low seasonality into the system, the epidemic
outbreaks appear every year (see (Aguiar et al., 2011 a)). However, between two large
outbreaks there is a very low number of cases in subsequent years, which is also not data
alike. In Fig. 7c), the time series simulation in the high seasonal system with a low import
of infected contributing to the force of infection is shown. The addition of import into the
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a)

b)

Fig. 16. Time series simulations. In a) time series simulation for the non-seasonal model
(η = 0). In b) time series simulation for the seasonal model with a low import of infected.
Here, the degree of seasonality is η = 0.35 and the import of infected ρ = 10−10.
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Fig. 17. Bifurcation diagram for the seasonal model with import. Here, the degree of
seasonality η = 0.35 and the import factor ρ = 10−10.

seasonal system gives a much more realistic pattern of dengue fever epidemics, with irregular,
yearly and smooth outbreaks. The system has a reasonable size (the number of infected stays
quite away from zero), avoiding the chance of extinction in stochastic systems. For detailed
analysis on the attractors in state space for the seasonal model, see (Aguiar et al., 2011 a). The
bifurcation diagram for the seasonal model with import is shown in Fig. 17.

For the seasonal model with import AUTO predicted a torus bifurcation TR at φ = 0.13, and
at φ = 0.522 which are also predicted very well when comparing with the results given by
the Lyapunov exponent calculation. In the limiting case where the amplitude of the seasonal
forcing is zero, the torus bifurcation TR of the seasonally forced system coincides with the
Hopf bifurcation H of the non-seasonal system, as was shown in (Aguiar et al., 2011 a).
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Fig. 18. Qualitative insight into the predictability in the monthly time series. In a) the
Lyapunov spectrum and in b) the time series for the non-seasonal model. In c) the Lyapunov
spectrum and in d) the time series for the seasonal model with import.

In Fig. 18 the Lyapunov spectrum for both non-seasonal model and the seasonal model with
import are shown and compared concerning the prediction horizon of the monthly peaks in
the multi-strain dengue model time series. We take as an example the Dominant Lyapunov
Exponent (DLE) for φ = 0.9 in the region where the system is chaotic (positive DLE). For
the non-seasonal system, the DLE = 0.04 giving around 25 years of prediction horizon in the
monthly time series (see Fig. 18b)), whereas for the seasonal system with import,the DLE=
0.118 giving around 8.5 years of prediction horizon in the monthly time series. It is clear that
the addition of seasonal forcing into the system by itself decreases the practical predictability,
however, the addition of a low import into the seasonally forced system helps to get a more
complex dynamics and a better prediction horizon in the monthly time series. In order to get
a qualitative insight into the predictability in the monthly sampled time series, i.e. to show
how the original system behaves under a small perturbation we plot two different trajectories
of the same system (for the non-seasonal model in Fig. 18b), and for the seasonal model with
import of infected in Fig. 18d)), where the perturbed system (black line) is compared with the
original model simulation (red line). To get the trajectory of the perturbed system, we keep
the last point of the transient of the original system and use those values as starting values to
compute the new and perturbed trajectory. The perturbation is given by Sp = S + R · ǫ and
Rp = R · (1.0 − ǫ), where Sp is the susceptibles perturbed and Rp is the recovered perturbed
with ǫ = 0.001. (for details on the perturbed system see (Aguiar et al., 2011 a)).

The inspection of the available DHF incidence data in Thailand shows a smooth behavior with
a well defined maximum each year of irregular hight for the Northern Provinces.
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Fig. 19. Empirical DHF incidence data matched with the model simulation.

We take the Province of Chiang Mai as a case study where the empirical DHF incidence data
and the time series simulation for the seasonal model with import are compared (see Fig.
19)). The seasonal model with import shows complex dynamics and qualitatively a very good
result when comparing empirical DHF and simulations. However, the extended model needs
to be parametrized on data referring to incidence of severe disease.

5. Discussions

In this chapter we presented the properties of the basic SIR epidemic model for infectious
diseases with a summary of the analysis of the dynamics, identifying the thresholds and
equilibrium points in order to introduce notation, terminology. The results that were
generalized to more advanced models motivated by dengue fever epidemiology.

The epidemiology of dengue fever was described presenting the relevant biological features
that are taken into the modeling process. Then, multi-strain models previously described in
the literature were presented. We focused in a minimal model motivated by dengue fever
epidemiology, formulated first by Aguiar et al. (Aguiar & Stollenwerk, 2007), where the
notion of at least two different strains is needed to describe differences between primary
infections, often asymptomatic, and secondary infection, associated with the severe form of
the disease. We discussed the role of seasonal forcing and the import of infected individuals
in such systems, the biological relevance and its implications for the analysis of the available
dengue data. The extended model (Aguiar et al., 2011 a) shows complex dynamics and
qualitatively a good agreement between empirical DHF monitoring data and the obtained
model simulation. This suggests that the used parameter set can be the starting set for a
more detailed parameter estimation procedure. Such a technical parameter estimation is
notoriously difficult for chaotic time series but temporally local approaches are possible (He
et al., 2010; Ionides et al., 2006). At the moment only such minimalistic models have a chance
to be qualitatively understood well and eventually tested against existing data.

The introduction of stochasticity is needed to explain the fluctuations observed in some of
the available data sets, revealing a scenario where noise and complex deterministic skeleton
strongly interact (Aguiar et al., 2011 b). For large enough population size, the stochastic
system can be well described by the deterministic skeleton gaining insight into the relevant
parameter values purely on topological information of the dynamics, rather than classical

250 Epidemiology Insights

www.intechopen.com



Modeling Infectious Diseases Dynamics: Dengue Fever, a Case Study 23

parameter estimation of which application is in general restricted to fairly simple dynamical
scenarios.

6. Conclusions

Being able to predict future outbreaks of dengue in the absence of human interventions is a
major goal if one wants to understand the effects of control measures. Even after a dengue
virus vaccine has become accessible, this holds true for the implementation of a vaccination
program. For example, to perform a vaccine trial in a year with normally low numbers
of cases would make statistical tests of vaccine efficacy much more difficult than when it
was performed in a year with naturally high numbers of cases. Thus predictability of the
next season’s hight of the dengue peak on the basis of deterministic balance of infected and
susceptible would be of major practical use.
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