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1. Introduction 

The dynamic properties such as temperature factors or B-factors of a crystallographic 
protein structure result from a complex network of various interactions. To compute 
temperature factors, the straightforward way is to integrate the long time trajectory of the 
protein structure using molecular dynamics (Levitt & Warshel, 1975; Warshel, 1976; 
McCammon et al., 1977) and to compute the root mean square fluctuations of the trajectory, 
which takes into account all possible interactions in terms of empirical force field. Recently, 
the elastic network model (Tirion, 1996; Bahar et al., 1997; Ming et al., 2002) has been shown 
to be quite successful in computing temperature factors. Compared with the usual 
molecular mechanical force field, the elastic network model is a much simpler model. It is 
based on a mechanical model that each C atom is connected through a single-parameter 
harmonic potential function to its surrounding atoms that are within a cut-off distance 
usually in the range of 7 to 10 Å. The mathematical operations in the elastic network model 
are simply the matrix inversion and diagonalization, no trajectory computation required. It 
is somewhat surprising that a mechanical model as simple as the elastic network model, 
which uses only single parameter, i.e., the cut-off distance, can compute dynamics 
properties such as B-factors with accuracy comparable to the more complex molecular 
dynamics method.  

The study of solvent accessible surface area (ASA) has been one of the most important topics 
in computation biology due to the fact that the residues interacting with other biological 
molecules are located on protein surface (Connolly, 1983). ASA has been used in the studies 
of protein stability (Gromiha et al., 1999), protein folding (Eisenberg & McLachlan, 1986), 
and fold recognition (Liu et al., 2007). The relationships between thermal fluctuation and 
some concepts related to ASA have been studied. B-factor has shown to correlate to local 
packing densities (Halle, 2002), atomic distance to protein center-of-mass (Shih et al., 2007; 
Lu et al., 2008) and residue depth (Zhang et al., 2009). Residue flexibility was known to be 
correlated to its ASA in single protein (Sheriff et al., 1985) or small dataset (Carugo & Argos, 
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1997). In a related study, the impact of the ASA of immediate and further neighbors of 
investigated residues was also noted (Zhang et al., 2009). In this study, we further discuss 
the relationship between ASA and theoretical thermal fluctuations which are not reported in 
previous studies. 

Since the elastic network model is mainly based on information of local packing of each C 
atom, one may expect that relative atomic solvent accessibility may qualitatively reflect 
atomic fluctuation. In this work, we showed that this relation goes beyond just a qualitative 
one - the profiles of the temperature factors of crystallographic structures are very similar to 
those of the smoothed amino acid solvent accessibility. Our results show that protein 
dynamical properties can be inferred directly from the static structural properties without 
assuming an additional mechanical model. Another interesting corollary from our results is 
that one may predict temperatures factors from protein sequences with a prediction 
program of solvent accessibility. 

2. Comparison between B-factor and actual RSA value 

In this section, we compare B-factor and relative solvent accessibility (RSA) derived from 
protein structure. First, we discuss B-RSA relationships when different window sizes are 
used in smoothing RSA. Second, we show in detail how smoothed RSA (sRSA) are better 
correlated to B-factor than unsmoothed RSA (uRSA) in several example proteins and the 
phenomenon is generally true in a large dataset. Third, B-RSA correlations are calculated 
separately for residues located on protein surface, in the core, and in between. 

2.1 Methods 

2.1.1 The B-factor and the relative solvent accessibility profiles 

The amino acid solvent accessible areas of the proteins are obtained from DSSP (Kabsch & 
Sander, 1983). For each protein, we can compute its relative solvent accessibility (RSA) 
profile. The RSA of the ith amino acid of type x, x

ia , is computed from  

 x
0ii /A100Aa x  (1) 

where Ai is the solvent accessible area of the ith amino acid and xA0  is the maximal solvent 
accessible area of amino acid of type x. The RSA profile of a protein of N residues is denoted 
as )a,,a(aA Nu  21 .  

The smoothed RSA profile is computed by averaging the RSA of each amino acid together 
with those of its n flanking amino acids. In the case of the terminal amino acid, its one-sided 
flanking amino acids are used twice in averaging. The smoothed RSA profile of a protein of 
N residues is denoted as )a,a,a(A Nu

 21 , where ia  is the smoothed relative solvent 
accessibility. For convenience, we will refer to the original RSA as uRSA and the smoothed 
RSA as sRSA. The predicted RSA is denoted as pRSA and the smoothed pRSA as spRSA. 
The spRSA is computed from pRSA by the smoothing method mentioned above. The B-
factors are extracted from the PDB files of x-ray protein structures. The B-factor profile is 
given as )b,,b(bB N 21 , where ib  is the B-factor of the C atom of the thi  residue.  
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2.1.2 The z-scores of the B-factor and the relative solvent accessibility 

For easy comparison, the B-value, the uRSA, the sRSA, the pRSA and the spRSA profiles are 
normalized to their corresponding z-scores  

 
x

x

xx
z




  (2) 

where x  and x  are the mean and standard deviation of x , respectively. Here x  is b , a  
or a . We will use the notations Bz , uRSAz  , sRSAz , 

pRSA
z  and 

spRSA
z  and to denote the z values 

of B, uRSA, sRSA, pRSA and spRSA, respectively. Their corresponding profiles are denoted 
by the vectors Bz , uRSAz , sRSAz , 

pRSA
z  and 

spRSA
z . In terms of z , the correlation coefficient c  

between, for example, sRSAz  and Bz  is computed by BrRSA zz  . If 1c , these profiles are 
perfectly correlated; if 0c , they are completely independent of each other; 1c , they are 
perfectly anti-correlated. 

2.1.3 Data set 

The data set (PR972) is selected from PDB-REPRDB (Noguchi & Akiyama, 2003), including 
972 protein chains with sequence length larger than 60 residues and pair wise sequence 
identity smaller than 25%. All structures are solved by x-ray crystallography with resolution 
better than 2.0 Å and R-factors smaller than 0.2. Detail list of the data set can be found in our 
previous study on protein structure-dynamics relationship (Lu et al., 2008). 

2.2 Selection of smoothing window size of sRSA profiles 

The thermal fluctuation of a single residue is affected by its flanking amino acids because of 
various interactions between their atoms, for example, hydrogen bonds, van der Waals 
interaction, electrostatic force, etc. Here, we show that the correlation between B-factor and 
RSA increases obviously with proper smoothing window size. 

 
Fig. 1. Average correlation coefficients between normalized B-factor and RSA profiles based 
on the PR972 dataset. The RSA profiles are smoothed by different window sizes, from 0 
(unsmoothed) to 25. 
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Figure 1 shows the average correlation coefficients between B-factor and RSA profiles 
smoothed by different window sizes, ranging from 1 (unsmoothed) to 25. The calculations 
are done based on the PR972 dataset. The average correlation coefficient between B-factor 
and RSA increases greatly from 0.51 (unsmoothed) to 0.60 (window size = 3). It is interesting 
that the results are similar when the window sizes are between 3 to 9 and become worse 
when the window size is larger than 9. It suggests that the thermal fluctuation of a residue is 
mostly affected by the neighbouring residues in this range (window size from 3 to 9). When 
the window size is too large, it seems that the information from distant residues has little 
correlation with the thermal fluctuation. 

Based on the calculations shown in Figure 1, the window size is set to 3 (with the highest 
average correlation coefficient of 0.60) in the following sections. 

2.3 The effects of smoothing on the correlation between B-factor and RSA 

Figure 2 shows the B-factor, unsmoothed RSA (uRSA) and smoothed RSA (sRSA) profiles of 
a typical example: 5-carboxymethyl-2-hydroxymuconate isomerase (1OTG:C). The uRSA 
profile has a more rugged shape when compared with the B-value profile. If the rugged fine 
structures of uRSA profile are smoothed out, the global shapes of the B-factor and the sRSA 
profiles are seen to be quite similar (Figure 1B). The ruggedness of the uRSA profile is due to 
that the solvent accessibility of an amino acid may be quite different from its immediate 
flanking amino acids, but the B values of an amino acid and its immediate flanking amino 
acids appear to be more correlated.  

 
Fig. 2. Comparison of the B-value, uRSA and sRSA profiles of 5-carboxymethyl-2-
hydroxymuconate isomerase (1OTG:C): (A) the uRSA (solid line) and the B-factors (dotted 
line) profiles; (B) the sRSA (solid line) and the B-factors (dotted line) profiles. 
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We computed the correlation coefficient between the B-factor, uRSA and sRSA profiles for 
the PR972 data set. Figure 3A shows the distribution of correlation coefficient between the 
B- factor and the uRSA profiles. The median of the correlation coefficients is 0.52 and 62% of 
the proteins have a correlation coefficient ≥ 0.5. Figure 3B shows the distribution of 
correlation coefficient between the B-factor and the sRSA profiles. The median of the 
correlation coefficients is now improved to 0.65 and 86% of the proteins have a correlation 
coefficient ≥ 0.5. 

 
Fig. 3. The distribution of correlation coefficients of (A) the uRSA and (B) the sRSA profiles 
for the nonhomologous data set of 972 chains (PR972). The shaded areas indicate the 
sequences that have correlation coefficients ≥ 0.5. 

2.4 Examples 

Figure 4 shows some examples of the uRSA and sRSA profiles together with the B-value 
profiles: iron (II) superoxide dismutase (1ISA:B), dimethylsulfoxide reductase (1EU1:A) and  
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the  /  domain of 6-phosphogluconate dehydrogenase (2PGD), Serratia endonuclease 
(1SMN:B). The B-factor profiles are very similar to sRSA profiles. Figure 4 shows the 
correlation between sRSAz  and Bz  of the corresponding proteins.  

 
Fig. 4. Comparison of the crystallographic B-factors (dotted lines) of C atoms and the sRSA 
profiles (solid lines) of the following proteins: 1ISA:B, iron (II) superoxide dismutase; 
1EU1:A, a dimethylsulfoxide reductase; 2PGD, the  /  domain of 6-phosphogluconate 
dehydrogenase; 1SMN:B, a Serratia endonuclease; 1RLR, the the  /  domain of 
ribonucleotide reductase protein R1. The sRSA profiles are normalized to the scale of the 
crystallographic B-factors. 

2.5 Comparison of B-RSA relationship for residues in different structural contexts 

Proteins are strongly interacting with their environment and protein dynamics have been 
shown to be affected or “slaved” to the solvent around them (Fenimore et al., 2004). Since 
we have observed close relationship between B-factor and RSA, it is interesting to examine 
the relationships separately for the surface residues, the partially buried residues and the 
residues deeply buried in protein core. 
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The residues in the PR972 dataset are grouped based on the local rigidity of each residue. 
The rigidity score is computed using the WCN model (Lin et al., 2008) which is a cutoff-free 
contact number model. The rigidity scores range from 0 to 1 and we use two bin sizes, bin 
size=0.1 and bin size=0.2, to separate the residues into 10 and 5 groups respectively. Figure 5 
shows the correlation coefficients between B values and sRSA for each group (bin size=0.1 
shown in filled circle, bin size=0.2 shown in rhomb). The results clearly show that the 
correlations between B values and sRSA decrease as the rigidity scores increase (correlation 
coefficient=-0.77). In other words, B values are better correlated to sRSA for residues located 
in less crowded environment or on the surface of the protein.  

 
Fig. 5. The correlation coefficients between B and sRSA profiles for residue groups with 
increasing rigidity scores. The bin size=0.1 (filled circle) and bin size = 0.2 (rhomb) are used 
to separate the residues into groups. The linear regression is based on the groups of bin 
size=0.1.The statistics are done using the PR972 dataset. 

3. Comparison between theoretical thermal fluctuation and actual RSA value 

Thermal fluctuations in protein can be computed theoretically from its structure. Here, we 
further compare RSA profiles with theoretical thermal fluctuations computed by two 
methods, the Protein-fixed-point (PFP) model (Shih et al., 2007; Lu et al., 2008) and 
Weighted-contact number (WCN) model (Lin et al., 2008). These two models are shown to 
be able to reproduce B-factor from protein structure. The WCN model was further applied 
to the prediction of NMR order parameters (Huang et al., 2008) and the identification of 
enzyme active sites (Huang et al., 2011). The basic idea of the PFP model is assume that 
thermal fluctuation of a residue is related to the squared distance between the residue and 
the center-of-mass of the protein: 

 2
iB

i
r  (3) 

where iB is the theoretical thermal fluctuation of residue i and i
r is the distance between 

residue i and protein center-of-mass. The WCN model is a cutoff-free contact number 
model. Unlike traditional contact number calculation, the WCN model assumes that all 
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residues interact with each other in a protein. The contact number of a residue is contributed 
by all other residues but each contact term is weighted inversely by the squared distance 
between them: 

 



N

ij ijr
2i

1w  (4) 

where iw is the weighted contact number score of residue i, N is the total residue number of 

the protein, and ijr is the distance between residue i and j. 

Experimental thermal fluctuations are affected by different experimental conditions. For 
example, two structures of rubredoxin, 1CAA and 1IRO, have almost identical structure 
(RMSD = 0.44Å) but their B-factor profiles are dissimilar. Figure 6 compares their B-factor 
and WCN profiles, clearly showing that similar X-ray structures may have very different B-
factor profiles. 

 
Fig. 6. Comparison of Z-scores of (A) B-factor profiles and (B) WCN profiles of two 
structures of rubredoxin (PDB id: 1CAA and 1IRO) 

Figure 7 shows the distributions of correlation coefficients between sRSA and thermal 
fluctuations derived from different methods, including experimental B-factor, PFP model, 
and WCN model. The average correlation coefficients based on the PR972 dataset are 0.72 
(WCN) and 0.55 (PFP) which are higher than that of B-factor (0.52). The correlations 
between sRSA and theoretical thermal fluctuations are more obvious than that of sRSA and 
B-factor. One reason may be that B-factor is affected by experimental conditions as shown in 
the example illustrated in figure 6.  
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Fig. 7. The distributions of correlation coefficients between sRSA and B-factor (white), PFP 
(grey), and WCN (black) profiles based on the PR972 dataset 

4. Prediction of B-factors from sequences based on predicted RSA profiles 

Since the smoothed solvent accessible surface profiles are quite similar to the B-factor 
profiles, we can indirectly predict B-factors from sequence using the smoothed RSA profile 
predicted from sequence. 

4.1 Methods 

4.1.1 Prediction of relative solvent accessibility 

The real value prediction of RSA (pRSA) is computed by the support vector machine (SVM) 
regression model. The inputs to the SVM are position–specific substitution matrix (PSSM) 
obtained from PSI-BLAST (Altschul et al., 1997), secondary structure profile predicted by 
PSIPRED (McGuffin et al., 2000) and hydropathy index. The PSSM profile was obtained 
after three iterations (E-value = 0.003) against the non-redundant protein sequence database. 
A 24N  scoring matrix is used as an input to the SVM, which including the PSSM profiles, 
secondary structure profiles and hydropathy index. Here, the size of the sliding window of 
the sequence, N, is set to 15. We train the SVM regression model by the commonly used 
RS126 dataset (Rost & Sander, 1993), a non-homologous data set with pair wise sequence 
identity less than 25% over a length of more than 80 residues.  

4.1.2 The support vector machine 

The support vector machine method (SVM) (Vapnik, 1995) has been successfully applied to 
secondary structure prediction (Hua & Sun, 2001; Kim & Park, 2003; Ward et al., 2003), 
subcellular localization prediction(Hua & Sun, 2001; Yu et al., 2004), protein fold assignment 
(Ding & Dubchak, 2001; Yuan et al., 2003) and other biological pattern classification 
problems (Dobson & Doig, 2003; Chen et al., 2004; Kim & Park, 2004). The original idea of 
the SVM is to find the separating hyperplane with the largest distance between two classes. 
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However, because the data to be classified may not always be linearly separable, the SVM 
overcomes this difficulty by using the kernel function to nonlinearly transform the original 
input space into a higher dimensional feature space, so that the data may be effectively 
separated in the higher dimensional space. SVMs perform well compared with other 
machine-learning methods because of convenient classifier's capacity control and effective 
avoidance of overfitting. In this work, the software package LIBSVM (Chang & Lin, 2001) 
was used. 

4.2 Prediction results and comparison with other methods 

The 2-state model is used to evaluate the performance of RSA prediction. Each residue is 
assigned buried or exposed by comparing its RSA value with a threshold and the prediction 
accuracy is defined by the percentage of correctly predicted residues. The prediction 
accuracies using different thresholds are listed in Table 1. The accuracies of two related 
prediction methods, SVMpsi and Fuzzy K-NN, are also listed for comparison with our 
results. The SVMpsi (Kim & Park, 2004) used SVM and the position-specific scoring matrix 
(PSSM) generated from PSI-BLAST and the Fuzzy K-NN (Sim et al., 2005) used fuzzy k-
nearest neighbor method and PSSM as feature vectors. 
 

Method 
State threshold 

25% 16% 5% 0% 
SVMpsi 76.8 77.8 79.8 86.2 

Fuzzy K-NN 78.3 79.0 82.2 87.2 
This work 77.8 78.1 80.0 88.8 

Table 1. The accuracies of predicting RSA from sequence in 2-state model based on the 
RS126 dataset 

The correlation coefficients between the B-factor profiles and the predicted RSA (pRSA) and 
smoothed pRSA (spRSA) profiles are computed for the PR972 data set. The correlation 
coefficient between the B-factor and pRSA profiles is 0.44 and 31% of the proteins have 
correlation coefficient ≥ 0.5. After smoothing the pRSA profiles, the correlation coefficient 
between the B-factor and spRSA profiles increases to 0.53 and 55% of the proteins have 
correlation coefficient ≥ 0.5. Since spRSA and B-factor are well correlated, we assume that 
the spRSA of each residue is its predicted B-factor value. We found that the results of 
utilizing spRSA are comparable to one of the current best B-factor prediction results (Yuan 
et al., 2005). Yuan used support vector regression approach and PSSM information to 
predict the B-factor distribution from sequence and reported a correlation coefficient of 0.53 
on a dataset of 766 high-resolution proteins. For fair comparison, we tested our method on 
the same dataset. The average correlation coefficient between spRSA and B-factor is 0.52 
which is comparable to theirs (0.53).  

Figure 8 shows the B-factor, pRSA and spRSA profiles of human uracil-DNA glycosylase 
inhibitor (1UGH:I). The correlation coefficient between the B-factor and pRSA profiles of the 
protein is 0.68 (Figure 8A). After smoothing, the correlation coefficient between the B-factor 
and spRSA profiles is 0.83. The B-factor profiles are better correlated to the spRSA profiles 
than the unsmoothed profiles, especially in the N-terminal and the P26-S39 residue regions 
(Figure 8B). 

www.intechopen.com



On the Relationship Between Residue  
Solvent Exposure and Thermal Fluctuations in Proteins 

 

223 

 
Fig. 8. Comparison of the B-value, pRSA and spRSA profiles of human uracil-DNA 
glycosylase inhibitor (1UGH:I): (A) the pRSA (solide line) and the B-factors (dotted line) 
profiles; (B) the spRSA (solid line) and the B-factors (dotted line) profiles. 

Several methods have been developed to predict B-factor from sequence using different 
methodologies and testing datasets. The results of these methods have been compared using 
a small dataset (290 protein chains) (Radivojac et al., 2004). The average correlation 
coefficients are 0.32 (Vihinen et al., 1994) by a sliding window averaging technique and B-
factor propensities, 0.43 by using neural network and multiple sequence alignment 
information (Radivojac et al., 2004). There were also structure-based prediction methods, for 
example, it was reported that the elastic network model has an average correlation 
coefficient of 0.59 between B-factor and their residue flexibility score (Kundu et al., 2002). 

5. Conclusions 

Though the dynamic properties of a protein result from a complex network of various 
interactions, we found that the B-factors of crystallographic structures are closely related to 
solvent accessibility directly derived from the protein structure. Our results indicate that 
dynamic properties such as B-factors can be computed directly from the protein's 
geometrical shape without assuming any mechanical models. Furthermore, we found that 
the smoothed solvent accessibility profiles are very similar to the B-factor profiles, and in 
some proteins, these profiles can overlap with each other almost perfectly. In a dataset 
comprising 972 non-homologous protein sequences, 86% of the proteins have a correlation 
coefficient between zB  and zsRSA  larger than 0.5. The results are consistent with the 
research by previous work (Zhang et al., 2009) showing the linear relationship between RSA 
and B-value profiles. In addition, we show that the relationship is not equal for residues in 
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the environments of different rigidity. The correlations are higher for the residues located in 
the loose regions than those in the rigid environments.  

Our results suggest that protein structure and protein dynamics are so closely related that 
the relative solvent accessibility profile allow one to directly infer the complete B-factor 
profiles. It will be interesting to investigate further whether there exists similar relationship 
between B-factors and other structural properties other than solvent accessibility. Recent 
studies showed a close relationship between the sites of low B-factor values and the active 
or the binding sites (Yuan et al., 2003; Yang & Bahar, 2005). Our results suggest a potential 
way to identify active sites from sequence without structure information. Figure 9 shows the 
spRSA and B-value profiles of type 2 rhinovirus 3C protease (1CQQ). The catalytic residues, 
H40, E71 and C147 (shown in open circle), are located at the low-mobility regions in the 
spRSA profile. 

 

Fig. 9. B-value (dashed line) and spRSA (solid line) profiles of type 2 rhinovirus 3c protease 
(1CQQ). The catalytic residues, H40, E71 and C147, are labelled as open circle. 

Since the prediction of solvent accessibility(Ahmad et al., 2003; Kim & Park, 2004) as well as 
the prediction of secondary structure elements(Qian & Sejnowski, 1988; Rost & Sander, 1993; 
Jones, 1999) from protein sequences are among the earliest and the best developed 
methodologies in computational biology, our findings suggest an indirect way of predicting 
B-factors from sequences - approaches based on various machine-learning techniques such 
as the support vector machines or the neural networks have been quite successful in the 
prediction of real value solvent accessibility, and we can borrow these methods and directly 
apply them to the prediction of B-factors by the use of the smoothed relatively solvent 
accessibility. We predict the solvent accessibility from sequence using the support vector 
machine method. The results are comparable to that of the current best methods, with an 
average correlation coefficient of 0.53 between the B-factor and spRSA profiles over a data 
set of 972 proteins. 
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