
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IntechOpen

https://core.ac.uk/display/322414122?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

0

A Guided Web Service Security Testing Method

Sébastien Salva
LIMOS UMR CNRS 6158, University of Auvergne

France

1. Introduction

For the last five years, the Internet is being revolutionized by becoming a Service-oriented
platform. This tremendous inflection point in Computer Science leads to many new features
in design and development such as the deployment of interoperable services accessible
from Web sites or standard applications, the modelling of high level Business processes
orchestrating Web Service sets, or recently the virtualization of service-based applications by
means of the Cloud paradigm.

To achieve reliable Web services, which can be integrated into compositions or consumed
without any risk in an open network like the Internet, more and more software development
companies rely on software engineering, on quality processes, and quite obviously on testing
activities. In particular, security testing approaches help to detect vulnerabilities in Web
services in order to make them trustworthy. Nevertheless, it is quite surprising to notice that
few security testing methods have been proposed for Web Services. This chapter addresses
this issue by presenting a formal security testing method for stateful Web Services. Such
services are persistent through a session and have an internal state which evolves over
operation call sequences. For instance, all the Web Services using shopping carts or beginning
with a login step are stateful. The proposed method aims to experiment black box Web Services,
from which only SOAP messages (requests and responses) are observable. We do not have
access to the code, Web services can be experimented only through their interfaces. Our
approach is an active Model Based one: it relies on a specification formalized with a model
to test Web services by means of test cases generated from the model. Model based testing
approaches offer many advantages such as the description of a service without ambiguity.
Accompanied with a formal method, some steps of the test can be also automated, e.g., the
test case generation Rusu et al. (2005); Tretmans (2008). The use of a model also helps to
define a relation between the specification and its black-box implementation to express clearly
the confidence level between them. In this paper, we model Web services with Symbolic
Transition Systems (STS Frantzen et al. (2005)) describing the different states, the called
operations and the associated data.

In literature, for the same reasons, security policies are often described by means of formal
rules, which regulate the nature and the context of actions that can be performed. Several
security rule languages have been introduced in Cuppens et al. (2005); Senn et al. (2005).
We have chosen Nomad (Non atomic actions and deadlines Cuppens et al. (2005)) to model
abstract test patterns which can be directly derived from an existing security rule set. Nomad
is well suited for expressing properties such as permissions, prohibitions or obligations and

11

www.intechopen.com

2 Will-be-set-by-IN-TECH

is able to take into account response delays. Our approach takes a Web Service specification
and applies abstract test patterns on the operation set to generate test requirements called test
purposes. These ones, which guide the tests, are then synchronized with the specification to
produce the test case suite. The latter checks the satisfiability of the test relation secure, which
formally defines the security level between the implementation and its specification combined
with test purposes. The Amazon E-commerce Web Service (AWSECommerceService) Amazon
(2009) is illustrated as an example on which we apply our method.

Another part of the book chapter is dedicated to the experimentation of the method on existing
Web Services with an academic tool. The obtained results demonstrate a dramatic lack of
security in many Web Services since 11 percent dot not satisfy the restrictions given by our
security test patterns.

This book chapter is structured as follows: Section 2 provides an overview of the Web Service
paradigm and on some related works about Web Service security testing. Sections 3 and
4 describe the Web service and test pattern modelling respectively. The testing method is
detailed in Section 5. In Section 6, we discuss some experimentation results, the test coverage
and the complexity of the method. Finally, Section 7 gives some perspectives and conclusions.

2. Web services security overview

Web Services are "self contained, self-describing modular applications that can be published, located,
and invoked across the Web" Tidwell (2000). To ensure the Web Service interoperability, the WS-I
organization has suggested profiles, and especially the WS-I basic profile WS-I organization
(2006), composed of four major axes: the Web Service interface description with the WSDL
language (Web Services Description Language World Wide Web Consortium (2001)), the
definition and the construction of XML messages, based upon the Simple Object Access
Protocol (SOAP World Wide Web consortium (2003)), the service discovery in UDDI registers
(Universal Description, Discovery Integration Specification (2002)), and the Web service
security, which is obtained by using the HTTPS protocol.

It is surprising to notice that security was the poor relation during the rush to Web Services
and it is manifest that the HTTPS protocol was not sufficient to fulfill the security requirements
of service-based applications. We can now find a tremendous set of documents and
specifications related to Service security. The WS-security standard (Web Service Security
OASIS consortium (2004)) gathers most of them. This document describes a SOAP rich
extension to apply security to Web services by bringing message encryptions, message
signing, security token attachment, etc. Both the policy requirements of the server side and the
policy capability of the client side can be expressed by means of the WS-Policy specification.
Nevertheless, this one is "only" SOAP-based, and defines requirements on encryption, signing
or token mechanisms. Higher level rules cannot be expressed with WS-Policy.

Besides these specifications, several academic papers Gruschka & Luttenberger (2006);
ISO/IEC (2009); Singh & Pattterh (2010) and the OWASP organization OWASP (2003) focused
on Service security in regard to access control by decomposing it into several criteria:
availability, integrity, confidentiality, authorization, authentication and freshness and by
proposing recommendations for each one. Each criterion can be also modelled formally by
means of security rules written with languages such as XACML (eXtensible Access Control
Markup Language OASIS standards organization (2009)), Nomad (Security Model with Non

196 Emerging Informatics – Innovative Concepts and Applications

www.intechopen.com

A Guided Web Service Security Testing Method 3

Atomic Actions and Deadlines Cuppens et al. (2005)), or OrBAC (Organisation-based access
control Kalam et al. (2003)).

Some other papers, focusing on security rule modelling and formal testing, have been
proposed in literature. Modelling specifications for testing and defining formal methods is
more and more considered in literature and in industry because this offers many advantages
such as the definition of the confidence level of the implementation in comparison with its
specification, the coverage of the tests, or the automation of some steps. An overview of
model based testing is given in Tretmans (2008).

These works can be grouped into the following categories:

• Test Generation for Model-based Policies. Test generation methods for model-based policies
construct abstract test cases directly from models describing policies. For instance, Le
Traon et al. Le Traon et al. (2007) proposed test generation techniques to cover security
rules modelled with OrBAC. They identified rules from the policy specification and
generated abstract test cases to validate some of them. Senn et al. showed, in Senn
et al. (2005), how to formally specify high-level network security policies, and how to
automatically generate test cases, by using the specification. In Darmaillacq et al. (2006),
network security rules are tested by modelling the network behaviour with labelled
transition systems. Then, test patterns are injected into existing test cases to validate the
rules.

• Random Test Generation: or fuzzy testing is a technique which automatically or
semi-automatically constructs test cases with random values. For instance, in Martin
(2006), the authors developed an approach for random test generation from XACML
policies. The policy is analyzed to generate test cases by randomly selecting requests from
the set of all possible requests,

• Mutation testing: usually involve mutation of policies or programs. In Mouelhi et al. (2008),
the authors proposed a model-driven approach for specifying testing security policies in
Java applications. The policy is modelled with a control language such as OrBAC and
translated into XACML. Then, the policy is integrated into the application. Faults are
injected into the policy to validate the policy in the application by mutating the original
security rules.

Concerning, the Web service security testing, which is the topic of the chapter, few dedicated
works have been proposed. In Gruschka & Luttenberger (2006), the passive method, based
on a monitoring technique, aims to filter out the SOAP messages by detecting the malicious
ones to improve the Web Service’s availability. Mallouli et al. also proposed, in Mallouli
et al. (2008), a passive testing method which analyzes SOAP messages with XML sniffers to
check whether a system respects a policy. In Mallouli et al. (2009), a security testing method is
described to test systems with timed security rules modelled with Nomad. The specification
is augmented by means of specific algorithms for basic prohibition and obligation rules only.
Then, test cases are generated with the "TestGenIF" tool. A Web Service is illustrated as an
example.

Our first motivation comes from the paper Mallouli et al. (2009) which describes a testing
method from Nomad rules. This one can handle basic rules composed of abstract actions only
and can be applied on generic systems. In this book chapter, we intend to propose a specific
security testing method which takes into account black box Web Services deployed in a SOAP

197A Guided Web Service Security Testing Method

www.intechopen.com

4 Will-be-set-by-IN-TECH

environment that is used to invoke operations. We claim that SOAP must be considered while
testing since it modifies the Web Service behaviour and thus may falsify the testing verdict.
So, in Section 3.2 we study the Web service consuming with SOAP and propose a specification
completion to take it into account in the test case generation.

We consider the access control-based vulnerabilities expressed in OWASP (2003) to describe
some security test patterns composed of actions such as operation requests. Actually, we
specialize our test patterns for Web services to experiment our method. So, test patterns
are composed of malicious requests (XML and SQL injections) for testing the Web Service
availability, authentication and authorization. They also contain different variable domain
sets such as RV composed of values well-known for detecting bugs and random values,
or Inj composed of values for both SQL and XML injections. So, our method covers
several categories cited previously (model-based and random testing). Then, we present a
dedicated testing methodology, based upon a formal security test relation, denoted secure
which expresses, without ambiguity, the security level of an implementation with regard
to its specification and to a set of test patterns. To check the satisfiability of secure, test
patterns are translated into test purposes. Then, concrete test cases are generated by means
of a synchronous product between the specification and test purposes. Intuitively, we obtain
action sequences, extracted from the specification and also composed of the initial test pattern
properties. Our test purpose-based method helps to reduce the specification exploration
during the test case generation and thus reduces the test costs Castanet et al. (1998).

Prior to present the testing methodology, we define the Web service modelling below.

3. Web Service modelling in SOAP environments

Several models e.g., UML, Petri nets, process algebra, abstract state machines (ASM), have
been proposed to formalize Web services. STSs (Symbolic Transition Systems Frantzen et al.
(2005)) have been also used with different testing methods Frantzen et al. (2006); ir. H.M.
Bijl van der et al. (2003); Salva & Rabhi (2010). The STS formalism offers also a large formal
background (process algebra notations, definitions of implementation relations, test case
generation algorithms, etc.). So, it sounds natural to use it for modelling specifications and test
cases. Below, we recall the background of the STS formalism and the specification completion
to take into account the SOAP environment.

3.1 Stateful Web Service modelling

An STS is a kind of input/output automaton extended with a set of variables, with guards and
assignments on variables labelled on the transitions. The action set is separated with inputs
beginning by ? to express the actions expected by the system, and with outputs beginning by
! to express actions produced (observed) by the system. Inputs of a system can only interact
with outputs provided by the system environment and vice-versa.

Definition 1. A Symbolic Transition System STS is a tuple < L, l0, V, V0, I, Λ, →>, where:

• L is the finite set of locations, with l0 the initial one,

• V is the finite set of internal variables, while I is the finite set of external or interaction ones. We
denote Dv the domain in which a variable v takes values. The internal variables are initialized with
the assignment V0, which is assumed to take an unique value in DV ,

198 Emerging Informatics – Innovative Concepts and Applications

www.intechopen.com

A Guided Web Service Security Testing Method 5

• Λ is the finite set of symbols, partitioned by Λ = ΛI ∪ ΛO: inputs, beginning with ?, are provided
to the system, while outputs (beginning with !) are observed from it. a(p) ∈ Λ × In

n≥0 is an action

where p is a finite set of parameters p = (p1, ..., pk). We denote type(p) = (t1, ..., tk) the type of
the variable set p, and Dp the variable domain in which p takes values,

• → is the finite transition set. A transition (li, lj, a(p), ϕ, ̺), from the location li ∈ L to lj ∈ L, also

denoted li
a(p),ϕ,̺
−−−−→ lj is labelled by a(p) ∈ Λ × In

n≥0, ϕ ⊆ DV × Dp is a guard which restricts the
firing of the transition. Internal variables are updated with the assignment ̺ : DV × Dp → DV

once the transition is fired.

The STS model is not specifically dedicated (restricted) to Web services. This is why we
assume that an action a(p) represents either the invocation of an operation op which is
denoted opReq or the return of an operation with opResp. Furthermore, Web service are
object-oriented components which may throw exceptions. So, we also model exception
messages with a particular symbol denoted !exp ∈ ΛO.

For simplicity and to respect the WS-basic profile, we assume that operations either always
return a response or never (operations cannot be overloaded). We also assume that STSs are
deterministic. As a consequence, we suppose that operations are synchronous, i.e. these ones
return a response immediately or do nothing. Asynchronous methods may return a response
anytime, from several states and often imply indeterminism.

An immediate STS extension is called the STS suspension which also expresses quiescence i.e.,
the absence of observation from a location. Quiescence is expressed with a new symbol !δ
and an augmented STS denoted ∆(STS). For an STS S, ∆(S) is obtained by adding a self-loop
labelled by !δ for each location where quiescence may be observed. The guard of this new
transition must return true for each value of DV∪I which does not allow firing a transition
labelled by an output.

Fig. 1. An STS specification

199A Guided Web Service Security Testing Method

www.intechopen.com

6 Will-be-set-by-IN-TECH

Fig. 2. The completed specification

A specification example, is illustrated in Figure 1. This one describes, without ambiguity, a
part of the Amazon Web Service devoted for e-commerce (AWSECommerceService Amazon
(2009)). For simplicity, we consider only two operations: ItemSearch aims to search for items,
and ItemLookUp provides more details about an item. The AWSAccessKeyID parameter
uniquely identifies the user of the Web service and is provided by Amazon. The SearchIndex
parameter is used to identify the item in demand. "book" is a classical value. Notice that we
do not include all the parameters for readability reasons.

An STS is also associated to an LTS (Labelled Transition System) to define its semantics.
Intuitively, the LTS semantics represents all the functional behaviours of a system and
corresponds to a valued automaton without symbolic variables: the states are labelled by
internal variable values while transitions are labelled with actions and parameter values.

Definition 2. The semantics of an STS S =< L, l0, V, V0, I, Λ,→> is an LTS ||S|| =<

Q, q0, ∑,→> where:

• Q = S × DV is the finite set of states,

• q0 = (l0, V0) is the initial state,

• ∑ = {(a(p), θ) | a(p) ∈ Λ, θ ∈ Dp} is the set of valued symbols,

• → is the transition relation S × Σ × S deduced by the following rule:

li

a(p),ϕ,̺
−−−−→lj ,θ∈Dp ,v∈DV ,v′∈DV ,ϕ(v,θ) true,v′=ρ(v,θ)

(li ,v)
a(p),θ

−−−→(lj ,v′)

This rule can be intuitively read as follows: for an STS transition li
a(p),ϕ,̺
−−−−→ lj, we obtain a

LTS transition (li, v)
a(p),θ
−−−→ (lj, v′) with v an internal variable value set, if it exists a parameter

value θ such that the guard ϕ(v, θ) is satisfied. Once the transition is executed, the internal

200 Emerging Informatics – Innovative Concepts and Applications

www.intechopen.com

A Guided Web Service Security Testing Method 7

variables take the value v′ derived from the assignment ̺(v, θ). An STS suspension ∆(S) is
associated to its LTS semantics suspension by ||∆(S)|| = ∆(||S||).

Some behavioural properties can now be defined on STS in terms of their underlying
semantics, in particular runs and traces.

Definition 3 (Runs and traces). For an STS S, interpreted by its LTS semantics ||S|| =<

Q, q0, ∑,→>, a run q0α0...αn−1qn is an alternate sequence of states and valued actions. RUN(S) =
RUN(||S||) is the set of runs found in ||S||. RUNF(S) is the set of runs of S finished by a state in
F ⊆ Q.
It follows that a trace of a run r is defined as the projection proj∑(r) on actions. So, TracesF(S) =
TracesF(||S||) is the set of traces of runs finished by states in F ⊆ Q.

The traces of a STS suspension TracesF(∆(S)) also called the suspension traces are denoted
STracesF(S).

3.2 The SOAP environment

Web services are deployed in specific environments, e.g., SOAP or REST, to structure messages
in an interoperable manner and/or to manage operation invocations. Such environments may
modify the observable reactions of a Web service implementation, for instance by adding and
modifying the requests and responses. These modifications must be taken into account in
testing methods to ensure that the test verdict is not falsified by the environment.

In this book chapter, we consider the SOAP environment only: it consists in a SOAP layer
which serializes messages with XML and of SOAP receivers (SOAP processor + Web services)
which is a software, in Web servers, that consumes messages (WS-I organization (2006)). The
SOAP processor is a Web service framework part which represents an intermediary between
client applications and Web services and which serializes/deserializes data and calls the
corresponding operations. We summarize below the significant modifications involved by
SOAP processors:

• Calling an operation which does not exist: this action produces the receipt of a response,
constructed by Soap processors, which corresponds to a Soap fault composed of the cause
"the endpoint reference is not found". Soap faults are specific XML messages which give
details e.g., a cause (reason) about a triggered exception or a crash,

• Calling an existing operation with incorrect parameter types: this action produces also
the receipt of a Soap fault, constructed by the Soap processor, composed of the cause
"Client". This one means that the Client request does not match the Web Service WSDL
description,

• Exception management: by referring to the WS-I basic profile WS-I organization (2006),
when an exception is triggered by a Web Service operation, then the exception ought to be
translated into a Soap fault and sent to the Client application. However, this feature needs
to be implemented by hands in the operation code. So, when the exception management is
implemented, the Soap fault cause is usually equal to "SoapFaultException" (in Java or C#
implementations). Otherwise, the operation crashes and the Soap processor may construct
itself a Soap fault (or do nothing, depending on the chosen Web Service framework). In
this case, the Soap fault cause is different from "SoapFaultException".

201A Guided Web Service Security Testing Method

www.intechopen.com

8 Will-be-set-by-IN-TECH

In summary, SOAP processors add new messages, called SOAP faults, which give details
about faults raised in the server side. They return SOAP faults composed of the causes "Client"
or "the endpoint reference not found" if services or operations or parameter types do not
exit. SOAP processors also generate SOAP faults when a service instance has crashed while
triggering exceptions. In this case, the fault cause is equal to the exception name. However,
exceptions correctly managed in the specification and in the service code (with try...catch
blocks) are distinguished from the previous ones since a correct exception handling produces
SOAP faults composed of the cause "SOAPFaultException". Consequently, it is manifest that
SOAP modifies the behaviour of the specification by adding new reactions which must be
taken into account while testing.

So, we propose to augment an initial specification with the SOAP faults generated by SOAP
processors. We denote !soap f ault(cause) a SOAP fault where the external variable cause is the
reason of the SOAP fault receipt.

Let S =< LS, l0S, VS, V0S, IS, ΛS, →S> be an STS and ∆(S) be its suspension. ∆(S) is
completed by means of the STS operation addsoap in ∆(S) which augments the specification
with SOAP faults as described previously. The result is an STS S↑. The operation addsoap is
defined as follow: addsoap in ∆(S) =de f S↑ =< L

S↑ , l0S, VS, V0S, I
S↑ , Λ

S↑ ,→
S↑> where L

S↑ ,
I
S↑ , Λ

S↑ and →
S↑ are defined by the following rules:

Exception to
Soapfault:

l1
!exp,ϕ,̺

−−−−→∆(S) l2

l1
!soap f ault(c),ϕ,̺

−−−−−−−−−→
S↑ l2

Input

completion:
l1

?opReq(p),ϕ,̺
−−−−−−−−→∆(S) l2,l1

?opi Req(p),ϕ′ ,̺′

−−−−−−−−−→l /∈→∆(S) ,?opReqi∈ΛI
∆(S) ,l

′ /∈L∆(S)

l1
?opi Req(p),∅,∅

−−−−−−−−→
S↑ l′ ,l′

!soap f ault(c)),ϕ=[c 	=”CLIENT”∧c 	=”the endpoint...”],∅
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

S↑ l1

SOAPfault
completion:

l
?opReq(p),ϕ,̺

−−−−−−−−→∆(S) l
′ ,ϕ′=

∧

l′
!opi Resp(p),ϕ,̺

−−−−−−−−→∆(S) l′′

¬ϕ

l′
!soap f ault(c),ϕ′ ,∅

−−−−−−−−−−→
S↑ l

The first rule translates an exception message into a SOAPfault. The second one completes
the specification to be input enabled. Indeed, it is stated, in the WS-I basic profile WS-I
organization (2006), that any Web service operation can be invoked anytime. So, we assume
that each unspecified operation request should return a SOAP fault message. The last rule
completes the output set by adding, after each transition modelling an operation request, a
transition labelled by a SOAP fault. Its guard corresponds to the negation of the guards of
transitions modelling responses. This transition refers to the exception management. When
any exception is triggered in the server side, a SOAP fault is sent.

A completed specification example is illustrated in Figure 2 where the solid red transitions
represent the operation call completion and the dashed ones the SOAP fault completion. The
symbol table is given in Figure 3. For instance, the transition from location 4 labelled by !h2 is
added to express that after calling the operation ItemLookUp a SOAP fault may be received.

202 Emerging Informatics – Innovative Concepts and Applications

www.intechopen.com

A Guided Web Service Security Testing Method 9

Symb Message Guard Update

?a ?ItemSearchReq(AWSAccessKeyID
id,SearchIndex s, KeyWords k)

?atp ?ItemSearchReq(AWSAccessKeyID
id,SearchIndex s, KeyWords k)

TestDom:={Spec(
ItemSearch);RV;Inj}

!b1 !ItemSearchResp(String[] errors, String
isvalid)

[isvalid==false ∨ id<>"ID"]

!b2 !ItemSearchResp(String[] items, String
req, String isvalid)

[isvalid==true ∧ id=="ID"] reqid:=req

?c ?ItemLookUpReq(AWSAccessKey ID
id, RequestID req)

!d1 !soapfault(c) [c 	="Client" ∧ c 	="the endpoint..."]

!d2 !soapfault(c) [c=="Client" ∨ c=="the
endpoint..."]

!ftp !soapfault(c) [c=="SOAPFaultException"]

?g ?ItemLookUpReq(AWSAccessKey ID
id, RequestID req)

[id==ID ∧ req==reqid]

!h1 !ItemLookUpResp(String[] items,
String isvalid)

[isvalid==true] itemsReq:= items

!h2 !soapfault(c) [isvalid 	=true]

Fig. 3. Symbol table

4. Nomad test patterns

Security policies are more and more expressed by means of formal languages to express
without ambiguity concepts such as obligation, permission or prohibition for an organization.
A natural way to test policies consists in deriving, manually or semi-automatically, test cases
directly from the latter. Usually, we obtain abstract tests, that we call test patterns. Some works
Mouelhi et al. (2008) have proposed solutions to derive test patterns from basic security rules.

In this Section, to illustrate our methodology and to experiment existing Web services, we
propose to formalize some test patterns from the recommendations provided by the OWASP
organization OWASP (2003). Thereby, these test patters are specialized for Web services
and will help to detect attacks/vulnerabilities such as empty passwords, brute force attack,
etc. They are related to the following criteria: availability, authentication and authorization.
We do not provide an exhaustive test pattern list, because this one depends firstly of the
security policy established by an organization and because an exhaustive list would deserve a
separate book of its own. Nevertheless, the following test patterns cover most of the OWASP
recommendations. These test patterns are constructed over a set of attacks (brute force, SQL
injection, etc.) and model how a Web service should behave when it receives one of them.

As stated previously, we have chosen to formalize test patterns with the Nomad language.
Nomad is based upon a temporal logic, extended with alethic and deontic modalities. It can
easily express the obligation, the prohibition and the permission for atomic or non-atomic
actions with eventually timed constraints. Bellow, we recall a part of the Nomad grammar.
The complete definition of the Nomad language can be found in Cuppens et al. (2005).

203A Guided Web Service Security Testing Method

www.intechopen.com

10 Will-be-set-by-IN-TECH

Nomad notations:
- If A and B are actions, then (A; B) (A followed by B) and (A & B) (A in parallel with
B) are actions
- If A is an action then start(A), doing(A), and done(A) are formulae
- If α and β are formulae, then ¬α, (α ∧ β), (α ∨ β), and (α ⇔ β) are formulae
- If α is a formulae, then Oα (α is obligatory), Fα (α is forbidden"), Pα (α is permitted)
are formulae

- O≤d A represents an obligation with deadline, and is to be read: "it is obligatory that
A within a delay of d units of time"
- The last definition concerns the conditional privilege: if α and β are formulae, (α|β)
is a formula whose semantic is "in the context β, α is true"

As a first step, we augment the Nomad language with this straightforward expression to
model the repeating of an action:

If A is an action, then An = A; ...; A (n times) is an action.

Now, we are ready for the test pattern description.

4.1 Availability test patterns

The Web Service availability represents its capability to respond correctly whatever the
request sent. Especially, a Web service is available if it runs as expected in the presence of
faults or stressful environments. This corresponds to the robustness definition IEEE Standard
glossary of software engineering terminology (1999). So, it is manifest that availability implies
robustness. As a consequence, the Web Service robustness must be taken into consideration
in availability tests. We studied the Web Service operation robustness in Salva & Rabhi (2010):
we concluded that the only robustness tests, which can be applied in SOAP environments
without being blocked by SOAP processors, are requests composed of "unusual values"
having a type satisfying the Web Service WSDL description. The terms "unusual values" stand
for a fault in software testing Kropp et al. (1998), which gathers specific values well-known
for relieving bugs. We also defined the operation robustness by focusing on the SOAP
responses constructed by Web Services only. The SOAP faults, added by SOAP processors
and expressing an unexpected crash, are ignored. This implies that a robust Web Service
operation must yield either a response as defined in the initial specification or a SOAP fault
composed of the "SOAPFaultException" cause only.

Definition 4. Let S =< LS, l0S, VS, V0S, IS, ΛS,→S> be a STS specification and S↑ be its
augmented STS. An operation op ∈ Λ

S↑ is robust iff for any operation request ?opReq(p) ∈ Λ
S↑ × In,

a SOAP message different from !soap f ault(c) ∈ Λ
S↑ × I with c 	= ”SOAPFaultException” is

received.

The first test pattern T1 is derived from this definition and expresses that an operation is
available if this one does not crash and responds with a SOAP message after any operation
request. T1 means that if an operation request is "done" then it is obligatory (O) to obtain a
response OutputResponseWS.

T1 ←→ ∀opReq ∈ ΛI
S↑ , O(start(output OutputResponseWS)| done(input

(opReq(p), TestDom := {Spec(opReq); RV; Inj}))) where:

204 Emerging Informatics – Innovative Concepts and Applications

www.intechopen.com

A Guided Web Service Security Testing Method 11

• OutputResponseWS ←→ OutputResponse(p) ∨ OutputResponserobust(p) corresponds to
a response set.
OutputResponse(p) = {!opResp(p) ∈ ΛO

S↑ × In}.
OutputResponserobust(p) ←→!soap f ault(”SOAP f aultException”) is the only SOAP fault
which should be received according to Definition 4,

• (opReq(p), TestDom := {Spec(op); RV; Inj}) is a particular input modelling an operation
request with parameter values in Spec(opReq) ∪ RV ∪ Inj.

Spec(opReq) = {θ ∈ DI
S↑

, l
?opReq(p)ϕ,̺
−−−−−−−→

S↑ l′ ∈→
S↑ and (l, v)

?opReq(p),θ
−−−−−−→ (l′, v′) ∈→||S↑ ||}

gathers all the values satisfying the execution of the action ?opReq(p). These values are
given in the LTS semantics (valued automaton) of S↑.
RV is composed of random values and specific ones well-known for relieving bugs for each
classical type. For instance, Figure 4 depicts the RV(String) set, which gathers different
values for the "String" type. RANDOM(8096) represents a random value of 8096 characters.
Inj ←→ XMLInj ∪ SQLInj corresponds to a value set allowing to perform both XML
and SQL injections. XMLInj and SQLInj are specific value sets for the "String" type
only. For instance, XML injections are introduced by using specific XSD keywords such
as maxOccurs, which may represent a DoS (Denial of Service) attack attempt. More details
about XML and SQL injections can be found in OWASP (2003).

<type id="String">

<val value=null />

<val value="" />

<val value=" " />

<val value="\$" />

<val value="*" />

<val value="&" />

<val value="hello" />

<val value=RANDOM(8096)" /></type>

Fig. 4. RV(String)

Availability is also ensured in condition that the response delay ought to be limited. This can
be written with the test pattern T2.

T2 ←→ ∀opReq ∈ ΛI
S↑ , O≤60(start(output OutputResponseWs)|done(input

(opReq(p), TestDom := {Spec(opReq); RV})))

This one describes that for each operation request, it is obligatory to receive a response within
a delay of 60s.

This test pattern can be implicitly tested if we take into account the notion of quiescence
(no response observed after a timeout) during the testing process. Indeed, if quiescence is
observed after a delay set to 60s, while an operation invocation, we can consider that T2 is not
satisfied. So, this test pattern will be implicitly taken into account in Section 5.

205A Guided Web Service Security Testing Method

www.intechopen.com

12 Will-be-set-by-IN-TECH

4.2 Authentication test patterns

Authentication aims to establish or to guarantee the Client identity and to check that a
Client with no credits has no permission. The logon process is often the first step in user
authentication. We propose here two classical test patterns relating to this one. We suppose
that the logon process is implemented classically by means of specific operation requests
gathered in a set denoted inputAuth ⊆ ΛI which are called with authentication parameters
(passwords, keys, etc.) and which return SOAP responses. T3 refers to the mandatory of
returning a fail authentication result each time an authentication request is sent to a Web
Service with unusual parameter values such as empty parameters. So, this test pattern covers
the well-known empty password vulnerability:

T3 ←→ ∀opReq ∈ inputAuth, O(start(output OutputResponseWS(rl f ail))|done(
input (opReq(p), TestDom := {RV}))) where:

OutputResponseWS(rl f ail) ←→ OutputResponse(rl f ail) ∨ OutputResponseFault(p).
OutputResponse(rl f ail) represents an operation response where the message
rl f ail in DI

S↑
suggests a failed login attempt. rl f ail must be extracted from the

specification. outputResponseFault(p) ⇔ soap f ault(c) with c 	= "Client" ∧ c 	=
"the endpoint reference not found" is a SOAP fault whose cause is different from "Client"
and "the endpoint reference not found". The first one means the operation is called with
bad parameter types while the second cause means that the operation name does not exist
(Section 3.2).

The test pattern T4 is dedicated to the "brute force" threat. The latter aims to decrypt or to find
authentication parameters by traversing the search space of possible values. A well-known
countermeasure is to forbid a new connection attempt after n failed ones for the same user.
With n = 10, the corresponding test pattern can be written with:

T4 ←→ ∀opReq ∈ inputAuth, O(start(output OutputResponseWS(rl f orbid))|
(done((input (opReq(p), TestDom := {RV}); output outputResponseWS(rl f ail))10);
done(input (opReq(p), TestDom := {RV})))) where:

OutputResponseWS(rl f ail) ←→ OutputResponse(rl f ail) ∨ OutputResponseFault(p) is an
operation response as previously. The rl f ail message expresses a failed login attempt. The
message rl f orbid indicates that any new connection attempt is forbidden. These messages
must be extracted from the specification as well.

4.3 Authorization test patterns

Authorization represents the access policy and specifies the access rights to resources, usually
for authenticated users. We define here, two test patterns which aim to check that a user,
requesting for confidential data, is really authenticated.

The following test pattern checks that the request of confidential data with the operation set
inputRequestCon f , returns a "permission denied" message if the user is not authenticated (a
fail login attempt has been made with the operation request opReq2 ∈ inputAuth):

206 Emerging Informatics – Innovative Concepts and Applications

www.intechopen.com

A Guided Web Service Security Testing Method 13

T5 ←→ ∀opReq ∈ inputRequestCon f ∃op2Req ∈ inputAuth, O(start(output
OutputResponseWS(r f ail))|(done(input op2Req(p)); done(output op2Resp(rl f ail));
done(input (opReq(p), TestDom := {Spec(opReq); RV})))) where:

• opResp2(rl f ail) ∈ ΛO
S↑ × DI is an authorization operation response composed of the rl f ail

message, which describes a fail login attempt,

• OutputResponseWS(r f ail) ←→ OutputResponse(r f ail) ∨ OutputResponseFault(p)
describes, as previously, an operation response where the message r f ail corresponds to
an error message. r f ail must be extracted from the specification.

The last test pattern T6 is dedicated to the receipt of confidential data by means of XML or
SQL injections. This one checks that an error message is received when a request containing
an XML or SQL injection is sent:

T6 ←→ ∀opReq ∈ ΛI
S↑ ,O(start(output OutputResponseWS(r f ail))|done(input

(opReq(p), TestDom := {Inj})))

4.4 Attack and vulnerability coverage

Figure 5 describes a non-exhaustive list of attacks and of vulnerabilities which are covered
by the previous test patterns. This list is still extracted from the larger one given in OWASP
(2003). This table also expresses the portion of Web Service vulnerabilities which shall be
detected with the testing method.

Test pattern Attacks Vulnerabilities
T1,T2 Denial of service, special character

injection, format string attack
Catch null pointer exception,
deserialization of unstructured
data, uncaught exception, format
string, buffer overflow, improper data
validation

T3 Format string attack, special character
injection

Empty password, improper data
validation

T4 Brute force attack Brute force attack vulnerability,
insufficient ID length

T5 Bypassing attacks Privacy violation, failure to provide
confidentiality for stored data

T6 XML, SQL injection Missing SQL, XML validation, improper
data validation

Fig. 5. Attack and vulnerability coverage

4.5 Test purpose translation

Test patterns represent abstract tests that can be used to test several Web services. Such test
patterns cannot be used directly for testing since they are composed of abstract operation
names. In order to derive and to execute concrete test cases, we shall translate these patterns
into test requirements, called test purposes.

Test purposes describe the test intention which target some specification properties to test in
the implementation. We assume that these ones are composed exclusively of specification
properties which should be met in the implementation under test. Thereafter, we intend to

207A Guided Web Service Security Testing Method

www.intechopen.com

14 Will-be-set-by-IN-TECH

synchronize the STS specification with test purposes, so that final test cases will be composed
of both specification behaviours and test pattern properties. So, test purposes must be
formalized with STSs as well.

For a specification S =< LS, l0S, VS, V0S, IS, ΛS,→S> we also formalize a test purpose with
a deterministic and acyclic STS tp =< Ltp, l0tp, Vtp, V0tp, Itp, Λtp,→tp> such that:

• Vtp ∩ VS = ∅ and Vtp also contains a string variable TestDom which is equal to the
parameter domain provided in test patterns,

• Itp ⊆ IS,

• Λtp ⊆ ΛS,

• →tp is composed of transitions modelling specification properties. So, for any transition

lj

a(p),ϕj ,̺j
−−−−−→tp l′j , it exists a transition li

a(p),ϕi ,̺i
−−−−−→S l′i and a value set (x1, ..., xn) ∈ DV∪I such

that ϕj ∧ ϕi(x1, ..., xn) |= true.

We denote TP the test purpose set derived from test patterns. In particular, a test pattern T is
translated into the test purpose set TPT ⊆ TP with the following steps:

1. T is initially transformed into an abstract test purpose AtpT , modelled with an STS,
composed of generic operation requests. For a test pattern T, we denote OPT the operation
set targeted by the tests in T. For instance OPT1 = ΛI

S↑ ,

2. the test purpose set TPT = {tpT(op) | op ∈ OPT} is then constructed by replacing generic
operation invocations in AtpT by a real operation name op ∈ OPT .

For instance, test purpose patterns extracted from the test patterns T1 and T4 are given in
Figures 6 and 7. These STSs formulate the test intention described in T1 and in T4. T4
describes a countermeasure for the brute force threat which is well described in the second
test pattern since after ten connection attempts done by the same user, the latter cannot login
anymore. getsender and count are internal procedures which return the IP address of the
client and the number of times the client has attempted to connect. From the specification
depicted in Figure 2, we also have TPT1 = {tpT1(ItemSearchReq), tpT1(ItemLookUpReq)}.
tpT1(ItemSearchReq) is illustrated in Figure 8. It represents a test purpose constructed from
T1 with the operation "ItemSearch". It illustrates the semantics of T1 with a concrete operation
name.

Unfortunately, there is no available tool for transforming a Nomad expression into an
automaton yet. At the moment, abstract test purposes must be constructed manually.

5. Testing methodology

Now, that Web services, SOAP, and security test patterns expressing security rules, are
formalized, we are ready to express clearly the security level of an implementation (relative to
its specification and a given set of test patterns). We initially assume that the implementation
should behave like its model and can be experimented by means of the same actions. It is
represented by an LTS Impl and ∆(Impl) its LTS suspension. The experimentation of the
implementation is performed by means of test cases defined with STSs as the specification.
Test cases are defined as:

208 Emerging Informatics – Innovative Concepts and Applications

www.intechopen.com

A Guided Web Service Security Testing Method 15

Fig. 6. Test purpose pattern derived from T1

Fig. 7. Test purpose pattern derived from T4

Fig. 8. A test purpose derived from T1

Definition 5. A test case is a deterministic and acyclic STS TC =< LTC, l0TC,
VTC, V0TC, ITC, ΛTC,→TC> where the final locations are labelled in {pass, f ail}.

Intuitively, when the test case is executed, pass means that it has been completely executed,
while fail means that the implementation has rejected it.

The proposed testing method constructs test cases to check whether the implementation
behaviours satisfy a given set of security test patterns. This can be defined by means

209A Guided Web Service Security Testing Method

www.intechopen.com

16 Will-be-set-by-IN-TECH

Fig. 9. Test case generation

of a relation based on traces, i.e., the observed valued actions suites expressing concrete
behaviours.

More precisely, Since the implementation is seen as a black box, the method checks that the
suspensions traces (actions suites) of the implementation can be found in the suspension traces
of the combination of the specification with test purposes modelling concrete test patterns.
We consider suspension traces, and not only traces, to take into account quiescence, i.e., lack
of observation and so response delays. This can be written more formally by means of the
following test relation:

Impl secureTP S ⇔ ∀tp ∈ TP, STraces(Impl) ∩ NC_Traces(S↑ × tp) = ∅

with TP the test purpose set extracted from the security test patterns, S the specification, S↑

its suspension and NC_Traces(S↑ × tp) = STraces(S↑ × tp).Λ0 ∪ {!δ} \ STraces(S↑ × tp) the
non-conformant traces of the synchronous product S↑ × tp.

To check this relation, the test case generation is performed by several steps, summarized in
Figure 9 and given below. The main advantage of our model based approach, is that these
steps can be automated in a tool.

1. Security test patterns are firstly translated into test purposes modelled by STSs as described
in Section 4.5. For a test pattern T, we obtain a test purpose set TPT = {tpT(op) | op ∈
OPT} composed of test purposes tpT(op) with op the tested operation,

2. The specification S is augmented to take into consideration the SOAP environment, as
described in Section 3.2,

210 Emerging Informatics – Innovative Concepts and Applications

www.intechopen.com

A Guided Web Service Security Testing Method 17

3. The augmented specification S↑ and the test purpose set TPT are combined together: each
test purpose tpT(op) is synchronized with the specification to produce the product PT(op)
whose paths are complete specification ones combined with the test purpose properties.
We denote ProdT = {PT(op) = S↑ × tpT(op) | tpT(op) ∈ TPT} the resulting synchronous
product set,

4. The synchronous product locations are labelled by "pass" which means that to reach this
location, a correct behaviour has to be executed,

5. Synchronous products are completed on the output action set to express both correct and
incorrect behaviours. A completed synchronous product is composed of Pass locations to
express behaviours satisfying test purposes and Fail locations to express that test purposes

and thus security test patterns are not satisfied. It results that Prod
compl
T = {P

compl
T (op) |

PT(op) ∈ ProdT} is the completed synchronous product set,

6. Finally, test cases are selected from the completed synchronous products in Prod
compl
T

by means of a reachability analysis. For a completed synchronous product P
compl
T (op),

test cases in TCT(op) are STS trees which begin from the initial location of P
compl
T (op)

and which aim to call the operation op. The reachability analysis ensures that these
STSs can be executed on the implementation. For the test pattern T, the test case set

TCT =
⋃

P
compl
T (op)∈Prod

compl
T

TCT(op). The final test case set TC is the union of the test case

sets TCT obtained from each test pattern T.

Each of these steps is detailed below. We assume having an augmented specification S↑ and a
test purpose tpT(op) ∈ TPT derived from a test pattern T given in Section 4.

5.1 Synchronous product definition

A test purpose represents a test requirement which should be met in the implementation. To
test this statement, both the specification and the test purpose are synchronized to produce
paths which model test purpose runs with respect to the specification.

Let tpT(op) =< Ltp, l0tp, Vtp, V0tp, Itp, Λtp,→tp> and S↑ =< L
S↑ , l0

S↑ , V
S↑ , V0

S↑ ,

I
S↑ , Λ

S↑ ,→
S↑> be two STSs. The synchronous product of S↑ with tpT(op) is defined by an

STS PT(op) = S↑ × tpT(op) =de f < LP, l0P, VP, V0P, IP, ΛP,→P>, where:

• LP = LS × Ltp, l0P = l0S × l0tp,

• VP = VS ∪ Vtp, V0P = V0S ∧ V0tp,

• IP = IS,

• ΛP = ΛS,

• →P is defined with the two following rules, applied successively:

sync :
l1

a(p),ϕ,̺
−−−−→

S↑ l2,l′1
a(p),ϕ′ ,̺′

−−−−−→tp l′2

(l1 l′1)
a(p),ϕ∧ϕ′ ,̺′′=[̺;̺′]

−−−−−−−−−−−→P(l2 l′2)

assemble :

(li lj)
a(p),ϕ,̺

−−−−→P(li+1 lj+1),li 	=l0
S↑ ,(l0

S↑ l0tp)�(li lj),l0S↑

a0(p),ϕ0,̺0−−−−−−→l1...li−1

ai−1(p),ϕi−1,̺i−1−−−−−−−−−→li∈→S↑

(l0
S↑ l0tp)

a0(p),ϕ0,̺0−−−−−−→P(l1 lj)...(li−1 lj)
ai−1(p),ϕi−1,̺i−1−−−−−−−−−→P(li lj)

211A Guided Web Service Security Testing Method

www.intechopen.com

18 Will-be-set-by-IN-TECH

The first rule combines one specification transition with one test purpose one by
synchronizing actions, variables updates and guards. This yields a initial transition set which
is completed with the second rule to ensure that there is a specification path such that any
synchronized transitions is reachable from the initial location. For sake of readability, we have
denoted in the second rule (l0

S↑ l0tp) � (lilj) to express that there is no path from the initial
location to (lilj) in PT(op).

The synchronous product of the test purpose tpT1(ItemSearchReq) given in Figure 8 with
the completed specification is depicted in Figure 10. The synchronized transitions obtained
from the first rule are depicted in red. Initially, the test purpose aims to test the ItemSearch
operation. So, the synchronous product is composed by the two ItemSearch invocations of the
specification combined with test purpose properties.

Fig. 10. A synchronous example

5.2 Incorrect behaviour completion

This straightforward part aims to complete synchronous products to express incorrect
behaviours. Thanks to this steps, the generated test cases will be composed of final locations
labelled either by local verdicts "pass" or "fail". The final test verdict shall be obtained without
ambiguity from these local ones.

This completion is made by means of the STS operation compl which is defined as follows. For
an STS S, compl S =de f Scompl =< LS ∪ {Fail}, l0S, VS, V0S, IS, ΛS,→

Scompl> where →
Scompl is

obtained with the following rule:

212 Emerging Informatics – Innovative Concepts and Applications

www.intechopen.com

A Guided Web Service Security Testing Method 19

Fig. 11. A completed synchronous example

a∈ΛO
S
∪{!δ}, ϕa =

∧

l1
a(p),ϕn ,̺n

−−−−−→S ln

¬ϕn

l1
!a(p),ϕa ,∅

−−−−−→
S

compl Fail

A location l1 is completed with new transitions to Fail, labelled by unexpected outputs with
negations of the guards of transitions in S.

By applying this step on the synchronous product example PT1(ItemSearch) of Figure 10, we
obtain the completed STS depicted in Figure 11. Dashed transitions depict the completion. For
sake of readability, we use the label !any to model any output action. Intuitively, the dashed
transitions represent unexpected output actions which lead to the Fail location. For instance,

the transition 2B
!δ
−→ Fail expresses that quiescence must not be observed. This transition

213A Guided Web Service Security Testing Method

www.intechopen.com

20 Will-be-set-by-IN-TECH

can be used to test the satisfaction of the test pattern T2 (Section 4) directly: if no response
is observed after a timeout, we consider that the Web Service under test is not available and
therefore faulty.

5.3 Synchronous product path extraction with reachability analysis

Test cases are extracted from the completed synchronous products with Algorithm 1. For a

synchronous product P
compl
T (op), the resulting STSs in TCT(op) are trees which aim to call

the operation op, referred in tpT(op) by extracting acyclic paths of P
compl
T (op) beginning from

its initial location and composed of the input action ?opReq(p). A reachability analysis is
performed on the fly to ensure that these paths can be completely executed.

The algorithm constructs a preamble by using a Depth First Path Search (DFS) algorithm
between the initial location l0 and lk. A reachability analysis is also performed to check
whether the transition t labelled by ?opReq(p) is reachable (lines 2-8). In line 9, the value
set Spec(opReq), composed of values satisfying the firing of the transition t is generated with
the Solving procedure. The Value set Value(opReq), composed of values used for testing op
is also constructed according to the TestDom variable provided in test patterns. This set may
be composed of values in Spec(opReq), of unusual values in RV or of SQL/XML injection
values in Inj (see Section 4). SQL/XML injections are only used if the variable type is equal
to "String". If the variable types are complex (tabular, object, etc.), we compose them with
other types to obtain the final values. We also use an heuristic to estimate and eventually to
reduce test number according to the tuple number in Value(opReq). Intuitively, for a constant
denoted Max, if card(Value(opReq)) > Max, we reduce the cardinality of Value(opReq) by
removing one value of RV(type(p1)), and one of value of RV(type(p2)), and so on up to
card(Value(opReq)) ≤ Max. This part is discussed in the next Section.

The STS tc, modelling a test case, is reset, its variables are initialized with ̺0. The previous
preamble path and the transition labelled by the operation request ?opReq with one value
of Value(opReq) are added to the transition set of tc (lines 12-15). Then, the algorithm also
adds each next transition (lk+1, l f , !a(p), ϕk+1, ̺k+1) with the location l f labelled by a verdict
in {pass, f ail} and transitions to Fail (lines 16-19). We obtain an STS tree, which describes a
complete operation invocation. tc is finally added to TCT(op).

The "Solving" method takes a path path and returns a variable update ̺0 which satisfies the
complete execution of path. If the constraint solvers Een & Sörensson (2003); Kiezun et al.
(2009) cannot compute a value set allowing to execute path, then "solving" returns an empty
set (lines 21-28). We use the solvers in Een & Sörensson (2003) and Kiezun et al. (2009) which
work as external servers that can be called by the test case generation algorithm. The solver
Kiezun et al. (2009) manages "String" types, and the solver Een & Sörensson (2003) manages
most of the other simple types.

Go back to our example of Figure 11 which depicts the completed synchronous product

P
compl
T1 (ItemSearch). If we suppose having Spec(ItemSearch) = {(”ID”, ”book”, ”potter”)}

and Inj = {”′or′1′ =′ 1”}, we obtain four test cases, two per value since the operation

ItemSearch can be called two times in P
compl
T1 (ItemSearch). Figure 12 illustrates the two test

cases for the SQL injection "’ or ’1’=’1". With the second test case, the operation ItemSearch is
firstly called with ("ID","book","potter") to reach the second invocation, which is tested with
the value "’ or ’1’=’1".

214 Emerging Informatics – Innovative Concepts and Applications

www.intechopen.com

A Guided Web Service Security Testing Method 21

Algorithm 1: STS extraction from synchronous products

1 Testcase(STS): TC;

input : An STS P
compl
T (op)

output: A test case set TCT(op)

2 foreach transition t = (lk
?opReq(p1,...,pn),ϕk ,̺k
−−−−−−−−−−−−→

P
compl
T (op)

lk+1 with ̺k composed of the assignment

TestDom := Domain (Section 4.5) do
3 repeat
4 path = DFS(l0, lk);
5 ̺0 := Solving(path);

6 until ̺0 	= ∅;
7 if ̺0 == ∅ then
8 go to next transition;

9 Spec(opReq) = {(x1, ..., xn) ∈ D(p1,...,pn) | (x1, ..., xn) := Solving(path.t) };

10 Value(opReq) := {(x1, ..., xn) ∈ Spec(opReq) if Spec(opReq) ∈ Domain}∪
{(x1, ..., xn) ∈ D(p1,...,pn) | xi ∈ RV(type(pi)) if RV ∈ Domain}∪

{(x1, ..., xn) ∈ D(p1,...,pn) | ((x′1, ..., x′n) ∈ Spec(opReq), xi = x′i if type(pi) 	= ”String”, xi ∈

Inj if type(pi) == ”String”), if Inj ∈ Domain};
11 foreach (x1, ..., xn) ∈ Value(opReq) do
12 STStc := ∅;
13 ̺0 is the variable initialization of tc;
14 ϕtc := [p1 := x1, ..., pn := xn];

15 →tc :=→tc ∪ path.(lk
?opReq(p1,...,pn),ϕk∪ϕtc ,̺k
−−−−−−−−−−−−−−−→ lk+1);

16 foreach transition t′ = lk+1
!a(p),ϕ,̺
−−−−−→ lk+2 do

17 →tc :=→tc ∪t′;

18 foreach transition t′ = l
!a(p),ϕ,̺
−−−−−→ Fail such that l is a location of path do

19 →tc :=→tc ∪t′;

20 TCT(op) := TCT(op) ∪ tc;

21 Solving(path p) : ̺;
22 p = (l0, l1, a0, ϕ0, ̺0)...(lk, lk+1, ak, ϕk, ̺k);
23 c = ϕ0 ∧ ϕ1(̺0) ∧ ... ∧ ϕk(̺k−1);
24 (x1, ..., xn) = solver(c) //solving of the guard c composed of the variables (X1, ..., Xn) such

that c(x1, ..., xn) true;
25 2 if (x1, ..., xn) == ∅ then
26 ̺ := ∅

27 else
28 ̺ := {X1 := x1, ..., Xn := xn}

215A Guided Web Service Security Testing Method

www.intechopen.com

22 Will-be-set-by-IN-TECH

Fig. 12. Test case examples

5.4 Test verdict

In the test case generation steps, for a test purpose tp ∈ TP, we have defined the completion
of the product S↑ × tp to recognizes non-conformant behaviours leading to its Fail states. So,
the non-conformant trace set NC_STraces(S↑ × tp) can be also written with the expression
STracesFail((S

↑ × tp)compl), which represents the suspension trace set leading to Fail. As a
consequence, the secureTP relation can be also defined by:

Impl secureTP S ⇔ ∀tp ∈ TP, STraces(Impl) ∩ NC_STraces(S↑ × tp) = ∅

⇔ ∀tp ∈ TP, STraces(Impl) ∩ STracesFail((S
↑ × tp)compl) = ∅

Now, it is manifest that the test case set, derived by our method, allows to check the
satisfaction of the relation secureTP since a test case TC ∈ TC is selected in the product
(S↑ × tp)compl . So, when a test case yields a suspension trace leading to a Fail state, then
the implementation does not respect test purposes and security test patterns.

For a test case TC, the suspension traces of TC are obtained by experimenting the
implementation Impl. This execution of one test case TC on Impl corresponds to the parallel
composition of the LTS semantics tc = ||TC|| with ∆(Impl), which is modelled by the LTS
∆(Impl)||tc =< QImpl × Qtc, q0Impl × q0tc, ∑Impl ,→∆(Impl)||tc> where →∆(Impl)||tc is given
by the following rule:

216 Emerging Informatics – Innovative Concepts and Applications

www.intechopen.com

A Guided Web Service Security Testing Method 23

q1
a
−→∆(Impl)q2, q′1

a
−→tcq′2

q1q′1
a
−→∆(Impl)||tcq2q′2

Pragmatically, the tester executes a test case by covering branches of the test case tree until
a Pass or a Fail location is reached. If a test case transition corresponds to an operation
invocation, the latter is called with values given in the guard. Otherwise, the tester observes
an event such as a response or quiescence. It searches for the next transition, which matches
the observed event, and covers it.

Now, we can say that the implementation Impl is secureTP or in other terms, satisfying a test
purpose set TP, if for all test case TC in TC, the execution of TC on Impl does not lead to a Fail
state.

6. Experimentation and discussion

This section illustrates the benefits of using our method for security testing by giving some
experiment results. We also discuss about the test coverage and the methodology complexity.

6.1 Experimentation results

Fig. 13. Test tool architecture

We have implemented a part of this methodology in a prototype tool to experiment existing
Web services. The tool architecture is illustrated in Figure 13. It performs the steps described
in Section 5 i.e., synchronous products between test purposes and STS specifications, the
completion of the synchronous products to add incorrect behaviours, and the test case
extraction. Finally, test cases are translated into XML semi-automatically to be executed with
the SOAPUI tool Eviware (2011), which is a unit testing tool for Web services. For simplicity,
we have only considered String type parameters and the Hampi solver to generate values for
the test case generation. To obtain a reasonable computation time, the String domain has been
limited by bounding the String variable size with ten characters and by using a set of constant
String values such as identification keys. We have also limited the test case number to 100.
The experimentation is based upon six initial abstract test purposes, one for each test pattern
given in Section 4.

Firstly, we experimented our methodology on the whole Amazon AWSECommerceService
(2009/10 version) Amazon (2009). The current test purpose set had not risen security issues.
Actually, this Web Service is taken as example in several research papers and many new
versions of this service have been released to improve its reliability and its security. Therefore,
these results are not surprising.

217A Guided Web Service Security Testing Method

www.intechopen.com

24 Will-be-set-by-IN-TECH

Web Service (WSDL) test number Availability Authentication Authorization
http://research.caspis.net/

webservices/flightdetail.

asmx?wsdl

56 0 0 1

http://student.labs.ii.edu.

mk/ii9263/slaveProject/

Service1.asmx?WSDL

60 0 1 1

http://biomoby.org/services/
wsdl/www.iris.irri.org/get
GermplasmByPhenotype

26 0 6 0

http://www.infored.com.sv/
SRCNET/SRCWebServiceE
xterno/WebServSRC/servSR
CWebService.asmx?WSDL

20 10 0 0

http://81.91.129.80/Dialup
WS/dialupVoiceService.asmx?WSDL

22 0 0 2

http://81.91.129.80/Dialup
WS/SecurityService.asmx?WSDL

18 0 0 3

https://intrumservice.intrum.
is/vidskiptavefurservice.asmx?WSDL

66 6 1 0

http://www.handicap.fr/

server_hanproducts.php?wsdl
78 2 0 4

https://gforge.inria.fr/soap/

index.php?wsdl
100 1 0 0

http://193.49.35.64/

ModbusXmlDa?WSDL
30 2 0 0

http://nesapp01.nesfrance
.com/ws/cdiscount?wsdl

30 2 0 2

http://developer.ebay.com/webservices/
latest/ShoppingService.wsdl

30 10 0 0

Fig. 14. Experimentation results

We also tested about 100 other various Web Services available on the Internet. Security
vulnerabilities have been revealed for roughly 11 percent although we have a limited test
purpose set. 6 percent have authorization issues and return confidential data like login,
password and user-private information. Figure 14 summarizes our results.

Different kinds of issues have been collected. For instance, the Web Service
getGermplasmByPhenotype is no more available when this one is called with special characters.
Here, we suspect the existence of the "improper data validation" vulnerability. Authorization
issues have been detected with server_hanproducts.php since its returns SOAP responses
containing confidential data, such as table names and database values. Similar issues are
raised with the Web Service cdiscount. So, these ones fail to provide confidentiality for stored
data. With slaveProject/Service1.asmx, the "brute force" attack can be applied to extract logins
and passwords.

The experimentation part has also revealed that other factors may lead to a fail verdict. For
instance, the test of the Ebay shopping Web Service showed that quiescence was observed for
a third of the operation requests. In fact, instead of receiving SOAP messages, we obtained
the error "HTTP 503", meaning that the Service is not available. We may suppose here that the
server was experiencing high-traffic load.

218 Emerging Informatics – Innovative Concepts and Applications

www.intechopen.com

A Guided Web Service Security Testing Method 25

Step Complexity Location nb Transition nb

Synchronous product nn’+(n+k)n’ k n

Completion k k+1 n+kn

Test case extraction (k+1+n+kn)n×Value(opReq) / /

Fig. 15. Time complexity of the methodology

6.2 Discussion

Both the complexity and test coverage was left aside in the methodology description. These
ones can now be discussed:

• Methodology complexity: the whole methodology complexity is polynomial in time in
the worst case (with large test purposes testing exhaustively the implementation). This
complexity is summarized in Figure 15, for one test purpose and with n (n′) the
specification (test purpose) transition number, k (k′) the specification (test purpose)
location number respectively. The location nb (Transition nb) column gives the location
number (transition number) of the resulting STS once the step is achieved. In the
experimentation part, we have observed that this complexity is strongly reduced since the
synchronous product step produces STSs with a few more locations and transitions than
the specification ones. Nevertheless, this complexity also depends on the number of testing
values in Value(opReq). So, if Value(opReq) is large, both the complexity and the test case
number may manifestly explode. This is why we implemented a heuristic which limits the
test case set, by limiting the Max value in the test case extraction algorithm (Algorithm 1).
When the test case number is limited to 100, testing one Web Service with our tool takes at
most some minutes. The execution of 1500 tests require less than one hour. The whole test
cost naturally depends on the test case number, but also on the delay required to observe
quiescence. We have set arbitrarily this delay to 60s but it may be necessary to augment or
to reduce it,

• test coverage: the test coverage of the testing method depends on the test pattern number
and on the Max parameter, which represents the test number per operation. Firstly, the
larger the test pattern set, the more issues that will be detected, while testing. However,
our experiment results show that a non exhaustive test purpose set is already able to detect
issues on a large number of Web services. The method is also scalable since the predefined
set of values RV and Inj can be upgraded easily.

The test coverage depends, besides the test pattern number, on the number of parameters
per operation: the higher the number of parameters, the more difficult it will be to cover the
variable space domain. This corresponds to a well-known issue in software testing. So, we
have chosen a straightforward solution by bounding the test case number per operation.
The Max value must be chosen according to the available time for test execution but also
according to the number of parameters used with the Web service operations so that each
parameter ought to be covered by a sufficient value set. For instance, for one operation
composed of 4 parameters, each covered with at least 6 values, the Max parameter must
be set to 1300 tests. Nevertheless, as it is illustrated in our results, a lower test case number
(100 tests) is sufficient to discover security issues. There exist other interesting solutions,
for the parameter coverage, which need to be investigated, such as pairwize testing Cohen
et al. (2003) which requires that, for each pair of input parameters, every combination of
values of these two parameters are covered by a test case.

219A Guided Web Service Security Testing Method

www.intechopen.com

26 Will-be-set-by-IN-TECH

7. Conclusion

We have introduced a security testing methodology dedicated for stateful Web Services. This
one takes STS specifications and a Nomad test pattern set, which are translated into test
purposes to check the test relation secureTP. The specification is completed to take into account
the SOAP environment while testing. Test cases are generated by means of a synchronous
product between test purposes and the completed specification.

The first concluding remark, raised by our experimentation, is that SOAP Web Services are
not a "security nightmare". Several companies have taken into consideration the Web Service
security standards. For instance, the Amazon Service is based upon some features proposed
by the WS-Security specification (timestamps, etc.). Nevertheless, our experiment results have
revealed that 11 percent of the tested Web Services are vulnerable. And, we believe that this
number should increase with a larger test pattern set. This leads to the first perspective.
Our work is based upon the recommendations for Web Services, provided by the OWASP
organization. These ones do not propose formal security rules. However, it sounds interesting
to dispose, in an open-source community, of a large formal rule set, independently of the
language used for modelling them. Such a rule set would be interesting to derive easily test
patterns and to define the vulnerability coverage of our testing method.

Our testing tool is a prototype which requires further improvements. To the best of our
knowledge, there is no Nomad parser or analyzer to translate Nomad expressions into an
automata-oriented model. So, abstract test purposes are currently constructed by hands. An
automatic generation would be more pleasant. The value sets, used for the test case generation
can be manually modified but stay static during the test case generation. Furthermore, to
avoid a test case explosion, the cardinality of these sets is reduced independently of the Web
Service under test. It could be more interesting to propose a dynamic analysis of the parameter
types to build a list of the most adapted values. It could be also interesting to analyze the
values leading to more errors while testing and to set a weighting at each of them.

The experimentation part has also revealed that other external factors, e.g., high traffic load,
may lead to a fail verdict. Such external factors show the limitations of our testing method,
which cannot take them into account. A possible solution would be to complete it with a
monitoring method which could detect security issues over a long period of time.

8. References

Amazon (2009). Amazon e-commerce service (ecs).
Castanet, R., Kone, O. & Laurencot, P. (1998). On the fly test generation for real time protocols,

International Conference on Computer Communications and Networks, p. 378.
Cohen, M. B., Gibbons, P. B. & Mugridge, W. B. (2003). Constructing test suites for interaction

testing, Proc. Intl. Conf. on Software Engineering (ICSE), pp. 38–48.
Cuppens, F., Cuppens-Boulahia, N. & Sans, T. (2005). Nomad : A security model with non

atomic actions and deadlines, Computer Security Foundations. CSFW-18 2005. 18th
IEEE Workshop, pp. 186–196.

Darmaillacq, V., Fernandez, J., Groz, R., Mounier, L. & Richier, J.-L. (2006). Test generation for
network security rules, Testing of Communicating Systems (TestCom), Vol. 3964, LNCS,
Springer, pp. 341–356.

Een, N. & Sörensson, N. (2003). An extensible SAT-solver, Proc. 6th International Conference on
Theory and Applications of Satisfiability Testing, Vol. 2919, LNCS, Springer, pp. 502–518.

220 Emerging Informatics – Innovative Concepts and Applications

www.intechopen.com

A Guided Web Service Security Testing Method 27

Eviware (2011). Soapui. http://www.soapui.org/.
Frantzen, L., Tretmans, J. & de Vries, R. (2006). Towards model-based testing of web services,

in A. Bertolino & A. Polini (eds), in Proceedings of International Workshop on Web
Services Modeling and Testing (WS-MaTe2006), Palermo, Sicily, ITALY, pp. 67–82.

Frantzen, L., Tretmans, J. & Willemse, T. (2005). Test Generation Based on Symbolic
Specifications, in J. Grabowski & B. Nielsen (eds), Formal Approaches to Software Testing
– FATES 2004, number 3395 in Lecture Notes in Computer Science, Springer, pp. 1–15.

Gruschka, N. & Luttenberger, N. (2006). Protecting web services from dos attacks by soap
message validation, in Proceedings of the IFIP TC11 21 International Information Security
Conference (SEC).

IEEE Standard glossary of software engineering terminology (1999). IEEE Standards Software
Engineering 610.12-1990. Customer and terminology standards, IEEE press.

ir. H.M. Bijl van der, Rensink, D. A. & Tretmans, D. G. (2003). Component based testing with
ioco.
URL: http://doc.utwente.nl/41390/

ISO/IEC (2009). Common Criteria for Information Technology Security (CC), ISO/IEC 15408,
version 3.1, ISO/IEC 15408.

Kalam, A. A. E., Benferhat, S., Miège, A., Baida, R. E., Cuppens, F., Saurel, C., Balbiani, P.,
Deswarte, Y. & Trouessin, G. (2003). Organization based access control, Proceedings
of the 4th IEEE International Workshop on Policies for Distributed Systems and Networks,
POLICY ’03, IEEE Computer Society, Washington, DC, USA, pp. 120–132.
URL: http://dl.acm.org/citation.cfm?id=826036.826869

Kiezun, A., Ganesh, V., Guo, P. J., Hooimeijer, P. & Ernst, M. D. (2009). Hampi: a solver for
string constraints, ISSTA ’09: Proc of the eighteenth international symposium on Software
testing and analysis, ACM, New York, NY, USA.

Kropp, N. P., Koopman, P. J. & Siewiorek, D. P. (1998). Automated robustness testing of
off-the-shelf software components, FTCS ’98: Proceedings of the The Twenty-Eighth
Annual International Symposium on Fault-Tolerant Computing, IEEE Computer Society,
Washington, DC, USA, p. 230.

Le Traon, Y., Mouelhi, T. & Baudry, B. (2007). Testing security policies: going beyond
functional testing, ISSRE’07 (Int. Symposium on Software Reliability Engineering).
URL: http://www.irisa.fr/triskell/publis/2007/letraon07.pdf

Mallouli, W., Bessayah, F., Cavalli, A. & Benameur, A. (2008). Security Rules Specification
and Analysis Based on Passive Testing, in IEEE (ed.), The IEEE Global Communications
Conference (GLOBECOM 2008).

Mallouli, W., Mammar, A. & Cavalli, A. R. (2009). A formal framework to integrate timed
security rules within a tefsm-based system specification, 16th Asia-Pacific Software
Engineering Conference (ASPEC’09), Malaysia.

Martin, E. (2006). Automated test generation for access control policies, Companion to the
21st ACM SIGPLAN symposium on Object-oriented programming systems, languages, and
applications, OOPSLA ’06, ACM, New York, NY, USA, pp. 752–753.
URL: http://doi.acm.org/10.1145/1176617.1176708

Mouelhi, T., Fleurey, F., Baudry, B. & Traon, Y. (2008). A model-based framework
for security policy specification, deployment and testing, Proceedings of the 11th
international conference on Model Driven Engineering Languages and Systems, MoDELS
’08, Springer-Verlag, Berlin, Heidelberg, pp. 537–552.

221A Guided Web Service Security Testing Method

www.intechopen.com

28 Will-be-set-by-IN-TECH

OASIS consortium (2004). Ws-security core specification 1.1. http://www.oasis- open.org/
committees/tc_home.php?wg_abbrev=wss.

OASIS standards organization (2009). Xacml (extensible access control markup language).
URL: http://xml.coverpages.org/xacml.html

OWASP (2003). Owasp testing guide v3.0 project.
URL: http://www.owasp.org/index.php/Category:OWASP_Testing _Project#OWASP_
Testing_Guide_v3

Rusu, V., Marchand, H. & Jéron, T. (2005). Automatic verification and conformance testing for
validating safety properties of reactive systems, in J. Fitzgerald, A. Tarlecki & I. Hayes
(eds), Formal Methods 2005 (FM05), LNCS, Springer.

Salva, S. & Rabhi, I. (2010). Stateful web service robustness, ICIW ’10: Proceedings of the
2010 Fifth International Conference on Internet and Web Applications and Services, IEEE
Computer Society, Washington, DC, USA, pp. 167–173.

Senn, D., Basin, D. A. & Caronni, G. (2005). Firewall conformance testing, Testing of
Communicating Systems (TestCom), Vol. 3502, LNCS, Springer, pp. 226–241.

Singh, M. & Pattterh, S. (2010). Formal specification of common criteria based access control
policy, International Journal of Network Security, pp. 139–148.

Specification, O. U. (2002). Universal description, discovery and integration. http://www.
oasisopen.org /cover/uddi.html.

Tidwell, D. (2000). Web services, the web’s next revolution, IBM developer Works, IBM books.
Tretmans, J. (2008). Model Based Testing with Labelled Transition Systems, in R. Hierons,

J. Bowen & M. Harman (eds), Formal Methods and Testing, Vol. 4949 of Lecture Notes
in Computer Science, Springer Berlin / Heidelberg, Berlin, Heidelberg, chapter 1,
pp. 1–38. URL: http://dx.doi.org/10.1007/978-3-540-78917-8_1

World Wide Web Consortium (2001). Web services description language (wsdl).
World Wide Web consortium (2003). Simple object access protocol v1.2 (soap).
WS-I organization (2006). Basic profile. URL: http://www.ws-i.org/docs/charters/WSBasic_ Profile

_ Charter2-1.pdf, (accessed May 1, 2010)

222 Emerging Informatics – Innovative Concepts and Applications

www.intechopen.com

Emerging Informatics - Innovative Concepts and Applications

Edited by Prof. Shah Jahan Miah

ISBN 978-953-51-0514-5

Hard cover, 274 pages

Publisher InTech

Published online 20, April, 2012

Published in print edition April, 2012

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

The book on emerging informatics brings together the new concepts and applications that will help define and

outline problem solving methods and features in designing business and human systems. It covers

international aspects of information systems design in which many relevant technologies are introduced for the

welfare of human and business systems. This initiative can be viewed as an emergent area of informatics that

helps better conceptualise and design new world-class solutions. The book provides four flexible sections that

accommodate total of fourteen chapters. The section specifies learning contexts in emerging fields. Each

chapter presents a clear basis through the problem conception and its applicable technological solutions. I

hope this will help further exploration of knowledge in the informatics discipline.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Sébastien Salva (2012). A Guided Web Service Security Testing Method, Emerging Informatics - Innovative

Concepts and Applications, Prof. Shah Jahan Miah (Ed.), ISBN: 978-953-51-0514-5, InTech, Available from:

http://www.intechopen.com/books/emerging-informatics-innovative-concepts-and-applications/a-guided-web-

service-security-testing-method

© 2012 The Author(s). Licensee IntechOpen. This is an open access article

distributed under the terms of the Creative Commons Attribution 3.0

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.

