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1. Introduction 

Sorption and diffusion of small molecules through polymers is a topic of broad range of 
applications in many industrially important phenomena. There is a rapidly growing 
demand for polymers of specified permeabilities, such as selective memberanes for 
separation technologies, barrier membranes for packaging applications, foaming, and 
plasticization. Polymers with a high degree of permeability and permselectivity have been 
widely used for gas or liquid separation systems based on membranes (Kesting & Fritzsche, 
1993), while those with a low degree of permeability have been used in barrier packaging 
films as containers (Koros, 1990). Therefore, understanding the underlying mechanism of 
solubility and/or diffusion of peneterants in macromolecular substances is very useful in 
obtaining a clear picture of the molecular level mechanism of polymer permeability and in 
design of new membranes. 

The first study of gas permeation through a polymer goes back to 1829 by Thomas Graham 
(Stannett, 1978). According to Graham's postulate, the permeation process involves the 
dissolution of penetrant followed by transmission of the dissolved species through the 
membrane. In the late 1870’s, Stefan and Exner demonstrated that gas permeation through a 
membrane was proportional to the product of solubility and diffusion coefficients. Based on 
the findings of Stefan and Exner, von Wroblewski (1879) constructed a quantitative solution 
to the Graham’s solution-diffusion model. The dissolution of gas was based on Henry’s law 
of solubility, where the concentration of the gas in the membrane was directly proportional 
to the applied gas pressure. Later Daynes (1920) showed that it was impossible to evaluate 
both diffusion and solubility coefficients by steady-state permeation experiments. He 
presented a mathematical solution, using Fick’s second law of diffusion, for calculating the 
diffusion coefficient, which was assumed to be independent of concentration. 

Microscopic theories of the diffusion and permeation of penetrants in polymers, on the other 
hand, were developed during 1950-1970's. In these theories, to explain the mechanism 
behind the transport of gas molecules through the free volume present in the polymer 
matrix, the gas-polymer system was defined in terms of liquid molecules traveling through 
a liquid membrane. The Cohen and Turnbull (1959) theory considered transport through 
liquid molecules as hard spheres. In this model the gas diffusion in polymers occurs 
through the redistribution of free volume. Another theory, proposed by Dibenedetto (1963), 
used the same concept as that of Cohen and Turnbull (1959) regarding free volume 
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distribution, but with a different chain packing theory at the molecular level. An elaborate 
theory was developed by Pace and Datyner (1979), assuming that the penetrant molecule is 
moving along the polymer chain bundles and being stopped only by chain entanglements or 
a crystallite. The penetrnat molecules were further assumed to jump into the adjacent 
bundles, similar to the Cohen and Turnbull's model. Such a jump event was considered to 
be the rate controlling step, with the diffusion along the bundle being three times faster than 
the perpendicular jump of the molecule. None of these theories, however, provides a 
molecular lever understanding of the permeability in polymers. 

Significant advances in the understanding of gas permeation in polymers have been made 

only in the last few decades with the advent of powerful computers. Monte Carlo (MC) 

and molecular dynamics (MD) simulations on small-molecule permeation of amorphous 

polymers have become feasible in recent decades. The simulations now cover a range of 

different polymers with varieties of chemical complexities ranging from flexible polymers 

with simple chemical structure, like polyethylene (Boyd & Pant, 1991), to stiff polymers 

with detailed chemical structure, like polyamides (Eslami & Mehdipour, 2011). In the 

following we give a detailed discussion of the calculation methods as well as the 

polymeric samples employed to study the sorption/diffusion mechanism. The main 

difficulty in the calculation of gas permeabilities stems from the calculation of solubility 

coefficients. In fact the calculation of gas solubilities necessitates the condition of 

equilibrium between the permeant (sorbate) in the gas phase and that dissolved in 

polymer. The equality of the temperature, pressure, and chemical potentials of all species 

is the necessary condition to establish such an equilibrium situation. The chemical 

potential is, however, coupled to the number of particles and cannot be easily calculated 

using molecular simulation methods. Therefore, while there exist excellent reviews on the 

pearmation of gases in polymers, with the main emphasis on the diffusion process 

(Müller-Plathe, 1994), in this review we explain the polymer permeation putting more 

emphasis on the solubility process. 

2. Sorption of gases in polymers 

Historically, the dual-mode sorption theory (Stannett et al., 1978; Frederickson and Helfand, 
1985) describes the concentration C (solubility) of the gas inside a polymer at equilibrium 
with the gas at a partial pressure p, i.e., 

 
1

H

bp
C k p C

bp
 


 (1) 

where kH is Henry’s law solubility coefficient, C is the saturation concentration of the gas, 

and b is the affinity coefficient. This model assumes that there are two distinct modes  

by which a glassy polymer can sorb gas molecules; Henry’s law and a Langmuir 

mechanism which corresponds to the sorption of gases into specific sorption sites in  

the polymer. Henry’s constant has the same physical meaning for glassy polymers as it 

does for rubbery polymers and liquids, whereas the Langmuir-type term is believed to 

account for gas sorption into interstitial spaces and microvoids, which are consequences 

of local heterogeneities and are intimately related to the slow relaxation processes 

associated with the glassy state of the polymer. Local equilibrium is assumed between the 
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two modes. Figure 1 shows a schematic representation of Henry, Langmuir, and dual-

mode sorptions. 

 

Fig. 1. Schematic representation of Henry, Langmuir, and dual-mode sorptions. 

In the low pressure region, Eq. 1 provides the following linear relationship against the 
pressure: 

   0HC k C b P S P    (2) 

where S0 is called the apparent solubility coefficient in the zero-pressure limit in glassy 
polymers.  

The determination of the free energy change in sorption of gases in polymer is a problem of 
primary importance, since the free energy is the main thermodynamic parameter governing 
the equilibrium between the gas in the pure state and the dissolved one in the polymer. For 
a system of N particles located at r1, r2, ...rN, the statistical mechanical expression for the 
Helmholtz free energy, A,  reads as (McQuarrie, 1976):  

   3 0 0

1
ln( ) ... exp /

!

N N
B N BN

A k T Q U r k T dr
N

 
   

    (3) 

with 

 

1/2

2 B

h

mk T
 

   
 

 (4) 

Here, Q is the canonical partition function, UN is the potential energy of the system, rN 
stands for the whole set of coordinates, r1, r2, …rN,  is the de Broglie wavelength, h is the 
Planck's constant, m is the molecular mass, kB is the Boltzmann's constant, and T is the 
temperature. Assuming pair-wise additiveity of the potential energy between particles, we 
have:  

www.intechopen.com



 
Molecular Dynamics – Studies of Synthetic and Biological Macromolecules 

 

64

 ( )
N N

N ij ij
i j i

U u r


  (5) 

where uij is the pair potential interacting between particles i and j and rij is the interparticle 
distance. The expression for the chemical potential is obtained by taking the logarithm of the 
ratios of partition functions for a system composed of N particles, with the sorbate 

(penetrant) density of s, and a system composed of N+1 particles, which is obtained by 
adding one sorbate particle to the previous N-particle system, i.e, 

    3
1 ln ln exp( /s N N B s B BA A k T k T U k T        (6) 

with  

 1N NU U U    (7) 

Here s and s are the chemical potential and the density of sorbate, respectively, and the 
brackets indicate the ensemble average. Comparing s with the chemical potential of the 
ideal gas at the same state, i.e.,  

  3lnex
s s B sk T      (8) 

various contributions to the chemical potential can be interpreted according to Ben-Naim 

(1987). In Eq. (8) ex
s  is called the excess chemical potential of sorbate. The second term on 

the right hand side of Eq. (8) is the chemical potential of the ideal gas. Now, the chemical 

potential of the sorbate is split into two terms; a term arising from putting the sorbate 

molecule at a fixed position in the polymer matrix, ex
s , and a term arising from releasing 

the constraint, i.e., letting the solute molecule move freely, which results in the contribution 

 3lnB sk T    to the chemical potential. In fact this term is the contribution of translational 

motion to the chemical potential.    

Looking at the sorption process, we consider the pure sorbate gas s in equilibrium with the 
dissolved gas in the polymer. Again we connect the thermodynamic states of the system to 
their corresponding ideal gas states (at the same temperature, and the same density of 
sorbate s), as it is depicted in Scheme 1. 

ideal gas s (T, )                                             ideal gas s (T,  ) 

 

 

gas s sorbed in polymer (T, )                                                       gas s  (T,  ) 

Scheme 1. Description of equilibrium between the gas s in the gaseous and polymeric 
phases. 

Here,  and  indicate the densities of gas s in the polymeric and gaseous phases, 
respectively. The condition of equilibrium for gas s, between the gas phase and the polymer 
phase is the equality of the chemical potentials, i.e., 
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    , ,s sT T      (9) 

where  and µ are the chemical potentials of the sorbed gas in polymer and in gas phase, 
respectively. According to the thermodynamic cycle shown in Scheme 1, the equilibrium 
condition between the pure gas and the gas sorbed in the polymer is formulated as: 

 lnex ex
s s Bk T

 


 


 (10) 

Equation 10 is the main equation governing the equilibrium between the sorbed  
gas molecules in the polymer and those in the gaseous phase. According to this equation, 
the main parameter to be determined for the calculation of solubilities is the excess  
chemical potential. In the following section we study the computational approach,  
with the main emphasis on the MD simulation methods, for calculation of chemical 
potentials. 

3. Calculation of excess chemical potentials  

From the historical point of view, traditional approaches such as the equation-of-state 
models (Lacombe and Sanchez, 1976 ; Sanchez and Rodgers, 1990 ; von Solms et al., 2005)  
and the activity coefficient models (Ozkan and Teja, 2005) have been applied to calculate 
the phase equilibria and sorption of penetrant molecules in polymers. Molecular 
simulations are the other attractive method for this type of calculation. These methods do 
not invoke any approximations and predictions are based on well-defined molecular 
characteristics. In the following sections we describe the application of molecular 
simulation methods in the case of sorption of gases in polymers. As stated above, the 
main problem is to calculate the excess chemical potentials, which is given address to in 
the following sections. 

3.1 Widom's test particle insertion method 

The Widom's test particle insertion method (Widom, 1963) is an elegant method for 
calculating the excess chemical potentials. In this method a test particle is momentarily 
inserted at random points in the simulation box and the interaction energy between the 
test particle and the host particles are averaged to yield the excess chemical potential. 
Since the method relies on the statistical accuracy of sampling of configurations  
that permit the insertion of molecules with low values of the binding energies, its 
application is more feasible for small-sized solutes. In a dense fluid there is a small 
probability of finding a cavity to insert a particle in. Therefore, particle insertion becomes 
a rare event and long simulation times are needed to obtain a good statistics. Similarly,  
at high densities, the probability of particle deletion is also reduced. The deletion 
probability depends on the probability of generation of a high density configuration, from 
which to delete a particle. Due to several limitations, such as poor sampling at high 
densities or inadequacy of the method in the case of chemical potential calculation  
for polar systems, the utility of this method to many important applications is precluded. 
The problem of poor sampling has been solved to some extent by developing  
such techniques as the umbrella sampling (Shing and K. E. Gubbins, 1981) and map 
sampling (Deitrick et al., 1989), as the extensions of original Widom’s method. The Widom 
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method or its modifications can be used in both MC and MD simulations, but in  
this method the chemical potential will be calculated at the end of the simulation. This 
method has widely been applied in calculating the excess chemical potentials of small 
penetrant molecules in polymers including polypropylene (Müller-Plathe, 1991), 
polydimethyl siloxane (Sok et al., 1992), polyisobutylene (Müller-Plathe et al., 1993), 
polystyrene (Eslami & Müller-Plathe, 2007a), and polyimides (Neyertz & Brown, 2004; 
Pandiyan et al. 2010). However, the method is not applicable in the case of excess 
chemical potential calculation for polar penetrant in polar polymers. Moreover, the 
sampling probability gets poor in dense polymeric systems and in the case of big 
penetrants.    

3.2 Thermodynamic integration and fast growth thermodynamic integration methods 

Thermodynamic integration method is another useful method for the calculation of the 
excess chemical potentials. In this method, a parameter λ is used to couple the sorbate with 
the rest of the system and the excess chemical potential, or coupling work, is obtained by 
integrating along λ as: 

 
1

0

ex
s

U
d 


      (11) 

In this method, several simulations are required to obtain a series of points for the 

integration. To improve the sampling, recently Hess and van der Vegt (2008) have 

developed a fast-growth thermodynamic integration method. The approach is based on the 

non-equilibrium work theorem of Jarzynski (1997), which relates the work that is being 

performed on a system when going from an initial state to a final state along a coordinate λ 

with the free energy change. Through the applications of this method, polymer 

microstructure can be considered as a potential landscape as in Figure 2. 

In this context, the free energy can be calculated by performing fast growth thermodynamic 

integration in order to calculate the work required to insert the sorbate in a solvent matrix 

from sampling the possible coordinates where interaction potentials determine the potential 

landscape. This method has been applied successfully to calculate the excess chemical 

potential of relatively large molecules in polymer matrices (Hess & van der Vegt 2008; Hess 

et al. 2008; Fritz et al., 2009). 

3.3 Open system simulations 

Since the chemical potential is conjugated with the number of particles, the statistical 

mechanical ensemble representative for its calculation is the grand canonical ensemble. 

There are several open-system simulation techniques in the literature, allowing to set the 

target chemical potential as an independent thermodynamic variable. These methods are 

preferential to the methods explained above for the calculation of phase equilibria, in that 

the chemical potential in each phase is set from the beginning as an independent variable, 

while in closed system simulations the chemical potential is calculated at the end of the run. 

In the following two subsections we describe the grand canonical ensemble simulations 

using MC and MD techniques. 
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Fig. 2. A schematic one-dimensional representation of a free-energy landscape for an 

additive molecule (x is a component of its center of mass) in a polymer matrix as a function 

of the coupling parameter . During a fast-growth simulation, a molecule is forced along  

from state A to B, while sampling in x; three example paths are given. With fast-growth 
thermodynamic integration, it is possible to explore the multiple minima in the free energy 
landscape by multiple trajectories starting from a flat free energy landscape (a solute not 
interacting with the matrix). Figure is taken from Hess and van der Vegt (2008) with 

permission. 

3.3.1 Grand canonical ensemble Monte Carlo simulation  

The first grand canonical simulation method (Norman & Filinov, 1969 ) was based on a 
MC simulation technique. This method was then developed by Adams (1974, 1975). In 
these methods full particles are inserted into or removed from the simulation box, in a 

Markov process with a probability, which depends on the target chemical potential. These 
kinds of movements are compatible with the stochastic nature of moves in MC technique. 
The main difficulty with the MC simulation methods in the grand canonical ensemble is 

their inefficiency when applied to the condensed phases. Besides, the insertion or deletion 
of full particles highly perturbs the simulation box, and it takes some time for the fluid to 
relax.  These methods envisage similar sampling problems, as addressed above in the case 
of Widom's method, at high densities. However, the sampling problem has been 

overcome somewhat by searching in the simulation box for suitable cavities and biasing 
the insertion event (Escobedo & de Pablo, 1995; Shelley & Patey, 1995; Boda et al., 1997). 
Another problem with the MC simulation methods in the grand canonical ensemble is 

that these methods do not directly reflect the dynamic information about the system. 
Therefore, attention has been attracted toward development of the grand canonical 
ensemble simulations using MD technique.  
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3.3.2 Grand canonical ensemble molecular dynamics simulation  

The discontinuity of the number of particles, introduced through particle insertion/deletion, 
makes it difficult to do MD simulation in the grand canonical ensemble. Therefore, in some 
of the existing MD-based simulations in the grand canonical ensemble, the sampling is 
performed through using the MC-based stochastic procedures (Boinepalli & Attard, 2003). 
Another alternative, is the introduction of the particle number as a continuous dynamic 
variable through the MD simulation (Eslami & Müller-Plathe, 2007b; Eslami et al., 2011). 
This approach is based on the so-called extended system method, in which a Hamiltonian 
including the kinetic and potential energy terms for the extension variable is constructed 
and the appropriate equations of motion are solved.  

Here we assume that our physical system is composed of N real particles plus one 
“fractional” particle and is coupled to a heat reservoir and a particle reservoir. The fractional 

particle is a particle whose potential energy is weighted by a variable  which varies from 
zero to one. The inclusion of the fractional particle in the system provides a variable number 
of particles in a dynamical way. The Hamiltonian of such a combined system; the real N 
particle system, the fractional particle, and the additional degrees of freedom, i.e., the 
material reservoir and the heat reservoir, is written as (Eslami & Müller-Plathe, 2007b): 

 

2 2 22 2 2 2 21

2 2
1 1 1 2 22 2

f f fi i i

N N N Nx y zx y z s
ij if s

si i j i ii f

p p pp p p p p
H U U U U

W Wm s m s







   

  
           (12) 

where H is the Hamiltonian, subscripts i and j refer to the real particles, subscript f refers to 
the fractional particle, pi is the momentum of the ith particle, s is the velocity scaling variable 

which couples the system to the thermostat, and  is the particle-number scaling variable 
which couples the fractional particle to the rest of the system and varies from zero to one. In 
this equation, the first four terms on the right hand side are the kinetic energy of the real 
particles, potential energy of interaction between real particles, kinetic energy of the 
fractional particle, and the potential energy of interaction between real particles and the 
fractional particle. The number extension variable, , and the temperature extension 
variable, s, have their own kinetic and potential energy terms, shown as the last four terms 
on the right hand side of Eq. (12). In fact U is the work required to carry a fractional particle 
from a medium of zero potential to the medium of interest with the potential energy U; i.e., 
it is the so-called excess Helmholtz free energy. 

Adopting one of the real particles (molecules) in the simulation box as the fractional particle, 
the fractional particle is grown to a full (real) particle or deleted from the system in a 
dynamical way, by solving the equations of motion. The relevant equation of motion, 
governing the dynamics of fractional particle (the magnitude of coupling to the ideal gas 
reservoir) is (Eslami & Müller-Plathe, 2007b):   

 
1

N
if id

i

U
W  




   

  (13) 

where d λ =d2/dt2 and id is the chemical potential of the ideal gas. In fact, combination of 

the last two terms on the right hand side of Eq. (13) is the target excess chemical potential. 
By adding/deleting the fractional particle into/from the simulation box, decision is made 
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either to choose another real particle in the box as the new fractional particle, or to add a 
new fractional particle to the box. This is done according to the algorithm by Eslami and 
Müller-Plathe (2007b). On adding the new fractional particle to the box, the coupling 

parameter, , is set close to zero. Similarly, when a real particle is chosen as the new 

fractional particle,  is set close to 1. Repeating such a procedure, equilibrium is achieved, in 
which the density (number) of particles in the system oscillates about an average value, 
corresponding to the target chemical potential, temperature, and volume. 

4. Phase equilibrium calculation   

There are several methods for the calculation of phase coexistence points using molecular 
simulations, such as thermodynamic scaling method (Valleau, 1991; Valleau and Graham, 
1990), histogram reweighting method (McDonald and Singer, 1967; Potoff and 
Panagiotopoulos, 1998), the Gibbs-Duhem integration method (Kofke, 1993a,b), NpT plus 
test particle method (Boda et al., 1995; 1996), various extensions of it to other ensembles 
(Moller and Fischer, 1990; Boda et al., 2001), and the Gibbs eensemble MC method 
(Panagiotopoulos,1987). In the Gibbs eensemble MC method, which is one of the most 
popular methods for the calculation of phase equilibria, the simulation box is divided into 
two subsystems and simultaneous simulation of both subsystems are done. To establish the 
equilibrium (the equality of chemical potentials), particles are exchanged between the two 
subsystems. This technique has been applied to coexistence properties of simple systems, 
such as fluids of spherical Lennard-Jones or Yukawa particles (Panagiotopoulos et al., 1998; 
Rudisill and Cummings, 1989), as well as more complex systems, such as polyatomic 
hydrocarbons (de Pablo and Prausnitz, 1989; de Pablo  et al., 1992) and chain molecules (de 
Pablo, 1995). There are also reports on the mixed methods in which the molecular 
simulation approaches have been utilized, to calculate the chemical potentials in the 
condensed phase and the results from equations-of-state predictions are used to calculate 
the phase coexistence point (Lim et al., 2003), or to calculate the interaction energy 
parameters of solvent and polymer, in combination with statistical-mechanical theories for 
the study of phase equilibria of polymer-solvent mixtures (Jang and Bae,  2002). 

Many computational studies of the permeation of small gas molecules through polymers, 
using afore-cited techniques, have appeared, which were designed to analyze, on an atomic 
scale, diffusion mechanisms or to calculate the diffusion coefficient and the solubility 
parameters. Most of these studies have dealt with flexible polymer chains of relatively 
simple structure such as polyethylene, polypropylene, and poly-(isobutylene) (Müller-
Plathe, 1991; Pant & Boyd, 1993; Tamai et al., 1995; Pricl and Fermeglia, 2003; Abu-Shargh, 
2004). There are however some reports on polymers consisting of stiff chains. Of these we 
may address to the works by Mooney and MacElroy (1999) on the diffusion of small 
molecules in semicrystalline aromatic polymers, by Cuthbert et al. (1997) on the calculation 
of the Henry’s law constant for a number of small molecules in polystyrene and the effect of 
box size on the calculated Henry’s law constants, by Lim et al. (2003) on the sorption of 
methane and carbon dioxide in amorphous polyetherimide. In some of these reports the 
authors have used Gibbs ensemble Monte Carlo method (Vrabec and Fischer, 1995; 
Panagiotopoulos, 1987) to do the calculations, and in some other cases alternative methods, 
like the equation-of-state approaches are employed to describe the gas phase. In fact, as 
explained above, one needs to satisfy the equality of chemical potentials in both phases. 
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There are, however, some recent methods employing the grand canonical ensemble 
simulation formalism (to set the target chemical potentials in equilibrating phases), without 
the necessity to do simultaneous simulations on two boxes (unlike the Gibbs ensemble MC 
method) to calculate the gas solubilities in polymers. In the following section we explain 
these methods.  

4.1 Grand equilibrium method 

In the Gibbs ensemble simulation method one specifies the thermodynamic variables 

temperature, global composition, and global pressure for the simulation of both phases in 

separate volumes. Practically, this set of thermodynamic variables is in many cases not 

convenient and simultaneous simulation of both phases has the disadvantage that 

fluctuations occurring in one phase influence the other one. Recently a new method, grand 

equilibrium method, has been developed by Vrabec and Hasse (2002). This method 

circumvents the afore-cited problems for the study of phase equilibria. The specified 

thermodynamic variables are temperature and composition and two independent 

simulations are performed for the two phases without the need to exchange particles in the 

condensed phase. According to this method for a mixture composed of several components, 

it is possible to do a simulation in the isothermal-isobaric (NpT) ensemble at constant 

temperature, a constant composition of the condensed phase, and at an arbitrary constant 

pressure, preferably close to the pressure at the phase coexistence point, to obtain the 

density of the condensed phase.  

In the grand equilibrium method, a simulation of the condensed phase is done to calculate 

the excess chemical potentials, sex, and the partial molar volumes, Vs, of all components. 
One may use the test-particle insertion method (Widom, 1963) to calculate the excess 
chemical potentials and the partial molar volumes as:  

  ln exp /ex
s B B

B

pV
k T U k T

Nk T
     (14) 

and  

 
 
 

2 exp /

exp /

B

s
B

V U k T
V V

V U k T


 


 (15) 

Knowing the parameters Vs and sex from this simulation, the desired excess chemical 
potentials as functions of pressure are obtained from a first order Taylor series expansion, 
i.e., 

  * *( ) ( )ex ex s
s i

V
p p p p

kT
     (16) 

where p* is the target pressure at which the NpT ensemble simulation is done. Once the 

sex(p) is determined from Eq. (16) by one NpT ensemble simulation of the condensed 
phase, one vapour/gas simulation has to be performed in the pseudo-grand canonical 

ensemble (pseudo-VT). In a common grand canonical ensemble (Eslami and Müller-
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Plathe, 2007b) the parameters temperature, volume, and the chemical potential of all 

species are fixed, while in this pseudo-VT ensemble simulation, the parameters T and V 
are fixed in the common way, but instead of fixing the chemical potentials, they are set as 
a function of the pressure in the gas phase. This procedure ensures that equilibrium 

between the condensed phase and the gas phase is imposed. In a common VT ensemble 
simulation (Eslami and Müller-Plathe, 2007b), the chemical potentials are set through 
insertion and deletion of particles by a comparison between the resulting potential energy 
change and the desired fixed chemical potential. Here, starting from a low density state 
point, the gas phase simulation is forced to change its state to the corresponding phase 
equilibrium state point.  

5. Applications 

Recently, we have applied the grand equilibrium method for the calculation of solubilities 
of gases in polymers. The method has been well tested for the case of gas solubilities  
in polystyrene over a wide range of temperatures and pressures (Eslami and Müller-
Plathe, 2007a). To calculate the phase equilibeium points, MD simulations were 
performed at a specified temperature and concentrations of sorbed gases in polymer. 
After equilibration, several configurations are extracted at different times from the 
dynamic simulation and used to insert the test particles, to calculate the excess chemical 
potentials. Calculating the excess chemical potentials of the sorbed gases in polymer as a 
function of pressure, a simulation of the gas phase is done in the grand canonical 
ensemble, to find the phase coexistence point. We have shown in Figure 3 typical results 
for the zero-pressure limit solubility coefficients of methane in polystyrene (Eslami and 
Müller-Plathe, 2007a).  

 

Fig. 3. Comparison of calculated () and experimental ( Sada et al. 1987;  Vieth et al., 
1966a;  Vieth et al., 1966b;  Barrie et al. 1980;  Raymond et al. 1990;  Lundberg et al. 
1969) zero-pressure limit solubility coefficients of methane in polystyrene. Figure is taken 
from Eslami and Müller-Plathe (2007a).  
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Another more interesting application of the method is in the case of gas solubility 
calculation for polar penterants in polar polymers. This is a severe test, as most of the 
existing methods, like the Widom's test particle insertion method or its modifications, are 
not applicable in the case of polar fluids. We have recently applied this method to the case of 
water solubilities of poly(ethylene terephthalate) (Eslami & Müller-Plathe, 2009) and 
polyamide-6,6 (Eslami & Mehdipour, 2011). Preparing an initially relaxed configuration of 
the polymer, we have performed a long simulation, in the grand canonical ensemble, of the 

polymer phase to get the density of water, which corresponds to the target values of , V, 
and T.  The number of molecules (density) during the simulation changes until achieving 
equilibrium, at which the density fluctuates about the average value. We have shown in 
Figure 4 the variation of number of water molecules in the simulation box at two different 
temperatures (one above and one below the glass transition temperature).  

In Figure 4, the results at T= 280 K belong to exs = -18.5 kJmole-1 in a cubic box with a box 
length, L, of 3.082 nm. Calculating the partial molar volume of water from the results of this 
simulation, we expanded the chemical potential of water in the polymer phase as a function 
of pressure, according to Eq. (16). Then we have performed another simulation of the gas 
phase in the grand canonical ensemble, as explained above. Here the target chemical 
potential is varied during the simulation as a function of running-average pressure in the 
gas phase (see Eq. (16)). The result for time evolution of the density of water in the gas phase 
(L=50 nm) is also shown in Figure 4. The results in Figure 4 show that the gas phase quickly 
adjusts its state to the phase coexistence point. Also shown in the same figure are the results 

of similar calculations at 450 K (exs = -9.0 kJmole-1). Here the values of L for simulations of 
polymer and gas phases are 3.128 nm and 7.0 nm, respectively. 

  

Fig. 4. Time evolution of the number of water molecules in the grand canonical ensemble 
simulation at 280 K and 450 K. The solid and dotted curves represent the results for water 
molecules in poly(ethylene terephthalate) and in gaseous phases, respectively. 
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Similar calculations are done in the case of water solubility of polyamide-6,6 (Eslami & 
Mehdipour, 2011) over a wide range of temperatures and pressures. This is a particularly 
interesting example of the applicability of the method, since polyamide-6,6 is a highly polar 
polymer matrix with the ability of forming a strong hydrogen bond network and can 
dissolve water to about 10 wt %. We have shown in Figure 5 a typical calculated sorption 
isotherm for water in polyamide-6,6 at 300 K and its comparison with experiment.  

 

Fig. 5. The sorption isotherm of water in PA-6,6 at 300 K. The symbols represent calculations 
() and experimental data at 298 K () (Lim  et al., 1999) and 300 K () (Watt, 1980). Figure 
is taken from (Eslami & Mehdipour, 2011). 

6. Diffusion in polymers 

Most theories describing the mechanism of diffusion in polymeric materials are based on the 
free-volume approximation (Vrentas & Duda, 1979). In the free-volume theories, there is a 
volume which is directly occupied by polymeric molecules, and there is the remainder of the 
volume, which is called the free volume. A part of the free volume is assumed to be uniformly 
distributed among the molecules and is identified as the interstitial free volume, which 
requires a large energy for redistribution and is not affected by random thermal fluctuations. 
The other part, which is called the hole free volume, is assumed to require negligible energy 
for its redistribution. Therefore, the hole free volume is being continuously redistributed due 
to random fluctuations, and is assumed to be occupied by penetrant molecules. This 
redistribution of hole free volume will move the penetrant molecule with it. According to this 
model, by movement of segments of the polymer chain, a void will be created adjacent to the 
penetrant molecule. If the size of this hole is sufficient to host a penetrant molecule and if the 
penetrant have sufficient energy to jump into the hole, a successful jump of the penetrant 
molecule is made into the hole. Although the free volume model has been used extensively to 
describe the mechanism of transport through molten or glassy polymers (Mauritz & Storey, 
1990), this model does not show a microscopic view point of penetrant transport in polymers, 
since it just connects bulk transport properties, like diffusion coefficient, into bulk properties, 
like molecular volume or thermal expansion coefficient.   
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The transition-state theory (TST), introduced by Gusev et al. (1993), is another useful 
method for the calculation of diffusion coefficient of a low-molar-mass substance through 
the polymer matrix. In the TST it is assumed that the movement of the penetrant from an 
initial cavity to the saddle point and to a neighboring cavity is a unimolecular 
rearrangement. For such a transition the reaction trajectory in configuration space is tracked 
and the transition rate constant is evaluated. In the first studies on the application of TST to 
study the dynamics of light gases dissolved in rigid microstructures of glassy polycarbonate 
and rubbery polyisobutylene Gusev et al. (1993), the method was shown to be only capable 
to study just the dynamics of light gases like He. The method was developed by Gusev and 
Suter (1993), by Gusev et al. (1994), and by Karayiannis et al. (2004), to calculate the 
diffusion coefficient of bigger penetrants in glassy polymers.   

Computer modeling of molecular systems at a detailed atomistic level has become a 
standard tool in investigation of sorption and diffusion of small molecules in polymeric 
media (Müller-Plathe, 1991, 1994, Milano et al., 2002, Mozaffari et al. 2010). MD 
simulation is a useful tool for exploring the structure and properties of bulk amorphous 
polymers. The length of the trajectories that can be generated in practice presently is on 
the order of many nanoseconds. Thus the range of properties that can be studied directly 
is limited to those that evolve over this time scale. One of the phenomena that appear to 
be suitable for investigation is the diffusion of small penetrant molecules in an amorphous 
polymeric matrix. That is, the diffusion coefficients of small penetrants in many rubbery 
or liquid polymers are such that, at temperatures close to room temperature and above, 
the average displacement of the diffusant is large enough in a nanosecond interval to be 
determined via molecular dynamics simulation. Performing such simulations is of 
practical importance in predicting diffusion coefficients and also in understanding the 
mechanism of diffusion.   

Although there has been significant progress in the use of MD methods in the simulations of 
diffusion coefficients, early studies were focused on the simulation of gas diffusion in 
rubbery polymers which could be investigated using full atomistic or united-atom 
simulations in reasonable computational times (Boyd, 1991; Sok et al., 1992, Pant & Boyd, 
1993; Gee & Boyd, 1995). Due to the recent development of improved force fields and the 
wider availability of sophisticated commercial softwares and high-speed computing 
facilities, attention is shifting to direct to the more challenging task of simulating the slower 
diffusional processes occurring in glassy polymers (Han & Boyd, 1996, Milano et al. , 2002, 
Lime at al., 2003, Mozaffari et al., 2010). In the following section we present the MD 
simulation results done recently by the authors on the diffusion of gases in polystyrene over 
a wide range of temperatures and pressures. 

6.1 MD simulation of diffusion in polymers (case study) 

Recently we have studied the diffusion mechanism of some gases in polystyrene over a 
wide range of temperatures, ranging from below the glass transition temperature to 
temperatures well above the glass transition temperature (Mozaffari et al., 2010). Center-of-
mass mean-square displacements have been measured during the simulation to calculate the 
diffusion coefficients. In the limit of long times, which the penetrant molecules perform 
random walks in the polymer matrix, the mean-square-displacement becomes linear in time, 
and the diffusion coefficients can be calculated using the Einstein relation: 
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The diffusion coefficients of penetrant gases in polystyrene have been calculated over a 
wide range of temperatures, 300 K-500 K. The motion pattern of penetrant gases in host 
polymer can be qualitatively studied by monitoring the penetrant’s displacement |r(t)-r(0)|, 
from its initial position. We have shown in Figure 6 the displacements of argon and propane 
in polystyrene at 300 K.  
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Fig. 6. Displacement of argon (upper curve) and propane (lower curve) molecules from their 
initial positions at 300 K. In order to avoid overlapping between the curves, the 
displacements of argon are offset by 0.6 nm. Figure is taken from Mozaffari et al. (2010). 

The curves are representative of a common hopping mechanism, showing that for a 
considerable time interval the penetrants dwell in existing voids in the polymer and 
occasionally do a jump into the neighboring voids. When dwelling in the voids, the 
penetrants just perform oscillatory motions around their equilibrium positions, therefore, no 
net motion of a penetrant molecule occurs with these positional fluctuations. The amplitude 
of oscillations varies according to the size of voids. From time to time, the penetrants can do 
a quick jump into their neighboring voids, see Figure 6. The jump frequency depends on 
penetrant’s size, therefore the bigger penetrants (see Figure 6 in the case of propane) can 
rarely jump between the voids. 

Particularly useful information can be obtained by analyzing the trajectories of penetrants in 
the polymer. The two-dimensional center-of-mass x-y trajectories of nitrogen, as a typical 
example, in polystyrene at temperatures below (300 K) and above (500 K) the glass 
transition temperature are indicated in Figure 7.  

The results in Figure 7 are indicative of faster movement of penetrants at higher 
temperatures, as represented by the broadened range of displacements at higher 
temperatures. This indicates that at higher temperatures the hole free volume redistributes 
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faster and penetrant molecules have higher energy to overcome the activation energy 
required to jump into new voids.  
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Fig. 7. Typical trajectories of nitrogen molecules in polystyrene at 300 K (upper curve) and 
500 K (lower curve). Figure is taken from Mozaffari et al. (2010). 

As a measure of diffusion coefficients, the center-of-mass mean-square displacements of 
carbon dioxide at temperatures below (340 K) and above (480 K) the glass transition 
temperature, are shown in Figure 8.  
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Fig. 8. Center-of-mass mean-square displacement for carbon dioxide at temperatures below 
and above the glass transition temperature. The curve at 480 K is scaled down by a factor of 
15 for the sake of clarity. The dashed lines show the least-squares fits to the linear parts of 
the curves. Figure is taken from Mozaffari et al. (2010). 

www.intechopen.com



 
Molecular Dynamics Simulation of Permeation in Polymers 

 

77 

The linearity of mean-square displacements versus time, as indicated in Figure 8, confirms 
Einstein diffusion. In the glassy polymer at times below 500 ps, the penetrant motion is 
highly anomalous and the diffusion regime begins at longer times. Intercavity jumps rarely 
occur at this time scale.  However, as it can be seen from the results in Figure 8 at high 
temperatures, the diffusion regime sets in a shorter time. These findings clearly indicate the 
difference between the diffusion mechanisms in the glassy and melt polymers. 

7. Permeation in polymers 

For a permeant gas subject to a pressure gradient at two different sides of a membrane, the 
permeability, P, is defined as  

 
   
     

quantity of permeant film thickness
P

area time pressure drop across film




 
 (18) 

The quantity of permeant gas is often expressed as the volume of gas at STP condition. In 
fact, the pressure difference between up- and down-stream sides of polymer membrane is 
the driving force of permeation phenomenon. As stated above, penetrant transport through 
membrane is described by solution-diffusion mechanism. According to this model the 
permeation occurs in three steps: 1-sorption of gas molecules at upstream side of polymer 2-
diffusion of the gas molecules into the polymer matrix 3-desorption of gas molecules at 
downstream side of polymer. This is indicated schematically in Figure 9.  

 
 
 
 
 
 
 

Fig. 9. The schematic of gas permeation in a membrane 

The permeability coefficient of gas molecules across a polymer film of thickness L is 
described by the flux J: 

 
c

J P
L


  (19) 

where Δc is the concentration gradient of penetrant molecules through the membrane. 

Accordingly, the permeation coefficient can be expressed by the product of the diffusion 

coefficient D, and the solubility coefficient S, as: 

 P DS  (20) 

Since direct simulation of the permeation process is not possible due to the system size, Eq. 

(20) is a particularly useful expression connecting the permeability coefficient with the diffusion 

and solubility coefficients. Therefore, diffusion and solubility coefficients, calculated in MD 

simulation methods, are used to calculate the permeability coefficients according to Eq. (20). 
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We have shown in Figure 10 our recently calculated results on the permeability of water in 
poly(ethylene terephthalate) (Eslami & Müller-Plathe, 2009). The results, indicating the 
permeability coefficients over a wide range of temperatures, are shown in Figure (10).  
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Fig. 10. Comparison of the calculated () and experimental permeability coefficients of 
water in poly(ethylene terephthalate). The experimental data are from ( Launay et al., 
1999); ( Shigetomi et al., 2000); (  Changjing & Junying, 1987); ( Rueda & Varkalis, 
1995); and (  Kloppers et al., 1993). Figure is taken from Eslami & Müller-Plathe (2009). 

The Arrhenius plot of ln(P) vs. 1/T shows a break at the glass transition temperature. As a 
result of calculating a higher solubility coefficient, our calculated permeation coefficients are 
also higher than the experimental values. Solubility coefficients are higher than the 
experimental values, especially at lower temperatures. This is trivial for calculations of this 
type. Similar differences between experimentally and computed solubility coefficients have 
been observed in previous studies (Cuthbert et al., 1997; Lim et al., 2003, Eslami & Müller-
Plathe, 2007a, 2009; Eslami & Mehdipour, 2011). According to Gusev and Suter (1993), errors 
of the order of (2-4)kBT are  common for the calculation of Helmholtz energies by molecular 
simulations. It has been speculated that the main contribution to the solubility comes from 
single holes in the simulated polymer structure, which might not be present in similar 
proportion in real polymers (Müller-Plathe et al., 1993). Errors of this type become even 
more serious in cases where the solubility is very low. 

We have also compared our calculated permeability coefficients of a number of gases in 
polystyrene (Mozaffari et al., 2010) with experimental values (Csernica et al., 1987) and 
with simulation results by Kucukpinar and Doruker (2003). The results in Table 1 indicate 
that the calculated values are in good agreement with experiment. The results indicate 
that polystyrene is much permeable to CO2, compared to other gases studied by Mozaffari 
et al. (2010), because of the higher solubility coefficient of CO2 in polystyrene and its 
relatively higher diffusion coefficient. On the other hand, polystyrene is less permeable to 
the biggest penetrant molecule studied, propane, because of its very small diffusion 
coefficient.   
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An interesting test is to compare the calculated permeability coefficient ratios 
(selectivities) in the zero pressure limit with the corresponding experimental values 
(Csernica et al., 1987). This is done in Table 2, in which we have listed the ratios of 
permeability coefficients at 300 K to that of nitrogen’s permeability and compared the 
results with experimental measurements (Csernica et al., 1987) and with the calculations 
by Kucukpinar and Doruker (2003). The results in Table 2 show that the calculated ratios 
are quite close to the experimental ratios. This shows that our calculated permeability 
coefficients are higher that the experimental values by nearly the same factor. The same 
conclusion was made in our work on the calculated solubility coefficients (Eslami & 
Müller-Plathe, 2007a). This indicates that there is an excessive free volume in the polymer 
sample compared to the experimental polymer samples. Better agreement of the results by 
Mozaffari et al. (2010) with experiment (Csernica et al., 1987) compared to those of 
Kucukpinar and Doruker (2003) has been attributed to using a united atom models for 
both polymer and diffusant gases, in the later case.  

 

Table 1. Comparison of calculated gas permeability coefficients at 300 K (Mozaffari et al., 
2010) with experimental values (Csernica  et al., 1987) and with simulation results by 
Kucukpinar and Doruker (2003).  

 

Table 2. Comparison of calculated ratios of permeability coefficients at 300 K (Mozaffari et 
al., 2010) with experimental values (Csernica  et al., 1987) and with simulation results by 
Kucukpinar and Doruker (2003).    

www.intechopen.com



 
Molecular Dynamics – Studies of Synthetic and Biological Macromolecules 

 

80

8. Summary 

In this chapter the polymer permeability is discussed and reviewed from a computational 
point of view. Although it is impossible to directly simulate the permeability process, the 
simulation techniques are powerful tools to simulate and to give a molecular level insight to 
the solubility and diffusion mechanisms of gases in polymers. While there are lots of 
simulations in the literature, giving address to the diffusion mechanism of gases in glassy 
and/or rubbery polymers, the computations are less straightforward in the case of gas 
solubilities. Therefore, the main problem in calculation of gas perameability of polymers, using 
molecular simulation methods, stems from the calculation of solubility coefficients. In fact the 
calculation of gas solubilities necessitates the condition of equilibrium between the permeant 
in the gas/liquid phase and the permeant dissolved in polymer. The equality of the 
temperature, pressure, and chemical potentials of all species is the necessary condition to 
establish such an equilibrium situation. The chemical potential is, however, coupled to the 
number of particles and cannot easily be calculated employing molecular simulation methods. 

The applicability and feasibility of different techniques for the calculation of chemical 
potentials is evaluated and discussed. It is explained that in some straightforward cases, like 
the thermodynamic integration method, several simulations are needed to calculate the 
chemical potential. Widom's test particle insertion method (Widom, 1963) is of practical 
importance in many cases, but the method encounters sampling problems at high densities 
and in the case of big solutes. The method is also not applicable in the case of chemical 
potential calculation for polar species. It is shown that recent grand canonical MD 
simulation methods (Eslami and Müller-Plathe, 2007b; Eslami et al., 2010). are trustable 
methods for the sake of phase equilibrium calculation. In these methods the chemical 
potential is set as an independent thermodynamic quantity, and the number of particles in 
the box is changed in a gradual and dynamical way. The applicability of the method to the 
challenging cases like gas solubilities in polymers with stiff chemical structures (Eslami and 
Müller-Plathe, 2007a) and solubility of water (as a polar penetrant) in polar polymers, like 
polyamide-6,6 (Eslami & Mehdipour, 2011) is reviewed and discussed. 

The process of gas diffusion in polymers and different approaches for studying the gas 
diffusion are addressed to. It is explained that MD simulation well describes the jumping 
mechanism of diffusions in glassy polymers. According to this mechanism, in a glassy 
polymer the penetrants dwell in the polymer holes and occasionally do a jump into the 
neighboring voids (Mozaffari et al., 2010). Therefore, no net motion of a penetrant molecule 
occurs while the penterant just performs random oscillations inside a hole. From time to 
time, the penetrants can do a quick jump into their neighboring voids, with a jump 
frequency depending on penetrant’s size, temperature, and chemical structure of the 
polymer. The permeation coefficients of gases in polymers are, therefore, reviewed in this 
chapter in terms of gas solubilities and diffusions. 
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