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1. Introduction 

The growing incidence of diabetes mellitus, with predicted rises in prevalence from 285 to 

380 million cases in 2025, then 438 million by 2030, is a major public health burden in both 

developing and developed countries. Type 1 and type 2 diabetes increase the risk of 

microvascular complications, which cause significant morbidity and mortality. Diabetic 

nephropathy (DN) and retinopathy represent the major causes of end-stage renal disease 

and blindness (1-2) in developed countries. DN is associated with an increased risk of 

hypertension, adverse cardiovascular events (3), chronic kidney diseases and haemodialysis 

(4). Efforts are therefore being made to find ways of preventing and/or slowing down the 

progression of DN worldwide.  

DN is initiated by glomerular changes, namely hypertrophy, then thickening of the 

basement membrane with subsequent expansion of the mesangial matrix and 

glomerulosclerosis (5). This is associated not only with microalbuminuria, an early clinically 

detectable lesion, but also with tubulointerstitial fibrosis and tubular atrophy (5-6). 

Oxidative stress, hyperglycemia and renin-angiotensin system (RAS) dysfunction have been 

linked to the development of these lesions (5-6). Although albuminuria is a useful clinical 

marker, tubulointerstitial fibrosis and tubular atrophy represent a better predictor of 

nephropathy progression because of their close association with declining renal function (5). 

Many randomized controlled trials have shown the efficacy of optimal glycemic control and 

RAS blockade in the primary and secondary prevention of DN (4, 7-9). The former is easily 

understood, as decreased “glucotoxicity” reduces end-organ damage. However, the 

mechanisms underlying the protective action of RAS inhibition, notably angiotensin II (Ang 

II) receptor blockade, are not well understood. In this review, we present the recent results 

of studies aiming to understand the consequences of RAS blockade at the molecular level, 

with an emphasis on tubular lesions in DN. 
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2. The renin-angiotensin system in diabetic nephropathy 

2.1 Clinical findings on the implications of RAS blockade in diabetic nephropathy 

The benefits of RAS inhibition on end-organ protection in diabetic patients are well 
established. One of the early clinical trials on diabetic patients was performed with 
captopril, an angiotensin-converting enzyme inhibitor (ACE-I), and showed a reduction in 
the risks of death, dialysis and transplantation (10). Other trials initially used monotherapy 
with ACE-I, but also angiotensin receptor blockers (ARB) (11-12). Dual blockade was 
proposed after one of the largest clinical trials, the Candesartan And Lisinopril 
Microalbuminuria (CALM) Study, showed reduced albuminuria with dual therapy 
compared to monotherapy (13). Further clinical trials with larger sample sizes, however, 
have failed to confirm the superiority of dual RAS blockade compared to monotherapy;  
multicentric clinical trials are ongoing to resolve this issue (14). 

2.2 Background on the roles of angiotensin II in the kidney  

Despite controversies over the efficacy of dual or simple RAS blockade, the importance of 
Ang II in diabetic nephropathy development is well accepted. Ang II, an octapeptide 
discovered in the 1930s in the United States and characterized in Switzerland, was initially 
named for its first-known function: contraction of blood vessels (15). It is the most powerful 
biologically active peptide of the RAS, with vasoconstriction but also nonhemodynamic 
effects, such as electrolyte reabsorption, renal hypertrophy and tubular apoptosis in the 
kidneys (15).  

2.2.1 Receptors 

It is well established that Ang II mediates its effects mainly via binding to two G protein-
coupled receptors: AT1R (which has 2 subtypes in rodents, namely AT1a and AT1b) and 
AT2R. AT1R, a seven-transmembrane domain receptor, is the main known mediator of Ang 
II actions (16); its action is summarized in Table 1. Ang II stimulation leads to upregulation 
of AT1R in the tubular compartment but downregulation of the same receptors in the 
glomerular compartment (17). The role of AT2R in kidneys is still not fully understood: upon 
stimulation by Ang II, it can counteract the effects of AT1R (18) but also activate 
inflammation (cf Table 1). In animal models of kidney damage, de novo expression of AT2R 
in glomeruli and vessels was induced by Ang II together with upregulation of AT2R in 
tubular cells (19).  

Recent studies have shown the importance of 2 other receptors, the Ang1-7 or Mas receptors 
and the AT4 receptor (20). The latter is still under investigation and has been proven to be 
linked to memory. However, it is also present in vessels and kidneys (proximal and distal 
tubules); it  increases intracellular Ca2+ levels and activates Erk and MAPK signalling (21). 

2.2.2 Actions 

Ang II stimulates glomerular cell proliferation and causes accumulation of extracellular matrix 

material by stimulating transforming growth factor 1 (TGF-1), which leads to increased 

protein synthesis. TGF-1 decreases protein degradation by stimulating matrix 
metalloproteinases, mainly MMP-2, but also plasminogen activators inhibitor-1 (PAI-1) (22-23). 
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AT1 R AT2 R Mas receptors 

Activation Inhibition Activation Inhibition Activation Inhibition 

Phospholipase A2 
Phospholipase C 
Jak/STAT 
ITP 
Ca2+ 

p21ras, C-Src 

PKC (MAPK&TGF-1)
NADPH (ROS) 

Adenyl 
cyclase 

iNOs/L-
arginine/O2 

+NADPH 
(NO&cGMP) 
NF-kappa B 

PKC 
(MAPK) 
 

p38MAPK,  
SHIP-1 (PI3K) 
Erk 1/2 
Bradykinines 
COX 
(Prostaglandins), 
NO 

TGF-1  

Table 1. Signalling pathways stimulated by AT1, AT2 and Mas receptors 

It has been demonstrated that high glucose, together with Ang II, is involved in tubular 
lesions seen in DN (5, 24). Indeed, high glucose and Ang II enhance angiotensinogen (Agt, 
the sole precursor of all angiotensins) gene expression, both in vitro in rat immortalized 
renal proximal tubular cells (iRPTC) (25, 26) and in vivo in streptozotocin-treated mice (a 
model of diabetic mice) proximal tubules (5, 24). This turns into a vicious circle, increasing 
tubular atrophy, as Agt is the sole substrate of the RAS and is used for synthesis of Ang II. 

2.3 From angiotensinogen to angiotensin II   

The importance of the systemic RAS in blood pressure control and sodium homeostasis has 
been well accepted and Ang II has been recognized as a cardinal parameter in the 
development of both hypertension and kidney injury (5, 13, 15, 27). Overactivation of AT1 R  
by Ang II therefore represents a target for treatment, but as Ang II has many other paracrine 
effects (induction of inflammation, mitogenesis, cell growth, apoptosis, differentiation, 
migration, etc.), current therapies are not sufficient to reverse the consequences of Ang II 
hyperaction. Of note, local RAS have been unravelled in some organs, notably the kidneys, 
with luminal fluid levels of Ang II being at least 1,000-fold higher than in the plasma (28). 
This local RAS could also play an important role in sodium retention and blood pressure 
regulation and hypertension, representing both a cause and a consequence of kidney injury. 
Complex interactions between diabetes and hypertension due to similar etiologies of both 
conditions, together with the stimulating effect of hyperglycemia on Ang II production in 
vitro, point to an important role for local RAS in DN. 

2.3.1 Synthesis and degradation of angiotensin II 

The classic components of the RAS are all found in renal proximal tubules, including Agt 
and the enzymes (prorenin/renin, ACE, angiotensin-converting enzyme 2 (Ace2), 
aminopeptidases and carboxy peptidases). Upon cleavage of the prorenin into a proteolytic 
enzyme, renin will cleave Agt into a decapeptide: angiotensin I (Ang I). Then the dipeptidyl 
peptidase ACE will remove 2 amino acids from the latter and generate Ang II. Ang II is 
further metabolized into smaller fragments, such as Ang 1-7 and Ang III, Ang IV and Ang 
V, by various peptidases. Among those peptidases, Ace2 is a human homologue to ACE 
(42% similarity) that was discovered in 2000; it cleaves Ang I into Ang 1-9 /Ang II to Ang 1-
7, both having hemodynamic properties (29). While ACE is present in most tissues, Ace2 is 
specifically expressed in the kidney, and less in the testes and heart ,with neither ARB nor 
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ACE-I, which can inhibit its activities (29). Ace2 levels in glomerules and proximal tubules 
are decreased in patients with chronic kidney disease and DN (30).   

The following diagram illustrates the pathway for the synthesis and degradation of Ang II. 

 

Fig. 1. Synthesis and degradation of Ang II 

When Ace2 null mice were bred with the Akita model of type 1 diabetes, the obtained 

Ace2(-/y) Ins2(WT/C96Y) mice exhibited increased mesangial matrix scores, urinary 

albumin excretion rates and glomerular basement membrane thicknesses compared to 

Ace2(+/y)Ins2(WT/C96Y) with the same blood glucose levels (31). This highlights once 

more the role of RAS in the development of kidney injury in cases of chronic hyperglycemia. 

2.3.2 Importance of angiotensinogen in diabetic nephropathy 

Our laboratory has previously demonstrated that both ARB and ACE-I block Agt gene 

expression and induction of hypertrophy stimulated by high glucose levels in immortalized 

rat RPTCs and that renal Ang II acts in an autocrine manner to stimulate TGF-ß1 expression 

and, subsequently, TGF-ß1 enhances cellular hypertrophy and collagen α1 (type IV) 

expression in RPTCs (32). Our experiments on RPTCs have shown that high glucose 

stimulates Agt gene expression via at least 4 pathways: 

 Protein Kinase C via de novo synthesis of diacylglycerol; 

 p38 MAP Kinase; 

 Hexosamine biosynthesis; 

 ROS. 

The latter have been extensively studied within the frame of elucidating the molecular 

mechanisms of hyperglycemia action in DN. It is now accepted that elevated glucose levels 

enhance PKC activation, augment membrane lipid peroxidation in glomeruli and induce 

Agt gene expression in rat RPTCs via ROS generation (25).  Excessive intracellular 

accumulation of glucose (seen in chronic hyperglycemia) leads to disturbances at the level of 

the TriCarboxylic Acid (TCA) pathway, followed by the formation of high quantities of 
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electron donors (NADH, H+ and FADH2) and mitochondrial superoxide overproduction 

(33). Increased mitochondrial superoxide production activates three main pathways: the 

polyol/protein kinase C pathway, the hexosamine biosynthesis pathway, and increased 

production of advanced glycated end products (AGE) and its receptor, RAGE (33). Our 

transgenic (Tg) mice overexpressing rat catalase (CAT) in their RPTCs exhibit attenuated 

ROS generation, Agt gene expression and RPTC injury in streptozotocin (STZ)-induced 

diabetes in vivo (5), unequivocally demonstrating the importance of ROS in mediating Agt 

gene expression and in the development of DN.  

2.4 Recent findings on diabetic nephropathy using transgenic mouse models 

In order to elucidate in vivo the importance of local intrarenal RAS, at least two systems 
could be used: targeted renal expression of RAS in knock out mice for any component of 
RAS and targeted renal overexpression of one component of the RAS in wild type mice. Our 
laboratory has been using the latter approach to elucidate the role of intrarenal RAS in DN. 

2.4.1 The angiotensinogen transgenic mouse model 

To obtain specific overexpression of the rat Agt gene (rAgt) in RPTC, our laboratory used 
the Kidney-specific Androgen regulated Promoter 2 (KAP2) (34, 35). The cDNA encoding 
full-length rAgt fused with HA-tag at the carboxyl terminal and NotI restriction enzyme site 
attached at both 5’- and 3’-termini was thus inserted into the KAP2 promoter and thereafter 
microinjected into one-cell fertilized mouse embryos as shown below: 

 

Fig. 2. Schematic map of the kidney androgen-regulated promoter (KAP2)-rat Agt construct 

Studies using this rAgt-transgenic (Tg) mice model have demonstrated that 
overexpression of renal rAgt alone induces hypertension and albuminuria and that RAS 
blockade reverses these abnormalities (34). Thereafter the same model was used to assess 
a possible synergic deleterious action of local RAS overactivity and high glucose on 
RPTCs, which could contribute to the pathophysiology of DN and help unravel new 
protective mechanisms.  

2.4.2 Tubular apoptosis in diabetic angiotensinogen transgenic mice 

STZ was used to induce diabetes in non-transgenic (non-Tg) and Tg mice. As far as 
systemic hypertension is concerned, neither STZ-induced diabetes nor insulin treatment 
changed the blood pressure levels of Tg mice or non-Tg mice. STZ administration led, 
four weeks later, to diabetes, increased kidney/body weight and albuminuria, and were 
normalized by insulin treatment. RAS blockers did not affect glucose levels but reversed 
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the deleterious effects of rAgt-overexpression in diabetic mice. Renal injury found in Tg 
mice was more severe in STZ-treated Tg mice, with loss of brush borders in RPTC and 
marked tubular luminal dilatation.  In addition,  glomerular and RPTC hypertrophy and 
increased tubular luminal area were markedly attenuated by insulin and RAS blockers in 
Tg and non-Tg STZ-treated mice, while a combination of both treatments completely 
reversed these abnormalities. Apoptotic assays (TUNEL) and immunohistochemistry 
using caspase-3 antibody showed increased levels of apoptosis in RPTC of Tg mice 
compared to non-Tg, the latter having higher levels than non-STZ treated mice. 
Investigations of the molecular pathways involved reveal an increased level of Bax and 
concomitant downregulation of Bcl-xL. One hypothesis could therefore be that 
hyperglycemia enhanced tubular apoptosis by increasing the Bax/Bcl-xL ratio, thus 
having a pro-poptotic effect. STZ-induced diabetes leads to apoptosis in RPTCs and to a 
lesser degree in distal tubules, but not in the glomeruli, confirming previous findings of a 
pro-apoptotic effect of diabetes on RPTCs (36). Treatment with insulin and/or RAS 
blockers leads to an almost complete absence of apoptosis in kidneys of non Tg and Tg 
mice. Another salient finding in Agt-Tg mice is the persistent kidney injury despite 
hydralazine treatment. In fact, hydralazine treatment markedly reduced systemic blood 
pressure but did not affect albuminuria and tubular apoptosis. Further investigations into 
the underlying mechanism of high glucose and Ang II action were performed on Tg mice 
overexpressing catalase (CAT-Tg) in their RPTCs. STZ-induced diabetic CAT-Tg mice 
exhibited attenuated ROS generation and tubular apoptosis (5). Furthermore, in double 
Tg mice having Agt and CAT specifically expressed in their RPTCs, ROS generation, 
NADPH activity and levels of hemoxygenase 1 (HO-1) were significantly lowered by CAT 
overactivity compared to Agt-Tg mice.  Levels of collagen type IV, monocyte chemotactic 

protein-1 (MCP-1), TGF-1 and plasminogen activator inhibitor-1 were also lowered by 
CAT overexpression in double Tg mice compared to Agt Tg mice (37). Thus, CAT 
overexpression alleviates oxidative stress in RPTC and reduces the toxicity of Ang II and 
chronic hyperglycemia on the kidneys.  

3. Conclusion and perspectives 

Agt and chronic hyperglycemia act together at the level of the RPTC, leading to tubular 
atrophy due to pro-apoptotic activities and interstitial fibrosis. This unravels the 
importance of the local RAS in the development of DN. Both in vitro and in vivo 
experiments of overexpression of Agt indicate that the latter stimulates RPTC 
hypertrophy and apoptosis, but significant effects on the glomeruli remain to be 
determined.  However, because tubular atrophy seems to be a better predictor of disease 
progression than glomeruli lesions, this finding may be considered of significant clinical 
importance, as therapeutics reproducing the effects of CAT may be specifically developed 
to impede or even stop the progression of DN. 

Further directions include studying the effect of the local RAS on glomeruli and deciphering 

the molecular pathways by which Agt and chronic hyperglycemia induce RPTC apoptosis. 

One important clue is the role of ROS, which is induced by both intrarenal RAS overactivity 

and chronic hyperglycemia. Indeed, we have reported an increase of apoptotic cells in 

RPTCs of db/db mice (type II diabetic mouse model) and normalization by overexpression 

of catalase (CAT) in their RPTCs (db/db CAT-Tg mice) (38) as shown below: 
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(a) db/m+ (b) db/m+ Cat-Tg 

(c) db/db (d) db/db Cat-Tg

G G

G

G

PT

PT

PT PT
PT

PT

PT

PT
PT

PT
 

Fig. 3. Apoptosis in male non-Tg and Tg mouse kidneys at week 20, analyzed by TUNEL 
staining. Arrows indicate apoptotic cells. G, glomerulus; PT,  proximal tubule.  
Magnification x600.  

Using DNA chip microarrays technology, our laboratory recently identified 2 pro-
apoptotic genes, Bcl-2 modifying factor (Bmf) and Caspase-12, which are differentially 
upregulated in renal proximal tubules of db/db mice but normalized in db/db CAT-Tg 
mice (39) as shown below: 

Probe Set ID Gene Title Fold- 

change 

(db/db vs 

db/m+) 

p-value 

(db/db vs 

db/m+) 

Fold- 

change 

(db/db vs 

db/db-

CAT Tg) 

p-value 

(db/db vs 

db/db-

CAT Tg) 

1450231_a_at baculoviral IAP repeat-

containing 4 

1.28 0.0039 1.29 0.0038 

1454880_s_at Bcl2-modifying factor 3.07 0.0099 3.07 0.0098 

1449297_at caspase 12 1.82 0.0069 1.81 0.0070 

1431875_a_at E2F transcription factor 1 1.19 0.0065 1.19 0.0064 

1423602_at 

1445452_at 

Tnf receptor-associated 

factor 1 

1.99 0.0073 1.97 0.0074 

 

Fig. 4. List of genes up-regulated in microarray chips of db/db vs db/m+ and db/db vs 
db/db CAT-Tg mice  
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One hypothesis that needs further examination is whether intrarenal RAS overactivation 
and chronic hyperglycemia may act synergistically to induce ROS generation and 
subsequently induce endoplasmic reticulum (ER) stress in RPTCs and enhance ER-stress 
gene expression such as caspase-12, glucose-regulated protein 78 (GRP78)/ 
immunoglobulin-heavy-chain-binding protein (BiP), and CCAAT/enhancer-binding protein 
homologous protein (CHOP) expression and activation, triggering the initiation and 
amplification of the apoptotic cascade leading to tubular apoptosis. 
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