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1. Introduction 

Diabetic nephropathy is a life-threatening complication of diabetes mellitus and the leading 
cause of end-stage renal disease (ESRD) in developed countries. Diabetes is responsible for 
over 40% of all new cases with ESRD in the United States and Japan, eventually undergoing 
renal dialysis or transplantation. Diabetic nephropathy is characterized by glomerular 
hyperfiltration and thickening of glomerular basement membranes, followed by expansion 
of extracellular matrix in mesangial area. There are many factors and pathways that are 
involved in the pathogenesis of diabetic nephropathy. In this chapter, we will focus on 
advanced glycation end-products (AGE) and the receptor for AGE (RAGE) in the 
development and prevention of diabetic nephropathy. 

2. Possible molecular mechanisms for the development of diabetic 
nephropathy 

Diabetic nephropathy occurs in 20-40% of patients with diabetes and accounts for 
disabilities and the high mortality rate in patients with diabetes (1). In proportion to the 
rapid increase of diabetic population, diabetic nephropathy is now the major cause of ESRD 
in developed countries. There are many factors influencing the development of diabetic 
nephropathy, this including genetic, hemodynamic, environmental, and metabolic factors. 
The epidemiological studies have revealed that hyperglycemia per se is the most important 
factor in the onset and progression of diabetic vascular complications (2). Potential 
mechanisms underlying diabetic nephropathy include activations of polyol and hexosamine 
pathways, oxidative and nitrosative stress, ER stress, protein kinase C activation, poly(ADP-
ribose) polymerase activation, and inflammation (3). Extensive intracellular and 
extracellular formation of AGE can also become a pathogenic factor in sustained 
hyperglycemia-induced kidney injuries. Both receptor-dependent and -independent 
mechanisms are involved in AGE-induced cellular dysfunction and tissue damage. 
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3. AGE 

Reducing sugars like glucose can react nonenzymatically with amino groups of proteins, 
and a series of further complex molecular rearrangements of dehydration, condensation and 
crosslinking yield irreversible and heterogeneous derivatives termed AGE (4). AGE are also 
generated by the reaction of aldehydes and metabolites from glycolysis pathway such as 
dicarbonyls of methylglyoxal (MG), glyoxal and 3-deoxyglucosone (3DG) with amino acids, 
lipids and nucleic acids, and through lipid peroxidation (5,6). Although this process takes 
place continuously within the body during aging, it is extremely accelerated in diabetes (7). 
There are a large portion of these agents can be exogenous. Tobacco smoke has already been 
recognized as an important exogenous source of AGE (8). The diet, especially the modern 
western diet, also provides a relatively large portion of formed AGE and AGE-precursors; 
e.g. ┝N -carboxymethyl-lysine (CML) and MG (9). However, the exact nature of various diet-
derived AGE derivatives has not yet been fully elucidated. 

In vitro, AGE stimulate the generation of reactive oxygen species (ROS), insulin-like growth 
factor-1 (IGF-1), platelet-derived growth factor (PDGF), and transforming growth factor- 

(TGF-) in mesangial cells (10, 11), the features characteristic of glomerulosclerosis. AGE 
also induce TGF- production in tubular cells, which links to the pathogenesis of 
tubulointerstitial fibrosis (12). Podocytes undergo apoptosis when exposed to AGE (13), this 
being implicated in podocyte injuries in diabetes (Fig. 1). 

 

Fig. 1. AGE-RAGE axis and the interaction of other ligands with RAGE contribute to cellular 
responses and development of diabetic nephropathy. LPS, lipopolysaccharides; PS, 
phosphatidylserine. 
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There are three lines of evidence for the role of AGE in diabetic nephropathy. The first line 
concerns the association between the accumulation of AGE-modified proteins and severity 
of diabetic nephropathy in both diabetic animals and man (14-17). The second comes from 
the fact that kidney injuries develop following injection of AGE-modified proteins in non-
diabetic animals (18). The third kind of evidence is that the development and progression of 
diabetic nephropathy is attenuated by the treatment with inhibitors of AGE formation and 
AGE breakers such as aminoguanidine, pyridoxamine and ALT-711 (19-22). 

4. AGE receptors 

Accumulating evidence indicates that the interaction of AGE with their receptor can play an 
important role in the pathogenesis of diabetic nephropathy (23). The best characterized AGE 
receptor is RAGE. Many other AGE receptors and soluble binding proteins interacting with 
AGE may also participate in the AGE homeostasis: scavenger receptors class A (MSR-A), 
class B (MSR-B) (CD36 and LOX1), AGE-R1 (OST48 oligosaccharyltransferase), AGE-R2 
(80K-H protein kinase C substrate), AGE-R3 (galectin-3), and toll-like receptor (TLR) 4 (24-
28). There are also other molecules like lysozyme and lactoferrin-like polypeptide that play a 
role in cellular uptake and degradation of AGE (29).  

RAGE is a member of the immunoglobulin superfamily, having a total of 394 amino acid 
residues in the case with human ortholog with a single hydrophobic transmembrane 
domain (19 amino acids) and a highly charged C-terminal cytosolic tail (43 amino acids) 
that mediates intracellular signaling pathways (30). Extracellularly, RAGE has an N-
terminal immunoglobulin (Ig) V-type ligand binding domain and two Ig C-type domains 
(V-C-C') (Fig. 2). 

 

Fig. 2. RAGE belongs to an immunoglobulin superfamily and functions as a member of 
PRRs. LPS, lipopolysaccharides; PS, phosphatidylserine. 
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AGE-RAGE interaction can induce expressions of genes for vascular endothelial growth 
factor (VEGF) and for vascular cell adhesion molecule-1 (VCAM-1) in endothelial cells (EC) 
(31, 32), leading to enhancement of vascular permeability and local inflammation. Secretion 
of various cytokines such as tumor necrosis factor (TNF), interleukin 1 (IL1), IL6, and 
monocyte chemotactic protein-1 (MCP-1) were induced by the AGE-RAGE system in 
monocytes and macrophages (33) (Fig. 1). Mammalian homologue of Drosophila gene 
Diaphanous 1 (mDia1) has been identified as a directly binding molecule with an 
intracellular domain of RAGE and subsequently proven to act as a part of the machinery of 
RAGE intracellular signaling (34). It is very recently reported that AGE-RAGE interaction 
can cause phosphorylation of cytoplasmic domain at Ser391 of RAGE by PKC┞ (35) (Fig. 3). 

 

Fig. 3. RAGE intracellular signaling pathways. ERK, extracellular signal-regulated kinase; 
mDia-1, mammalian Diaphanous-related formin-1; NFB, nuclear factor B; PKC, protein 
kinase C ; JAK-STAT, The Janus kinase-signal transducers and activators of transcription; 
Ras/MAPK, Ras/mitogen-activated protein kinase; Rac/Cdc42, Rac/Cell division control 
protein 42 homolog. 

RAGE ligands other than AGE have been identified, including high-mobility group box 
protein 1 (HMGB1), calcium-binding S100 protein group, 2-integrin Mac/CD11b, amyloid 
 peptide, -sheet fibrils, advanced oxidation protein products (AOPP), complement C3a, 
lipopolysaccharides (LPS), and phosphatidylserine on the surface of apoptotic cells (36-41) 
(Fig. 2). RAGE is thus considered a member of pattern-recognition receptors like TLRs, 
actively participating not only in diabetic vascular complications but in the interface of 
innate and adaptive immunity and in inflammation. 

Ligand engagement of RAGE activates the nuclear factor-B (NF-B) and other signaling 
pathways through stimulation of ERK (extracellular signal-regulated kinase)1/2, p38 MAPK 
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(mitogen-activated protein kinase)-JNK (c-Jun N-terminal kinases), JAK (Janus kinase)-
STAT (signal transducer and activator of transcription), and Rac-Cdc42 (42) (Fig. 3). 
Expression of RAGE is basically low in vascular cells but apparently constitutively induced 
during diabetes and inflammation. This is explained by the fact that the gene for RAGE per 
se is under the control of NF-B, which thus constitutes a positive loop of regulation (43), 
thereby resulting in the superdrive of the AGE-RAGE system during prolonged 
hyperglycemic exposure.   

5. RAGE and diabetic nephropathy in mice 

Development of diabetic nephropathy is characterized by glomerular hyperfiltration and 
thickening of glomerular basement membranes, followed by an expansion of extracellular 
matrix in mesangial areas and increased albuminuria. Diabetic nephropathy ultimately 
proceeds to glomerular sclerosis associated with renal dysfunction. 

Because diabetic nephropathy is the major cause of ESRD, the development of effective 
remedies to retard the progression of diabetic nephropathy has become a pharmaceutical 
goal. However, it has been hampered by the lack of adequate experimental models to test 
them (44). We created transgenic (Tg) mice that overexpressed human RAGE in vascular 
cells by introducing fertilized ovum a transgene carrying human RAGE gene under the 
control of the murine flk-1 promoter which works in EC (45). The Tg mice were made   

 

Fig. 4. Periodic acid-Schiff (PAS) stain of the mouse kidneys at 16 weeks of age (ref. 45). 
Diabetic RAGE-Tg, diabetes-induced RAGE-overexpressing transgenic mice; Diabetic 
control, diabetes-induced non-transgenic mice; Non-diabetic RAGE-Tg, non-diabetic RAGE-
overexpressing transgenic mice; Non-diabetic control, non-diabetic non-transgenic mice.  
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diabetic by crossbreeding with another Tg line carrying inducible nitric oxide synthase 

(iNOS) cDNA under the control of insulin promoter (46). The resultant double Tg mice 

showed significant increases in kidney weight, albuminuria, glomerulosclerosis, and serum 

creatinine compared with the diabetic iNOS Tg controls (45) (Fig. 4). The sole iNOS Tg mice  

also showed progression of diabetic nephropathy accompanied by expression of TGF- in 

glomeruli (47). Inagi and our group introduced megsin (mesangial cell-specific gene with 

homology to serine protease inhibitor) as the third transgene into RAGE-iNOS double Tg 

mice, this resulting in further acceleration of the development of nephropathy signs such as 

mesangial expansion, nodule-like lesion, and tubulointerstitial damage with an increase in 

local oxidative stress (48). Our group also generated homozygous RAGE knockout (KO) 

mice and found that the RAGE KO mice displayed suppression of all of the following 

features of advanced glomerular disease: kidney enlargement, increase in glomerular cell 

number, mesangial expansion, advanced glomerulosclerosis, albuminuria and the increase 

in serum creatinine (49). The endothelial-mesenchymal-transition (EndoMT) was also 

attenuated by the deletion of RAGE (50). That RAGE axis is a crucial cause of diabetic 

nephropathy has thus clearly emerged from experiments with RAGE-gene manipulated 

animals. Another model is the OVE26 mouse, in which diabetes is induced by transgene-

mediated introduction of calmodulin in pancreatic ┚-cells (51). RAGE deletion was also 

beneficial to diabetic nephropathy in the OVE26 diabetic mice (52). 

6. Inhibition of AGE and RAGE for the treatment of diabetic nephropathy 

A key aim of therapy in diabetic patients is to reduce hyperglycemia by modification of the 
diet. However, dietary compliance is often difficult, and the alternative is to use 
pharmacological compounds that can reduce AGE and inhibit RAGE action. There are 
several endogenous molecular devices that can serve to protect the body from glycation and 
AGE such as ┙-ketogluteraldehyde dehydrogenase, glyoxalase and scavengers (53, 54). 
Hyperglycemia and RAGE activation are suggested to down-regulate glyoxalase I 
production and the enzyme activity (55). It is, therefore, rational to take pharmacologic 
strategies against the down-regulation of those endogenous detoxication enzymes. 

Applications of inhibitors for AGE and RAGE may be promising therapeutic approaches for 
diabetic nephropathy (Table 1). Antioxidants may protect against free radicals derived from 
autoxidative glycation and AGE. Benfotiamine is a synthetic S-acyl derivative of thiamine 
and has anti-oxidant and anti-AGE formation (56). Amadoriases may be used to deglycate 
Amadori products or to inactivate intermediates such as 3DG. AGE-crosslink breakers such 
as ALT-711 (algebrium) and N-phenylthiazolium bromide (PTB) offer the potential of 
reversing diabetic nephropathy, although their precise mechanism of action is still unclear 
(57, 58). TTP488 is an antagonist against RAGE, which is under clinical studies, and 
neutralizing anti-RAGE antibody may also be useful (59). Low-molecular weight heparin 
(LMWH) can bind RAGE and act as an antagonist to RAGE [31]. LMWH treatment of the 
mouse model of diabetic nephropathy showed both the preventive and therapeutic effects 
on albuminuria and glomerulosclerosis in a dose-dependent manner (49). 
Thiazolidinediones, calcium channel blockers, angiotensin-converting enzyme inhibitors 
(ACEI), angiotensin II receptor blockers (ARB), and statins are reported to suppress RAGE 
expression (60, 61). There are numerous compounds that have been investigated for the anti-
glycation activity but their use in humans is still debatable (62). Decoy type receptors of 
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RAGE, namely soluble RAGE (sRAGE), is also applicable for the treatment of diabetic 
nephropathy. sRAGE corresponds to the extracellular domain of RAGE lacking the 
transmembrane and cytosolic domains. As the N-terminal V-type domain is included, 
sRAGE has the same ligand-binding ability as membrane RAGE and thus is able to act as a 
decoy by preventing the ligands to reach the membrane-bound counterpart. In db/db mice, 
treatment with murine sRAGE (50 mg/day for 19 weeks) decreased albuminuria, 
glomeruloslerosis and GBM thickening (63); the sRAGE employed in that study was the 
truncated form of RAGE artificially produced by recombinant gene technology. Endogenous 
sRAGE exists in the circulation of humans. To generate sRAGE endogenously, two 
mechanisms are considered: (1) the alternative splicing to remove the transmembrane region 
and (2) the proteolytic cleavage from the cell surface. We identified and reported a splice 
variant form of soluble RAGE and named it endogenous secretory RAGE (esRAGE) (64, 65). 
Reinforcing sRAGE genesis by ectodomain shedding will decrease an amount of signal-
transducing RAGE and will in turn reciprocally increase an amount of decoy receptor 
sRAGE; this can control ligand-RAGE signaling and subsequent cellular derangement in the 
kidney. Treatment with statins and ACEI is reported to stimulate circulating sRAGE 
production in human studies (66, 67). Further investigations are needed for better 
understanding of the regulation of sRAGE production and for developing drugs that can 
simultaneously upregulate sRAGE and downregulate mRAGE. 

 

Table 1. Inhibitors of AGE and RAGE 

7. Conclusions 

Accumulating evidence has supported the concept that AGE and RAGE play an active role 

in the development and progression of diabetic nephropathy. Prophylactic and therapeutic 

strategies focusing on RAGE and its ligand axis will be of great importance in conquering 

diabetic kidney injuries. 
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